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The aim of the conference is to exchange the recent advances and experience in the various 
areas of Control Theory between the researchers from industry, research institutes, project 
organisations, academies of sciences, and universities.  
 
The program of the conference will be focused on all aspects of Control and Systems, and 
ranges from fundamental research to applications in process control. Topics of interest 
include linear and non-linear control, optimisation, robust, adaptive and intelligent control, 
identification, modelling and simulations, real-time systems, new trends in application of 
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Jurišica, L., Duchoň, F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

16:20 Control of an RC Helicopter Model Through USB Interface
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Macháček, J., Havlíček, L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

x



18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Program

17 Piecewise-Linear Neural Models for Process Control
Doležel, P., Taufer, I., Mareš, J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

18 PI/PID Controller Design for FOPDT Plants Based on the Modulus Optimum Criterion
Cvejn, J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

19 Signal Shapers for BWB Aircraft Control
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Jelenčiak, F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
11:50 Robust Decentralized PID Controller Design for the 3D Crane Process

Nguyen, Q.T., Veselý, V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
12:10 Comparison of Two Methods for Determining the Optical Flow

Seibold, P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

Friday
08:45–09:20 Pl-Fr-1 – Hall A – Plenary Lecture

Chairman: Kvasnica, M.
08:45 Model Predictive Control for Industrial Applications

Papafotiou, G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

09:30–10:50 Le-Fr-2 – Hall A – Lectures: Robust and Adaptive Control
Chairman: Veselý, V.

09:30 Application of Quantitative Feedback Theory for Wind Turbine Controller Design
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Kalúz, M., Čirka, L’., Fikar, M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

11:50 Comparison of Supervisory and Networked Control in Remote Laboratories
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  Optimization is a natural choice to: 
-  design and conceive highly integrated systems 
-  reduce production costs and improve product quality 
-  meet safety and environmental regulations 

  Mathematical models are ubiquitous in almost 
   every aspect of  science and engineering 
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 Optimization of process operation 

  Static optimization  u              RTO 
-  dynamic processes at steady-state 
-  run-to-run operation of batch processes 

  Dynamic optimization  u(t)       DRTO 
-  transient behavior of dynamic process 
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Outline 

Static real-time optimization 

Application examples 

  Adaptation of model parameters – Repeated identification & optimization 
  Adaptation of optimization problem – Modifier adaptation 
  Adaptation of inputs – NCO tracking 

Context of uncertainty 
o  Plant-model mismatch 
o  Disturbances 

   Use measurements for process improvement 
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A Large Continuous Plant 

PLANT at  
“STEADY STATE” RAW MATERIALS PRODUCTS 

Determine Best Operating Conditions"
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Real-Time Optimization of a Continuous Plant 

Planning & Scheduling"

Decision Levels"Disturbances"

Market Fluctuations, 
Demand, Price"

Catalyst Decay, Changing 
Raw Material Quality"

Fluctuations in 
Pressure, Flowrates, 
Compositions"

Long term 
week/month"

Medium term 
day"

Short term 
second/minute"

Real-Time Optimization"

Control"

Production Rates 
Raw Material Allocation"

Optimal Operating  
Conditions - Set Points"

Manipulated  
Variables"Measurements"

Measurements"

Measurements"

Changing conditions"
 Real-time adaptation"

Large-scale complex 
processes"
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A Discontinous Plant  
 

Production Constraints 

•  meet product specifications"
•  meet safety and environmental constraints"
•  adhere to equipment constraints"

Differences in Equipment and Scale 
•  mass- and heat-transfer characteristics"
•  surface-to-volume ratios"
•  operational constraints"

LABORATORY 

Different conditions  Run-to-run adaptation"

BATCH PLANT RECIPE PRODUCTS 

Scale-up"

PRODUCTION 
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Run-to-Run Optimization of a Batch Plant 

 

min
u[0,t f ]

! := " x(t f ),#( )                                          

s. t. !x = F(x,u,# ) x(0) = x0                                  
           S(x,u,# ) $ 0

           T x(t f ),#( ) $ 0

u(t) xp (t f )

Batch plant with"
finite terminal time"

u[0,t f ] = U(! )
Input Parameterization 

u(t)"
umax"

umin"
tf"t1" t2"

u1"

0"

min
!

" ! ,#( )                                            

s. t. G ! ,#( ) $ 0                     

Batch plant"
viewed as a static map"

! ! p

G p NLP"
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Plant"

Static RTO Problem 

min
u

! p u( ) := "p u, y p( )
s. t. G p u( ) := g p u, y p( ) # 0

(set points)"

? u"

NLP"

Model-based Optimization"

? 

min
u

!(u) := " u, y( )                                

s. t. G u( ) := g u, y( ) # 0          

F u, y,!( ) = 0

(set points)"

? u"uu
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RTO Scenarios"
Optimization in the presence 
of Uncertainty 

Measurements: 
Adaptive Optimization 

No Measurement: 
Robust Optimization 

What are the best"
 handles for correction?"

  
u* !arg min

u
"(u, y)

  

s.t. F(u, y,!) = 0
g(u, y) " 0

Adaptation of 
Inputs. 

- tracking active constraints 

-  NCO tracking 
-  extremum-seeking control 
-  self-optimizing control 
 
 

  input update: !u

Adaptation of 
Model Parameters 

-  repeated identification  
     and optimization 
- two-step approach 

 parameter update: !"

Adaptation of 
Modifiers. 

- bias update 

- constraint update 

-  gradient correction 
-  ISOPE 

  constraint update: !g
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!

k
* "arg min

!
J

k
id

    
J

k
id = y

p
(u

k
!)" y(u

k
!,#)$% &'

T
Q y

p
(u

k
!)" y(u

k
!,#)$% &'

   
s.t. g u,y(u,!

k
")( ) # 0

Parameter Estimation Problem" Optimization Problem"

   
uk+1

! "argmin
u

# u,y(u,$k
!)( )

  uL ! u ! uU

Plant"
at"

steady state"
Parameter"
Estimation"

Optimization"
uk+1

! " uk
!

!k*

yp(uk
!)

T.E. Marlin, A.N. Hrymak. Real-Time Operations Optimization of Continuous Processes, 
 AIChE Symposium Series - CPC-V, 93, 156-164, 1997 

Current Industrial Practice "
for tracking the changing optimum in 

the presence of plant-model mismatch"

1. Adaptation of Model Parameters 
  Repeated Identification and Optimization 
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Model Adequacy for Two-Step Approach 

J.F. Forbes, T.E. Marlin. Design Cost: A Systematic Approach to Technology Selection for Model-
Based Real-Time Optimization Systems. Comp. Chem. Eng., 20(6/7), 717-734, 1996 

A process model is said to be adequate for use in an RTO scheme if it is 
capable of producing a fixed point for that RTO scheme at the plant optimum 

Model-adequacy conditions"

  up
!

!

   yp(up
! )

   Gi(up
! ," ) = 0, i #A(up

! )

   Gi(up
! ," ) < 0, i #A(up

! )

   !r"(up
# ,$ ) = 0,

   !r
2"(up

# ,$ ) > 0

Opt."

   

!J id

!"
yp(up

# ),y(up
# ," )( ) = 0,

   

!2J id

!" 2
yp(up

# ),y(up
# ," )( ) > 0,

Par.
Est."

SOSC"

Converged value"!

Plant"
at "

optimum"
Parameter 
Estimation"

Optimization"
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Two-step approach 

Example of Inadequate Model 

Does not 
convergence to 
plant optimum 

Williams-Otto Reactor 
"- 4th-order model 

- 2 inputs 
- 2 adjustable par. 
 

  
F

A
, X

A,in
= 1

  
F

B
, X

B,in
= 1

 F = F
A
+ F

B

 V

 TR

  XA
, X

B
, X

C
, X

E
, X

G
, X

P
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uk+1

! "arg min
u

#m(u) := #(u)+ $k
# [u % uk

! ]

   s.t. Gm(u) := G(u)+ !k + "k
G [u # uk

$ ] % 0

Modified Optimization Problem"
Affine corrections of 
cost and constraint 
functions"

  uL ! u ! uU

T 

T 

2. Modification of Optimization Problem 
 Repeated Optimization using Nominal Model 

Force the modified problem 
to satisfy the optimality 
conditions of the plant "

co
ns

tra
in

t v
al

ue
"

   Gm(u)

   Gp(u)

 !k

  G(u)

   !k
G [u " uk

# ]T 

 u
  uk

!

P.D. Roberts and T.W. Williams, On an Algorithm for Combined System Optimization and Parameter Estimation, 
Automatica, 17(1), 199–209, 1981 
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Requires evaluation of 
KKT elements for plant"

   
uk+1

! "arg min
u

#m(u) := #(u)+ $k
# [u % uk

! ]

   s.t. Gm(u) := G(u)+ !k + "k
G [u # uk

$ ] % 0

Modified Optimization Problem"

  uL ! u ! uU

T 

T 

Modifiers:"

KKT Elements:"

   
!T = "1,!,"ng

,#G1 ,!,#Gng ,#$%
&

'
( )"nK

     
CT = G1,!,Gng

,
!G1

!u
,!,

!Gng

!u
,
!"
!u

#

$
%

&

'
( )"nK

  nK = ng + nu(ng + 1)

T T T 

!k = Cp(uk
") #C(uk

")

Modifier Update (without filter)"

2. Modification of Optimization Problem 
 Repeated Optimization using Nominal Model 

!k = (I " K)!k"1 + K Cp(uk
#) "C(uk

#)$
%

&
'

Modifier Update (with filter)"

A. Marchetti, B. Chachuat and D. Bonvin, Modifier-Adaptation Methodology for Real-Time Optimization, I&EC Research, 
48(13), 6022-6033 (2009) 

W. Gao and S. Engell, Iterative Set-point Optimization of Batch Chromatography, Comput. Chem. Eng., 29, 1401–1409, 2005 
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!J id

!"
yp(up

# ),y(up
# )( ) = 0,

   

!2J id

!" 2
yp(up

# ),y(up
# )( ) > 0

Model Adequacy for Modifier Approach 

Modifier 
Update"

Modified 
Optimization"

Model-adequacy condition"

  up
!

!

    Cp(up
! )

    ! = Cp(up
" ) # C(up

" )

A process model is said to be adequate for use in an RTO scheme if it is 
capable of producing a fixed point for that RTO scheme at the plant optimum 

   Gi(up
! ) = 0, i "A(up

! )

   Gi(up
! ) < 0, i "A(up

! )

   !r"(up
# ) = 0,

   !r
2"(up

# ,$) > 0
Converged value"

Plant"
at"

optimum"
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Example Revisited 
  
F

A
, X

A,in
= 1

  
F

B
, X

B,in
= 1

 F = F
A
+ F

B

 V

 TR

  XA
, X

B
, X

C
, X

E
, X

G
, X

P

Converges to plant 
optimum 

Williams-Otto Reactor 
"- 4th-order model 

- 2 inputs 
- 2 adjustable par. 
 

Modifier adaptation 

Alejandro Marchetti, PhD thesis, EPFL, Modifier-Adaptation Methodology for Real-Time Optimization, 2009  
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Model of solution!

Modeling"

Numerical"
Optimization"

Nominal process model !

O
ff-

lin
e"

Active constraints"
Reduced gradients"

Disturbances" Real Plant"

Evaluation of"
KKT elements"

Self-optimizing"
Controller"

B. Srinivasan and D. Bonvin, Real-Time Optimization of Batch Processes by Tracking the 
Necessary Conditions of Optimality, I&EC Research, 46(2), 492-504, 2007 

O
n-

lin
e"

3. Adaptation of Inputs      NCO tracking 
 

Self-optimizing control   
    no need to repeat 

numerical optimization on-line 
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 Model parameter 

adaptation 

Modifier  

adaptation 

Input adaptation 

(NCO tracking)  

Adjustable parameters !  !  u  

Measurements y p  C p  C p  

Number of parameters n!  ng + nu (ng +1)  nu  

Number of measurements ny  ng + nu (ng +1)  ng + nu (ng +1)  

On-line tasks Optimization (2x) 
Estimation of KKT 

Optimization 
Estimation of KKT 

Feasibility 
Constraints 

predicted by model 
  Constraints measured    OK if active set known 

Optimality  
Gradients 

predicted by model  
   Gradients measured    Gradients measured 

Strengths Intuitive  
One-to-one 

correspondence 

Constraint adaptation 

No optimization on-line 

 Constraint tracking 

Weaknesses Model adequacy Experimental gradients 

Knowledge of active set 

Experimental gradients 

Controller tuning 

 

✔ ✔ 

✔ ✔ 

✘ 

✘ 

Comparison of RTO Schemes"
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Outline 

Static real-time optimization (process at steady-state) 

Application examples 

  Adaptation of model parameters – Repeated identification & optimization 
  Adaptation of optimization problem – Modifier adaptation 
  Adaptation of inputs – NCO tracking 

Context of uncertainty 
   Plant-model mismatch 
   Use of measurements for process improvement 
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Comparison of 3 RTO Schemes 
Run-to-Run Optimization of Semi-Batch Reactor 

  Objective: 

  Constraints: 

  Manipulated Variables: 

Model 

  Industrial Reaction System 

Simulated  
Reality 
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Nominal Input Trajectory 

  Optimal Solution   Approximate Solution 
u"
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Adaptation of Model Parameters k1 and k2  

  Exponential Filter for k1, k2: 

  Identification Objective: 

  Measurement Noise: 
   (10% constraint backoffs) 

Large 
optimality 
loss! 
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Adaptation of Modifiers εG "

  Exponential Filter for Modifiers: 

  No Gradient Correction 

  Measurement Noise: 
   (10% constraint backoffs) 

Recovers most 
of the optimality loss 
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Adaptation of Input Parameters ts and Fs 

  Controller Design: 

  No Gradient Correction 

  Measurement Noise: 
   (10% constraint back-offs) 

Recovers most 
of the optimality loss 

ts
k

Fs
k

!

"
#
#

$

%
&
&
=

ts
k'1

Fs
k'1

!

"
#
#

$

%
&
&

! = ! k!1
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  Industrial features"
•  1-ton reactor, risk of runaway"

•  Initiator efficiency can vary considerably"

•  Several recipes!

  different initial conditions!

 different initiator feeding policies!

  use of chain transfer agent!
•  Modeling difficulties"
•  Uncertainty"

 

Fj,T j,in

 

Tj

T (t)
Mw (t)
X(t)

!

"
#

$
#

Industrial Application of NCO Tracking 
Emulsion Copolymerization Process  

   Objective: Minimize batch time by adjusting the reactor temperature"
•  Temperature and heat removal constraints"

•  Quality constraints at final time"
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Industrial Practice  
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Optimal Temperature Profile 
 Numerical Solution using a Tendency Model 

•  Current practice: isothermal"

•  Numerical optimization"
  Piecewise-constant input"
  5 decision variables (T2-T5, tf)"
  Fixed relative switching times"

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

time/tf [ ]

Piecewise Constant Optimal Temperature

Tr [ ]

Tr,max

Isothermal 

Piecewise constant 
2"1" 3" 4"

5"

Time tf 

Tmax"

T [ ]"

•  Active constraints"
  Interval 1: heat removal "
  Interval 5: Tmax"
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Model of the Solution -- Semi-adiabatic Profile"

ts"

t"

T(t)"

Tmax"

Tiso"

tf"

Solution model 
Fixed part  -- structure 

Free part -- ts 

1"

2"Heat removal limitation 
≈ isothermal operation 

Compromise* 
≈ adiabatic 

T(tf) = Tmax"

ts enforces T(tf) = Tmax"

  run-to-run adjustment of ts  

*Compromise between 
 conversion and quality 
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Final time"
•  Isothermal: 1.00 "
•  Batch 1:      0.78"
•  Batch 2:      0.72"
•  Batch 3:      0.65"

Batch 0"

1.0"

Industrial Results (1-ton reactor) 

Francois et al., Run-to-run Adaptation of a Semi-adiabatic Policy for the Optimization of an  

Industrial Batch Polymerization Process, I&EC Research, 43(23), 7238-7242, 2004 
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Conclusions 

•  How to use the measurements? 
o  what are the best handles for correction? 

•  Repeated estimation and optimization has problems 
o  model adequacy for optimization 

•  Practical observations 

o  complexity depends on the number of inputs (not system order) 
o  the solution is often determined by the constraints of the problem 
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Regular design equations for the
reduced-order Kalman filter

P. Hippe

Peter Hippe, Lehrstuhl für Regelungstechnik, Universität
Erlangen-Nürnberg

(Tel : +49-9131-8527135 ; e-mail : peter.hippe@rt.eei.uni-erlangen.de)

Abstract: Reduced-order Kalman filters yield an optimal state estimate for linear dynamical
systems, where parts of the outputs are not corrupted by noise. The design of such filters can
either be carried out in the time domain or in the frequency domain. Different from the full-
order case with all measurements corrupted by noise, the design equations of the reduced-order
filter are not regular, due to the rank deficient measurement covariance matrix. This can cause
problems when using standard software for the solution of the Riccati equations in the time
domain. In the frequency domain spectral factorization of the non-regular polynomial matrix
causes no problems. The known proof of optimality of the factorization result, however, also
requires a regular measurement covariance matrix. This paper presents regular (reduced-order)
design equations for such filters in the time and in the frequency domains for linear continuous-
time systems and it is shown, that the existing solutions obtained by spectral factorization of a
non-regular polynomial equation are indeed optimal.

Keywords: Optimal estimation, polynomials, multivariable systems, continuous-time systems.

1. INTRODUCTION

If the system is completely observable the dynamics of a
state observer can be assigned arbitrarily. In the absence of
disturbances the observer generates a state estimate x̂ that
converges towards the real state x of the system. In the
presence of stochastic disturbances, however, persistent
observation errors occur. Then, a state estimate is of
interest such that the observation error x̂ − x has the
smallest mean square. Given Gaussian white noise with
zero mean, such an estimate is generated by a stationary
Kalman filter (Anderson and Moore (1979), Kwakernaak
and Sivan (1972)) whose order coincides with the order n
of the plant.

If parts of the measurements are not corrupted by noise,
the order of the optimal filter is reduced. The optimal
estimation problem in the presence of noise-free measure-
ments is one of the well researched fields in automatic
control. Since the original work of Bryson and Johansen
(1965) a considerable amount of contributions has been
published on the subject (see, e.g., the books by Sage
and Melsa (1971), Gelb (1996), O’Reilly (1983) and Hippe
and Deutscher (2009), or the references in O’Reilly (1982)
and Fairman and Luk (1985)). The time-domain design of
the reduced-order filter amounts to solving an algebraic
Riccati equation (ARE).

The equivalent frequency domain version of the reduced-
order Kalman filter is parameterized by a polynomial ma-

trix ˜̄D(s), which can be obtained by spectral factorization
of a polynomial matrix equation. This polynomial matrix
equation is determined from a version of the ARE intro-
duced by Bryson and Johansen (1965) or Gelb (1996). This

Riccati equation is formulated for a full-order covariance
matrix P̄ which, however, is singular. There have been
papers presenting regular reduced-order Riccati equations
yielding a regular covariance matrix P̄r of reduced order,
but they cannot be used to develop an equivalent frequency
domain formulation of the filtering problem.

Standard software cannot be used to design the reduced-
order Kalman filter, because the basic requirement,
namely a measurement covariance matrix which is positive
definite, is not fulfilled in the presence of undisturbed mea-
surements. To obtain a well-defined order of the reduced-
order filter it is assumed here that the random signals,
which disturb the artificial output consisting of the noisy
measurements and the time derivatives of the undisturbed
outputs, have a regular covariance. This is a standard
assumption in nearly all investigations on reduced-order
Kalman filters (see, e.g., Bryson and Johansen (1965),
O’Reilly (1983), Haddad and Bernstein (1987), Hippe
(1989)).

After a formulation of the underlying problem in the
time domain in Section 2 the existing solution for the
optimal filter is presented. By a reformulation of the
Riccati equation for the artificial output, one obtains a
regular measurement covariance. In the continuous-time
case standard software still does not work because the
Hamiltonian of this ARE has eigenvalues at s = 0. By
an adequate state transformation of the state equations of
the system this Riccati equation can be subdivided into
a regular part and a vanishing part. The regular part
is solvable by standard software. This regular part also
allows to derive the conditions for the optimal filter to be
stable, and it is shown how these conditions translate into
conditions on the original system.
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The known polynomial matrix equation for the design of
the reduced-order Kalman filter in the frequency domain
is based on the left MFD of the full-order system whereas

the polynomial matrix ˜̄D(s), resulting from the spectral
factorization of this polynomial matrix characterizes a
system of reduced order. This is a consequence of the
rank deficient measurement covariance matrix multiplying
the denominator matrix of the system. Unfortunately,
proofs for the optimality of the spectral factor are only
known in the case, where the measurement covariance is
not singular. In Hippe and Deutscher (2009) it has been
observed that, on the one hand, optimality of the result
can only be checked by computing the corresponding time
domain results and, on the other hand, that all examples

investigated so far have shown that the resulting ˜̄D(s) is
indeed optimal.

In Section 3 it is shown, that the polynomial matrix
˜̄D(s) resulting from the non-regular polynomial equation
is identical to that, which can be obtained from a “regu-
lar” polynomial matrix equation. This regular polynomial
matrix equation is derived from the reduced regular ARE
in the time domain and it allows the design of a full-order
filter for a reduced-order system. As an additional result,
the conditions for the stability of the filter are presented.

Concluding remarks are presented in Section 4

2. THE FILTER DESIGN IN THE TIME DOMAIN

We consider linear time-invariant systems of the order n,
with p inputs u, q stochastic inputs w and m measured
outputs y, where the first m − κ outputs y1 are corrupted
by noise and the remaining κ outputs y2 are free of noise,
described by

ẋ(t) = Ax(t) + Bu(t) + Gw(t) (1)

[
y1(t)

y2(t)

]
=

[
C1

C2

]
x(t) +

[
v1(t)

0

]
(2)

where the abbreviation [
C1

C2

]
= C (3)

will be used in the sequel. It is assumed that the system
is controllable both from the input u and from the input
w and that it is observable.

The stochastic inputs w ∈ Rq and v1 ∈ Rm−κ are
independent, zero-mean, stationary Gaussian white noises
with

E{w(t)wT (τ)} = Q̄δ(t − τ) (4)

E{v1(t)v
T
1 (τ)} = R̄1δ(t − τ) (5)

where E{·} denotes the mathematical expectation and δ(t)
is the Dirac delta function.

The covariance matrices Q̄ and R̄1 are real and symmetric,
where Q̄ is positive-semidefinite and R̄1 is positive-definite.
The initial state x(0) = x0 is not correlated with the
disturbances, i.e., E{x0w

T (t)} = 0 and E{x0v
T
1 (t)} = 0

for all t ≥ 0.

It is assumed that the covariance matrix

Φ = C2GQ̄GT CT
2 = G2Q̄GT

2 (6)

is positive definite. It characterizes the influence of the
input noise on the time derivative of the undisturbed
measurement y2.

The reduced-order Kalman filter for such systems is de-
scribed by

˙̂
ζ(t) = T (A−L1C1)Θζ̂(t) + (7)

[TL1 T (A−L1C1)Ψ2]

[
y1(t)

y2(t)

]
+ TBu(t)

x̂(t) = Θζ̂(t) + Ψ2y2(t) (8)

(see Gelb (1996), Hippe and Deutscher (2009)). The op-

timal estimate ζ̂(t) results if the matrices L1 and Ψ2 are
chosen such that

L1 = P̄CT
1 R̄−1

1 (9)

and

Ψ2 =
(
P̄AT CT

2 + GQ̄GT CT
2

)
Φ−1 (10)

with Φ as in (6) and P̄ = P̄ (∞) defined by

P̄ (t) = E{(x(t) − x̂(t))(x(t) − x̂(t))T } (11)

The stationary covariance P̄ satisfies the ARE

AP̄ + P̄AT − [ L1 Ψ2 ]

[
R̄1 0
0 Φ

][
LT

1

ΨT
2

]
+ (12)

GQ̄GT = 0

(Hippe and Deutscher (2009)) which is the basis for
deriving the equivalent frequency-domain solution (see
Section 3). This ARE, however, is not in a standard form
to be solved for P̄ .

Inserting the optimal solutions (9) and (10) in (12) one
obtains

ÃP̄ + P̄ ÃT − P̄ C̃T R̃−1C̃P̄ + GQ̃GT = 0 (13)

with
Ã = A − GQ̄GT CT

2 Φ−1C2A (14)

C̃ =

[
C1

C2A

]
(15)

R̃ =

[
R̄1 0
0 Φ

]
(16)

and
Q̃ = Q̄ − Q̄GT CT

2 Φ−1C2GQ̄ (17)

The ARE (13) is in the standard form with a regular

R̃ > 0. Standard software as, e.g., the function lqe
in MATLAB R©, however, does not yield the solution P̄ ,
because the Hamiltonian related to the ARE (13) has
eigenvalues at s = 0. This is due to the fact that rank P̄ =
n − κ.

By a regular state transformation z(t) = T̄ x(t) with

T̄ =

[
C
∗
]

(18)
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the state equations (1)–(2) of the system can always be
transformed into

ż(t) = Āz(t) + B̄u(t) + Ḡw(t) (19)

y(t) = C̄z(t) +

[
v1(t)

0

]
(20)

with

Ā = T̄AT̄ −1, B̄ = T̄B, Ḡ = T̄G, C̄ = CT̄ −1 (21)

or in components

[
ż1

ż2

]
=

[
A11 A22

A21 A22

][
z1

z2

]
+

[
B1

B2

]
u+

[
G1

G2

]
w (22)

y1 = C̄1z1 + v1 (23)

y2 = z2 (24)

with z1 ∈ R(n−κ), 0 < κ ≤ m, z2 ∈ Rκ.

If the transformed matrices (21) are inserted in (13)–(17)
the solution P̄z = T̄ P̄ T̄ −1 of this modified ARE (13) has
the form

P̄z =

[
P̄r 0

0 0κ

]
(25)

and the ARE (13) then consists of a regular (upper left)
part

ArP̄r + P̄rA
T
r − P̄rC

T
r R̃−1CrP̄r + GrQ̃GT

r = 0 (26)

while the rest is vanishing. The matrices in (26) are defined
by

Ar = A11 − G1Q̄GT
2 Φ−1A21 (27)

Gr = G1 (28)

and

Cr =

[
C̄1

A21

]
(29)

so that the reduced-order Kalman filter can be regarded
as a regular full-order filter for the reduced system
(Ar, Gr, Cr). The feedback matrix Lr is defined by

Lr = P̄rC
T
r R̃−1 = P̄r

[
C̄T

1 R̄−1
1 AT

21Φ
−1

]
(30)

The ARE (26) has two advantages. First, it can be
used to obtain P̄r and consequently also P̄ by standard
software. Second, it defines the conditions which guarantee
a stable filter. It is known that the full-order Kalman
filter for the reduced system (Ar, Gr, Cr) is stable if the

pair (Ar, GrQ̃0) has no uncontrollable eigenvalues on the
imaginary axis, where

Q̃ = Q̃0 Q̃T
0 (31)

(Goodwin et al. (2001)). Introducing

Q̄ = Q̄0 Q̄T
0 (32)

and
Q̂ = I − Q̄T

0 GT
2 Φ−1G2Q̄0 (33)

it is easy to show that

Q̃0 = Q̄0 Q̂ (34)

when taking into account that C2G = G2. Given the above
condition for a stable filter in terms of Ar and Gr, it is of
interest to know the corresponding condition for the non-
reduced system (Ā, Ḡ, C̄). The answer is contained in the
following lemma.

Lemma 1. If the system

ż(t) = Āz(t) + ḠQ̄0w(t) (35)

y2(t) = [0 Iκ] z(t) (36)

has no zeros which are located on the imaginary axis, then
the pair (Ar, GrQ̃0) has no uncontrollable eigenvalues on
the imaginary axis and vice versa.

Proof: If s = si is a non-controllable eigenvalue of the pair
(Ar , GrQ̃0) then

rank

[
siI − Ar

... GrQ̃0

]
< n − κ (37)

(see, e.g., Kailath (1980)).

Now define the system matrix

P (s) =



sIn−κ − A11 −A12 G1Q̄0

−A21 sIκ − A22 G2Q̄0

0 −Iκ 0


 (38)

which characterizes the zeros of the system (35)–(36) (see
Rosenbrock (1970)).

If the system (35)–(36) has a zero at s = si, then
rank P (s = si) < n + κ.

Using the unimodular matrix

UL =



In−κ −G1Q̄GT

2 Φ−1 0

0 Iκ 0

0 0 Iκ


 (39)

and the unimodular matrix

UR =




In−κ 0 0

0 Iκ 0

Q̄T
0 GT

2 Φ−1A21 0 Iq


 (40)

one obtains

ULP (s = si)UR =




siI − Ar ∗ GrQ̃0

0 ∗ G2Q̄0

0 −Iκ 0


 (41)

Since it has been assumed that rank G2Q̄0 = κ (see (6))
this shows that the system (35)–(36) has a zero at s = si

if and only if s = si is an uncontrollable eigenvalue in
the pair (Ar , GrQ̃0) and vice versa. This is, of course, not
only true for the system (35)–(36) but also for the system
(A, GQ̄0, C2).
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3. THE FILTER DESIGN IN THE FREQUENCY
DOMAIN

In the frequency domain, the system (1)–(2) or (19)–(20)
is described by

y(s) = F (s)w(s) +

[
v1(s)

0

]
(42)

with

F (s) = C̄(sI − Ā)−1Ḡ = C(sI − A)−1G (43)

Given the left coprime MFD

F (s) = D̄−1(s)N̄w(s) (44)

the reduced-order Kalman filter is parameterized by the

polynomial matrix ˜̄D(s) resulting by spectral factorization
of the right hand side of

˜̄D(s)R̃ ˜̄DT (−s) = (45)

D̄(s)

[
R̄1 0

0 0

]
D̄T (−s) + N̄w(s)Q̄N̄T

w (−s)

where

Γr

[
˜̄D(s)

]
= Γr

[
D̄κ(s)

]
(46)

with the row-reduced polynomial matrix

D̄κ(s) = Π

{
D̄(s)

[
Im−κ 0

0 s−1Iκ

]}
(47)

(see Hippe and Deutscher (2009)). Here, Γr[·] denotes the
highest row-degree-coefficient matrix and Π[·] taking the
polynomial part.

The polynomial matrix ˜̄D(s) is related with the time
domain parameters by

D̄−1(s) ˜̄D(s) = (48)

C̄(sI − Ā)−1[L̄1 Ψ̄2] +

[
Im−κ 0

0 0κ

]

where

L̄1 =

[
P̄rC̄

T
1

0

]
R̄−1

1 (49)

and

Ψ̄2 =

[(
P̄rA

T
21 + G1Q̄GT

2

)
Φ−1

Iκ

]
(50)

In Hippe and Deutscher (2009) the solution (45)–(47) is
presented without rigorous proof, because the polynomial
matrix (45) contains a singular measurement covariance
at its right hand side and the known proofs of optimality

of a ˜̄D(s) obtained by spectral factorization are based on
a full-order filter with a regular measurement covariance
matrix.

The polynomial matrix (45) was derived on the basis of
the ARE (12). As shown in Section 2, the reduced-order
Kalman filter can also be designed on the basis of the regu-
larized ARE (26), using a system description (Ar, Cr, Gr)
of reduced order n − κ and a regular measurement covari-
ance matrix R̃.

Introducing the left coprime MFD of

Fr(s) = Cr(sI − Ar)
−1Gr (51)

namely

Fr(s) = D̄−1
r (s)N̄wr(s) (52)

and the polynomial matrix ˜̄Dr(s) parameterizing the
reduced-order Kalman filter related to the parameters
(Ar , Gr, Cr, P̄r) according to

D̄−1
r (s) ˜̄Dr(s) = Cr(sI − Ar)

−1Lr + Im (53)

the Riccati equation (26) can be transformed into the
polynomial matrix equation

˜̄Dr(s)R̃
˜̄DT

r (−s) = (54)

D̄r(s)R̃D̄T
r (−s) + N̄wr(s)Q̃N̄T

wr(−s)

by similar steps as in the derivation of (45) from (12) in
Hippe and Deutscher (2009). This is a regular polynomial

matrix equation with R̃ > 0 and consequently the poly-

nomial matrix ˜̄Dr(s) obtained by spectral factorization of
the right hand side of (54) with

Γr

[
˜̄Dr(s)

]
= Γr

[
D̄r(s)

]
(55)

parameterizes the optimal full-order Kalman filter for the
reduced-order system (52) in the frequency domain.

If this ˜̄Dr(s) is identical with ˜̄D(s) obtained from the
spectral factorization of (45), it follows that the solution
procedure presented in Hippe and Deutscher (2009) yields
indeed the optimal results.

Given the MFD (44), define the MFD

C̄(sI − Ā)−1 = D̄−1(s)N̄z(s) (56)

with N̄z(s) partitioned according to

N̄z(s) =
[
N̄z1(s) N̄z2(s)

]
(57)

where N̄z1(s) has n−κ columns and N̄z2(s) has κ columns.

Theorem 1. The polynomial matrix ˜̄Dr(s) resulting from

(54) is identical with ˜̄D(s) resulting from (45) if the
polynomial matrices in the MFD (52) are chosen as

N̄wr(s) = N̄z1(s)G1 (58)

and

D̄r(s) = (59)

[
N̄z1(s) N̄z2(s)

] [
0n−κ,m−κ G1Q̄GT

2 Φ−1

0κ,m−κ Iκ

]
+

D̄(s)

[
Im−κ 0

0 0κ

]

The polynomial matrix ˜̄D(s) = ˜̄Dr(s) parameterizes a
stable filter, if the pair(

D̄(s)

[
Im−κ 0

0 0κ

]
, N̄w(s)Q̄0

)
(60)

has no greatest common left devisor with zeros on the
imaginary axis.
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Proof : From (51), (52), (58) and (28) follows

Cr(sI − Ar)
−1 = D̄−1

r (s)N̄z1(s) (61)

As a consequence of the rearranged form of (56), namely
D̄(s)C̄ = N̄z(s)(sI − Ā) , together with (22) – (24) one
obtains

D̄(s)

[
C̄1

0

]
= N̄z1(s)(sI − A11) − N̄z2(s)A21 (62)

This allows to show that N̄z1(s)(sI−Ar) = D̄r(s)Cr which
then proves that the pair (58) and (59) constitutes a left
MFD of (51).

Inserting (58) and (59) in (54) it is straightforward to
show, that the right hand sides of the polynomial equa-

tions (45) and (54) coincide, so that ˜̄D(s)R̃ ˜̄DT (−s) =
˜̄Dr(s)R̃

˜̄DT
r (−s) and since R̃ is positive definite, this yields

˜̄D(s) = ˜̄Dr(s).

The equality ˜̄D(s) = ˜̄Dr(s) can also be installed by
comparing

˜̄D(s) = N̄z(s)
[
L̄1 Ψ̄2

]
+ D̄(s)

[
Im−κ 0

0 0κ

]
(63)

which results from (48) and

˜̄Dr(s) = N̄z1(s)Lr + D̄r(s) (64)

which results from (53) and then using (30), (49), (50) and
(59). This proves the first part of the theorem.

Since on the right hand side of (54) the measurement

covariance term R̃ is regular, the full-order filter for the
reduced system (Ar , Gr, Cr) is stable if the pair

(
D̄r(s) , N̄wr(s)Q̃0

)
(65)

has no common greatest left devisor UL(s) with zeros on
the imaginary axis (Goodwin et al. (2001)).

Two polynomial matrices are relatively left coprime if they
meet the Bezout identity. If they contain a non-unimodular
greatest common left devisor UL(s), the identity matrix is
replaced by UL(s) (Kailath (1980)).

If the pair (65) contains a non-unimodular greatest com-
mon left devisor UL(s) there exist solutions Ȳ0r(s) and

X̄0r(s) =

[
X̄0r1(s)

X̄0r2(s)

]
of the Diophantine equation

N̄z1(s)G1Q̃0Ȳ0r(s) + D̄r(s)

[
X̄0r1(s)

X̄0r2(s)

]
= UL(s) (66)

(see, e.g., Hippe and Deutscher (2009)). If, on the other
hand, the pair (60) contains a non-unimodular greatest
common left devisor UL(s) there exist solutions Ȳ0(s) and

X̄0(s) =

[
X̄01(s)

X̄02(s)

]
of the Diophantine equation

[
N̄z1(s)G1 + N̄z2(s)G2

]
Q̄0Ȳ0(s) + (67)

D̄(s)

[
I 0

0 0κ

][
X̄01(s)

X̄02(s)

]
= UL(s)

Given the solutions Ȳ0r(s) and X̄0r(s) of (66) the polyno-
mial matrices

X̄01(s) = X̄0r1(s) (68)

X̄02(s) = 0 (69)

and
Ȳ0(s) = Q̂Ȳ0r(s) + Q̄T

0 GT
2 Φ−1X̄0r2(s) (70)

solve the equation (67).

Given the solutions Ȳ0(s) and X̄0(s) of (67) the polynomial
matrices

X̄01r(s) = X̄01(s) (71)

X̄0r2(s) = G2Q̄0Ȳ0(s) (72)

and
Ȳ0r(s) = Q̂Ȳ0(s) (73)

solve the equation (66). This shows that, if the pair (65)
does not contain a greatest common left devisor with zeros
on the imaginary axis, then also the pair (60) does not
contain such a greatest common left devisor and vice versa.
This proves the second part of the theorem.

4. CONCLUSIONS

Some open problems in the design of reduced-order
Kalman filters for linear continuous-time systems have
been solved. Due to the noise-free measurements, the mea-
surement covariance matrix becomes singular and there-
fore, standard software cannot be used to solve the ARE
of the reduded-order filter. By defining an artificial output
of the system, a form of the ARE can be obtained which
exhibits a regular measurement covariance matrix. How-
ever, also this form is not solvable by the standard rou-
tines, as the corresponding Hamiltonian has eigenvalues
at s = 0. By using an appropriate state transformation
on the original system, this modified form of the ARE
can be subdivided into a regular part and a vanishing
part. The regular part is readily solvable for the matrix
P̄ , parameterizing the filter in the time domain, and it
also characterizes the conditions which guarantee a stable
filter. These conditions for the parameters of the reduced-
order system have been translated into conditions for the
original full-order system.

The known polynomial matrix defining the parameteriz-
ing polynomial matrix of the reduced-order filter in the
frequency domain contains a singular measurement covari-
ance matrix. This does not cause problems when applying
spectral factorization to obtain the parameterizing polyno-
mial matrix of the reduced-order filter. However, neither a
proof of optimality nor a set of conditions for the stability
of the filter were known so far. Based on the reduced-order
model in the time domain, a regular full-order filter design
for a reduced-order system also becomes possible in the
frequency domain. This allows to prove optimality of the
results obtained so far and it also allows to formulate the
conditions on the MFD of the original full-order system
that are required to obtain a stable filter.

Along similar lines as presented in this paper, regularized
design equations can be derived for the discrete-time case.
However, the derivation of the DARE in standard form
related to the artificial output is not as straightforward as
in the continuous-time case, where the optimal matrices
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L1 and Ψ2 can simply be substituted in the ARE (12)
to obtain the form (13). Different from the continuous-
time case, this DARE is solvable by standard routines for
the rank deficient matrix P̄ , because the eigenvalues of
the corresponding Hamiltonian at z = 0 are now inside
the stability region. However, a reduced full-order filtering
problem can also be formulated for a reduced-order system
of the order n − κ, and the parameters (Ar, Gr, Cr) have
the same form as in the continuous-time case. Starting
from this reduced-order system, a regular polynomial
matrix can be derived whose spectral factorization yields
a parameterizing polynomial matrix for the optimal filter.
This parameterizing matrix can also be shown to coincide
with the known matrix obtained by spectral factorization
of the non-regular equation, provided that the MFD of
the reduced system is chosen in the same way as in the
continuous-time case. An additional technicality arizes
due to the a posteriori estimate, so that an additional
presentation of these results is beyond the scope of this
paper.
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Abstract: The paper deals with continuous-time nonlinear adaptive control of a continuous stirred tank 
reactor. The control strategy is based on an application of the controller consisting of a linear and 
nonlinear part. The static nonlinear part is derived in the way of a inversion and consecutive polynomial 
approximation of a measured or simulated input-output data. The design of the dynamic linear part is 
based on approximation of nonlinear elements in the control loop by a continuous-time external linear 
model with parameters estimated using a corresponding delta model. In the control design procedure, the 
polynomial approach with the pole assignment method is used. The nonlinear adaptive control is tested 
by simulations on the nonlinear model of the CSTR  with a consecutive exothermic reaction. 

 
 

1. INTRODUCTION 

Continuous stirred tank reactors (CSTRs) are units frequently 
used in chemical and biochemical industry. From the system 
theory point of view, CSTRs belong to a class of nonlinear 
systems. Their mathematical models are described by sets of 
nonlinear differential equations. Their models are derived and 
described in e.g. Ogunnaike and Ray (1994), Schmidt (2005) 
and Corriou (2004).  

It is well known that the control of chemical reactors often 
represents very complex problem. The control problems are 
due to the process nonlinearity and high sensitivity of the 
state and output variables to input changes. In addition, the 
dynamic characteristics may exhibit a varying sign of the 
gain in various operating points as well as non-minimum 
phase behaviour. Evidently, the process with such properties 
is hardly controllable by conventional control methods, and, 
its effective control requires application some of advanced 
methods.  

One possible method to cope with this problem exploits a 
linear adaptive controller with parameters computed and 
readjusted on the basis of recursively estimated parameters of 
an appropriate chosen continuous-time external linear model 
(CT ELM) of the process. Some results obtained by this 
method can be found in e.g. Dostál et al. (2007) and Dostál et 
al. (2009). 

An effective approach to the control of CSTRs and similar 
processes utilizes various methods of the nonlinear control 
(NC). Several modifications of the NC theory are described  
in e.g. Astolfi et al. (2008), Vincent and Grantham (1997), 
Ioannou and Fidan (2006) or Zhang et al. (2000).  Especially, 
a large class of the NC methods exploits linearization of 
nonlinear plants, e.g. Huba and Ondera (2009), an application 
of PID controllers, e.g. Tan et al. (2002), Bányász and 
Keviczky (2002) or  factorization of nonlinear models of the 
plants on linear and nonlinear parts, e.g. Nakamura et al. 

(2002), Vallery et al. (2009) and Chyi-Tsong Chen1 et al. 
(2006). 

In this paper, the CSTR control strategy is based on an 
application of the controller consisting of a static nonlinear 
part (SNP) and dynamic linear part (DLP). The static 
nonlinear part is obtained from simulated or measured 
steady-state characteristic of the CSTR, its inversion, 
polynomial approximation, and, subsequently, its 
differentiation. On behalf of development of the linear part, 
the SNP including the nonlinear model of the CSTR are 
approximated by a CT external linear model. For the CT 
ELM parameter estimation, an external delta model with the 
same structure as the CT model is used (see, e.g. 
Mukhopadhyay et al. (1992), Goodwin et al. (2001) and 
Stericker and Sinha (1993)). Then, the resulting CT controller 
is derived using the polynomial approach and pole 
assignment method, e.g. Kučera (1993). The simulations are 
performed on a nonlinear model of the CSTR with a 
consecutive exothermic reaction. 

2. MODEL OF THE CSTR 

Consider a CSTR with the first order consecutive exothermic 
reaction according to the scheme A B Ck k1 2⎯ →⎯ ⎯ →⎯  and 
with a perfectly mixed cooling jacket. Using the usual 
simplifications, the model of the CSTR is described by four 
nonlinear differential equations 

 1
A r r

A A f
r r

d c q q
k c c

dt V V
⎛ ⎞

= − + +⎜ ⎟⎜ ⎟
⎝ ⎠

 (1) 

 2 1
B r r

B A B f
r r

d c q qk c k c c
dt V V

⎛ ⎞
= − + + +⎜ ⎟

⎝ ⎠
 (2) 

 ( ) ( )
( ) ( )

hr r r
rf r c r

p r r r p r

A UdT h q T T T T
dt c V V c

= + − + −
ρ ρ

 (3) 
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 ( ) ( )
( )

c c h
cf c r c

c c p c

dT q A UT T T T
dt V V c

= − + −
ρ

 (4) 

with initial conditions (0) s
A Ac c= , (0) s

B Bc c= , 

(0) s
r rT T= and (0) s

c cT T= . Here, t is the time, c are 
concentrations, T are temperatures, V are volumes, ρ are 
densities, cp are specific heat capacities, q are volumetric 
flow rates, Ah is the heat exchange surface area and U is the 
heat transfer coefficient. The subscripts are denoted (.)r for 
the reactant mixture, (.)c for the coolant, (.)f  for feed (inlet) 
values and the superscript (.)s for steady-state values. The 
reaction rates and the reaction heat are expressed as 

 2,1,exp0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= j

TR
E

kk
r

j
jj  (5) 

 BAr ckhckhh 2211 +=  (6) 
 
where k0 are pre-exponential factors, E are activation energies 
and h are reaction entalpies. The values of all parameters, 
feed values and steady-state values are given in Table 1.  

 

Table 1. Parameters, inlet values and initial conditions. 

Vr = 1.2 m3 
Vc = 0.64 m3 
ρr = 985 kg m-3 
ρc = 998 kg m-3 

cpr = 4.05 kJ kg-1K-1 
cpc = 4.18 kJ kg-1K-1 
Ah = 5.5 m2 
U = 43.5 kJ m-2min-1K-1 

k10 = 5.616 . 1016 min-1 
k20 = 1.128 . 1018 min-1 
h1 = 4.8 . 104 kJ kmol-1 

E1/ R = 13477 K 
E2/ R = 15290 K 
h2 = 2.2 . 104 kJ kmol-1 

s
Afc  = 2.85 kmol m-3 
s

rfT  = 323 K 
s
rq  = 0.08 m3min-1 

s
Bfc = 0 kmol m-3 
s

cfT = 293 K 
s
cq  = 0.08 m3min-1 

s
Ac  = 1.5796 kmol m-3 
s

rT  = 324.80 K 

s
Bc  = 1.1975 kmol m-3 
s

cT  = 306.28 K 

 

In term of the practice, only the coolant flow rate can be 
taken into account as the control input. As the controlled 
output, the reactant temperature is considered. For the control 
purposes, the control input and the controlled output are 
defined as deviations from steady values 

 ( ) ( ) s
c cu t q t q= − ,  ( ) ( ) s

r ry t T t T= −  (7) 
 
The dependence of the reactant temperature on the coolant 
flow rate in the steady-state is in Fig.1.  

In subsequent control simulations, the operating interval for 
qc has been determined as 

 min max( )c c cq q t q≤ ≤  (8) 

0.02 0.04 0.06 0.08 0.10 0.12

320

330

340

350

360 Tr max

qc max

T s r
(K

)

qs
c (m

3/min)

Operating point
(qs

c= 0.08, T s
r = 324.8)

qc min

Tr min

 

 
Fig. 1. Dependence of the reactant temperature on the coolant  
           flow rate in the steady-state. 

3. CONTROLLER DESIGN 

As previously introduced,  the controller consist of a static 
nonlinear part and a dynamic linear part as shown in Fig. 2. 

 

CONTROLLER 
 e u0 u

SNP DLP

 
Fig. 2. The controller scheme. 

The DLP creates a linear dynamic relation between the 
tracking error e(t) and 0 ( ) ( )r wu t T t= Δ  which represents a 

difference of the reactant temperature adequate to its desired 
value. Evidently, for a well proposed SNP, the limit relation 

0lim ( )
t

u t w
→∞

=  holds.   

Then, the SNP generates a static nonlinear relation betveen u0 
and a corresponding increment (decrement) of the coolant 
flow rate.  

3.1  Nonlinear part of the controller 

The SNP derivation appears from a simulated or measured 
steady-state charasteristics. From the purposes of a later 
polynomial approximation, the coordinates on the graph axis 
are defined as 

 
s
c cL

cL

q q
q
−θ = ,  s

r rLT Tξ = − . (9) 

where cLq  is the lower bound in the interval  

 s
cL c cUq q q≤ ≤  (10) 

 and, rLT is the temperature corresponding to cUq . 

It can be recommended to select the interval (10) slightly 
longer than (8). In this paper, lower and upper values in (8) 
and (10) were chosen min max0.016, 0.02, 0.12cL c cq q q= = =  

and 0.13.cUq =  
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In term of the practice, it can be supposed that the measured 
data will be affected by measurement errors. The simulated 
steady-state characteristic that corresponds to reality is shown 
in Fig. 3. 

0 1 2 3 4 5 6 7

0
5

10
15
20
25
30
35
40

ξ 
(K

)

θ (1)
 

Fig. 3. Simulated characteristics ξ = f (θ). 

Making the replacement of coordinates, the inverse of this 
characteristic can be approximated by a polynomial in the 
general form 

 1
0 1 1... n n

n na a a a−
−θ = + ξ + + ξ + ξ . (11) 

The inverse characteristic accordant with Fig. 3 together with 
the fourth order approximate polynomial is in Fig. 4. 

0 5 10 15 20 25 30 35 40

0
1
2
3
4
5
6
7

θ =6.25677- 0.55753 ξ+0.03418 ξ2- 0.00106 ξ3+1.15342E-5 ξ4

 Simulated (measured] values
 Polynomial approximation

θ 
(1

)

ξ (K)  
Fig. 4. Simulated and approximated inverse relation   
           ( )fθ = ξ . 

Now, a difference of the coolant flow rate ( ) ( )cu t q t= Δ  in 
the output of the SNP can be computed for each rT as 

 0
( )

( ) ( ) ( )
r

c cL
T

d
u t q t q u t

d ξ

θ
= Δ =

ξ
 (12) 

The derivative of the approximate polynomial is in Fig. 5. 

3.2  CT external linear model of nonlinear elements 

A structure of the CT ELM of the SNP in conjuction with the 
CSTR nonlinear model was chosen on the basis of step 
responses simulated in a neighbourhood of the operating 
point. The step responses for some step changes of u0 are 
shown in Fig. 6. For all responses, the gain of the 

SNP+CSTR system has been computed as 
0

( )lims t

y tg
u→∞

= . 

0 5 10 15 20 25 30 35

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

d θ / d ξ = - 0.55753 + 0.06836 ξ - 0.00318 ξ2+ 4.61375E-5 ξ3

dθ
 / 

dξ
 (1

/ K
)

ξ (K)  
Fig. 5.  Derivative of θ with respect to ξ. 
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Fig. 6. Step responses of the SNP+CSTR. 

Taking into account profiles of curves in Fig. 6 with zero 
derivatives for t = 0, the second order CT ELM has been 
chosen in the form of the second order linear differential 
equation 

 1 0 0 0( ) ( ) ( ) ( )y t a y t a y t b u t+ + =  (13) 

or, in the transfer function representation as 

 0
2

0 1 0

( )( )
( )

bY sG s
U s s a s a

= =
+ +

. (14) 

3.3  Delta external linear model 

Establishing the δ operator 

 
0

1q
T
−δ =  (15) 

where q is the forward shift operator and T0 is the sampling 
period, the delta ELM corresponding to (13) takes the form 

 2
1 0 0 0( ) ( ) ( ) ( )y t a y t a y t b u t′ ′ ′ ′ ′ ′ ′δ + δ + =  (16) 

where t′ is the discrete time. 

When the sampling period is shortened, the delta operator 
approaches the derivative operator, and, the estimated 
parameters ,a b′ ′  of  (16) reach the parameters a, b of the CT 
model (13) as proved in e.g. Stericker and Sinha (1993).  

Substituting 2t k′ = − , equation (16) may be rewriten to the 
form 

 2
1 0 0 0( 2) ( 2) ( 2) ( 2)y k a y k a y k b u k′ ′ ′δ − + δ − + − = − .(17) 
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3.4  Delta model parameter estimation 

Establishing the regression vector 

 ( )0( 1) ( 2) ( 2) ( 2)T k y k y k u kδ − = δ − − −Φ  (18) 

where  

 
0

( 1) ( 2)( 2) y k y ky k
T

− − −δ − =   (19) 

then, the vector of delta model parameters 

 ( )1 0 0( )T k a a bδ ′ ′ ′=Θ  (20) 

is recursively estimated from the ARX model 

 2 ( 2) ( ) ( 1) ( )Ty k k k kδ δδ − = − + εΘ Φ  (21) 
where 

 2
2

0

( ) 2 ( 1) ( 2)( 2) y k y k y ky k
T

− − + −δ − = . (22) 

The recursive estimation of delta model parameters was 
performed with the sampling interval T0 = 0.2 min. Here, the 
recursive identification method with exponential and 
directional forgetting according to Rao and Unbehauen 
(2005) and Bobál et al. (2005) was used. 

3.5 Linear part of the controller 

The DLP is inserted into the control loop according to Fig. 7. 

 u0 

- 

 y 

 v 

 e  w 
 DLP CT ELM 

 
Fig. 7. Simplified scheme of the control loop. 

In the scheme, w is the reference signal, v is the disturbance, 
y is the controlled output and u0 is the input to the CT ELM. 
The transfer function G of the CT ELM is given by (14). 
Both the reference w and the disturbance v are considered to 
be step functions with transforms  

 
s

w
sW 0)( = ,  

s
v

sV 0)( =  (23) 

The transfer function of the DLP is in the form 

 0 ( ) ( )( )
( ) ( )

U s q sQ s
E s p s

= =  (24) 

where q and p are polynomials in s, and, deg degq p≤ . 

The controller design described in this section stems from the 
polynomial approach. General conditions required to govern 
the control system properties are formulated as strong 
stability (in addition to the control system stability, also the 
stability of  controllers is required), internal properness, 
asymptotic tracking of a step reference and step disturbance 
attenuation. 

It is well known from the algebraic control theory that a 
controller which satisfies above requirements is in the 
polynomial ring given by a solution of the polynomial 
(Diophantine) equation 

 ( ) ( ) ( ) ( ) ( )a s p s b s q s d s+ =  (25) 
with a stable polynomial d(s) on the right side. 

For step input signals w and v, the polynomial p is in the form  

 ( ) ( )p s s p s= . (26) 
The degrees of unknown polynomials in (25) and (26) are 

deg degq a= ,  deg deg 1p a= − ,  deg 2degd a= . 
Then, for the ELM (14), the controller transfer function takes 
the form 

 
2

2 1 0

0

( )( )
( ) ( )

q s q s qq sQ s
s p s s s p

+ += =
+

 (27) 

In this paper, the polynomial d with roots determining the 
closed-loop poles is chosen as 

 2( ) ( ) ( )d s n s s= + α  (28) 
where n is a stable polynomial obtained by spectral 
factorization 

 ( ) ( ) ( ) ( )a s a s n s n s∗ ∗=  (29) 

and α is the selectable parameter that can usually be chosen 
by way of simulation experiments. 

Note that a choice of d in the form (28) provides the control 
of a good quality for aperiodic controlled processes.  

The polynomial n has the form 

 2
1 0( )n s s n s n= + +  (30) 

with coefficients 

 2
0 0n a= ,  2

1 1 0 02 2n a n a= + − . (31) 

The controller parameters can be obtained from solution of 
the matrix equation 

 1 0

0 0

0

1 0 0 0
0 0

0 0
0 0 0

a b
a b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Ω

0

2

1

0

p
q
q
q

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

3 1

2 0

1

0

d a
d a

d
d

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (32) 

where 

 
2

3 1 2 1 0
2 2

1 0 1 0 0

2 , 2

2 ,

d n d n n

d n n d n

= + α = α + + α

= α + α = α
. (33) 

Evidently, the controller parameters can be adjusted by the 
selectable parameter α. The complete adaptive control system 
is shown in Fig. 8. 

4. CONTROL SIMULATIONS 

The control simulations were performed in a neighbourhood 
of the operating point ( s

cq  = 0.08 m3min-1, s
rT  = 324.8 K).  
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Fig. 8. Scheme of the nonlinear adaptive control. 
 
For the start (the adaptation phase), a P controller with a 
small gain was used in all simulations. 

The effect of the pole α on the control responses is 
transparent from Figs. 9, 10 and 11. Here, on the basis of 
precomputed simulations, two  values of α were selected. The 
control results show sensitivity of the controlled output and 
the input signals to α. Obviously, careless selection of this 
parameter can lead to controlled output responses of a poor 
quality or even to unstability.  Further, a increasing α leads to 
higher values and changes of the input signals. 
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Fig. 9. Nonlinear adaptive control: Controlled output  
           responses. 
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Fig. 10. Nonlinear adaptive control: Input signal to the SNP. 
 
Evolution of the DLP parameters during control is shown in 
Fig. 12. 

A presence of the integrating part in the DLP enables 
rejection of various step disturbances entering into the 
process. Here, step disturbances 30.1kmol mA fc −Δ = ±  at 

times 1 250 minvt =  and 2 550 minvt =  were  injected into 
the CSTR. The DLP parameters were estimated only in the 

first (tracking)  interval   t < 200 min.  The experiences of 
authors of this paper proved that an utilization of recursive 
identification using the delta model in the phase of a constant 
reference and in a presence of step disturbances decreases the 
control quality. From this reason, during   interval   t ≥ 200 
min, fixed DLP parameters were used. The controlled output 
responses are shown in Fig. 13. 
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Fig. 11. Nonlinear adaptive control: Input to the CSTR. 
 

0 200 400 600 800 1000 1200
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

p0 100q0
5q1

C
on

tro
lle

r p
ar

am
et

er
s

t (min)

q2

 

 
Fig. 12. Evolution of the DLP parameters during control. 
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Fig. 13. Nonlinear adaptive control: Step disturbances  
            rejection. 
 
An influence of the SNP is evident from the control response 
shown in Fig. 14. Here, the standard adaptive control without 
the nonlinear part of the controller was used.  The simulation 
has been performed under the same conditions as by above 
presented cases. A confrontation with responses in Fig. 9 
shows that an application of the nonlinear control is suitable 
especially for greater changes of the reference signal. 
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 Fig. 14. Adaptive control without the SNP. 
 

5. CONCLUSIONS 

In this paper, one approach to the nonlinear continuous-time 
adaptive control of the reactant temperature in a continuous 
stirred  tank reactor   was  proposed.  The  control  strategy  is  
based on a factorization of a controller into the linear and the 
nonlinear part. A design of the controller nonlinear part 
employs simulated or measured steady-state characteristics of 
the process and their additional modifications. Then, the 
system consisting of the controller nonlinear part and a 
nonlinear model of the CSTR is approximeted by a 
continuous time external linear model with parameters 
obtained through recursive parameter estimation of a 
corresponding delta model. The resulting continuous-time 
controller linear part is derived using the polynomial 
approach and given by a solution of a polynomial equation. 
Tuning of its parameters is possible via closed-loop pole 
assignment. The presented method has been tested by 
computer simulation on the nonlinear model of the CSTR 
with a consecutive exothermic reaction. Simulation results 
demonstrated an applicability of the presented control 
strategy and its usefulness especially for greater changes of 
input signals in strongly nonlinear regions. It can be expected 
that the described control strategy is also suitable for other 
similar technological processes such as tubular chemical 
reactors. 
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A. Filasová, D. Krokavec

Department of Cybernetics and Artificial Intelligence
Faculty of Electrical Engineering and Informatics
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Abstract: The linear matrix inequality (LMI) based memory-less controller design approach
for continuous time systems with time-varying delays is presented in the paper. If the time-delay
variation is from the specified range the design conditions are formulated as feasibility problem
and expressed over a set of LMIs with the matrix rank constraints implying from integral
quadratic constraints. The proposed method is demonstrated using a system model example.
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1. INTRODUCTION

Continuous-time control systems are used in many indus-
trial applications, where time delays can take a deleterious
effect on both the stability and the dynamic performance
in the open and closed-loop systems. Thus, the problems
of asymptotic stability and stabilization for time-delay
systems have received considerable attention and intensive
activity are done to develop a sophisticated control for
such systems.

Linear matrix inequality (LMI) approaches based on con-
vex optimization algorithms have been extensively applied
to solve the above mentioned problem, since it can be
solved numerically efficiently by using interior-point al-
gorithm which has recently been developed for solving
optimization problem. Using the LMI approach, two cat-
egories of stability criteria for guaranteeing stability of
the delayed system were developed. Delay independent
criteria provide conditions which guarantee stability for
any length of the time delay, whereas delay dependent
criteria exploit a priori knowledge of upper-bounds on the
amount of time-delay or its variation. Of course, delay
dependent criteria are generally less conservative than
delay-independent ones since more information about the
time-delay is assumed to be known.

The use of Lyapunov method for the stability analysis of
the time delay systems has been ever growing subject of
interest starting with the pioneering works of Krasovskii
(Krasovskii (1956), Krasovskii (1963)). Progress review
in this research field is presented e.g. in Niculescu at al.
(1998), Wu at al. (2004), Kao and Rantzer (2005), and
the references therein, some special forms of Lyapunov-
Krasovskii functions can be also found in Wu at al. (2010).

Considering the influence of time-varying delay as per-
turbation in the system, where delay parameter is an
unknown time-varying function with given upper bounds
on the magnitude and the variation, the paper address the

problems of asymptotic stabilization for such time-delay
systems if the time-delay variation is from the specified
range. Translating into LMI framework the closed-loop
system stability is characterized in the terms of convex
LMIs, where the convex parameterizations are based on
extended Lyapunov function with integral quadratic con-
straints in the bounded real lemma form.

2. PROBLEM DESCRIPTION

Through this paper the task is concerned with the com-
putation of a state feedback u(t), which control the time-
delay linear dynamic system given by the set of equations

q̇(t) = Aq(t) + Adq(t − τ(t)) + Bu(t) (1)

y(t) = Cq(t) + Du(t) (2)

with initial condition

q(ϑ) = ϕ(ϑ), ∀ϑ ∈ 〈−h, 0〉 (3)

where τ(t) is an unknown time-varying parameter satisfy-
ing conditions

0 ≤ τ(t) ≤ h, | τ̇(t) | ≤ d, ∀t ≥ 0 (4)

where q(t) ∈ IR n stands up for the system state, u(t) ∈
IR r denotes the control input, y(t) ∈ IR m is the system
measurable output, and nominal system matrices A ∈
IR n×n, Ad ∈ IR n×n, B ∈ IR n×r, C ∈ IR m×n and
D ∈ IR m×r are real matrices.

Problem of the interest is to design asymptotically stable
closed-loop system with the linear memoryless state feed-
back controller of the form

u(t) = −Kq(t) (5)

for t ≥ 0, where matrix K ∈ IR r×n is a gain matrix.
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3. BASIC PRELIMINARIES

Proposition 1. (Bounded real lemma) System (1), (2),
where Ad = 0, is stable with quadratic performance
‖C(sI −A)−1B +D‖∞ ≤ γ if there exist a symmetric
positive definite matrix P > 0 and a positive scalar γ > 0
such that 


ATP + PA PB CT

∗ −γ2Ir DT

∗ ∗ −Im


 < 0 (6)

where Ir ∈ IRr×r, Im ∈ IRm×m are identity matrices,
respectively,

Hereafter, ∗ denotes the symmetric item in a symmetric
matrix.

Proof. Generally, there exists an enough small γ > 0 such
that Lyapunov function can be defined as follows

v(q(t)) = qT(t)Pq(t)+

+

t∫

0

(yT (r)y(r) − γ2uT (r)u(r))dr > 0
(7)

where P = P T > 0, P ∈ IRn×n, γ > 0 ∈ IR, and
evaluating the derivative of v(q(t)) with respect to t along
a system trajectory then it yields

v̇(q(t)) = q̇T (t)Pq(t) + qT (t)P q̇(t)+

+yT (t)y(t) − γ2uT (t)u(t) < 0
(8)

Thus, substituting (1), (2) into (8) it can be written

v̇(q(t)) = (Aq(t) + Bu(t))T Pq(t)+

+qT (t)P (Aq(t)+Bu(t))−γuT(t)u(t)+

+(Cq(t)+Du(t))T (Cq(t)+Du(t)) < 0

(9)

and with the next notation

qT
c (t) =

[
qT (t) uT (t)

]
(10)

it is obtained

v̇(q(t)) = qT
c(t)P cqc(t) < 0 (11)

where

P c =

[
ATP + PA PB

∗ −γ2Ir

]
+

[
CTC CTD

∗ DTD

]
< 0 (12)

Since [
CTC CTD

∗ DTD

]
=

[
CT

DT

]
[ C D ] ≥ 0 (13)

Schur complement property implies



0 0 CT

∗ 0 DT

∗ ∗ −Im


 ≥ 0 (14)

and using (14) the LMI condition (12) can be written
compactly as (6). This concludes the proof.

Proposition 2. (Symmetric upper-bound inequality) Let
f(x(η)), x(η) ∈ IRn, X > 0, X ∈ IRn×n is a real positive
definite and integrable vector function of the form

f(x(η)) = xT(η)Xx(η) (15)

such, that there exists a well defined integration as follow-
ing

t∫

t−h

f(x(η))dη > 0 (16)

with h > 0, h ∈ IR, then

t∫

t−h

xT(η)dηX

t∫

t−h

x(η)dη ≤ h

t∫

t−h

xT(η)Xx(η)dη (17)

Proof. Since for (15) it can be written

xT(η)Xx(η) − xT (η)Xx(η) = 0 (18)

and according to Schur complement property it is true that
[

xT(η)Xx(η) xT(η)

x(η) X−1

]
= 0 (19)

then the integration of (19) with respect to η gives



t∫

t−h

xT(η)Xx(η)dη

t∫

t−h

xT(η)dη

∗
t∫

t−h

X−1dη




≥ 0 (20)




t∫

t−h

xT(η)Xx(η)dη

t∫

t−h

xT(η)dη

∗ hX−1


 ≥ 0 (21)

respectively. Thus,

h−1

t∫

t−h

xT(η)dηX

t∫

t−h

x(η)dη ≤
t∫

t−h

xT(η)Xx(η)dη (22)

and it is evident that with h > 0 (22) implies (17). This
concludes the proof.

4. DESCRIPTOR SYSTEM PROPERTIES

Adding and subtracting vector element Adq(t) to (1)
results in

q̇(t) = Bu(t)+(A+Ad)q(t)−Ad(q(t)−q(t−τ(t))) (23)

It is well-known fact that the descriptor model (23) is not
equivalent to system (1), since this transformation intro-
duces additional dynamics. However, stability of system
(23) does imply stability of system (1), i.e. the delay-
derivative-independent stability criterion it is necessary to
be stated.
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Considering u(t) = 0 then the autonomous system to (23)
can be written as

q̇(t) = (A+Ad)q(t)+Adu
◦(t) (24)

where

u◦(t) = −(q(t)−q(t−τ(t))) (25)

u◦(t) = −I

t∫

t−τ(η)

q̇(η)dη = −I

t∫

t−τ(η)

y◦(η)dη (26)

respectively, with

y◦(t) = q̇(t) = (A+Ad)q(t)+Adu
◦(t) (27)

Therefore, (24), (25) can be interpreted as a dynamic sys-
tem with uncertain internal integral closed-loop feedback.

Denoting

q̇(t) = A◦q(t) + B◦u◦(t) (28)

y◦(t) = C◦q(t) + D◦u◦(t) (29)

where

A◦ = C◦ = A+Ad, B◦ = D◦ = Ad (30)

then an equivalent Lyapunov function to the (7) can be
introduced. Unlike a delay-free linear system there exist
state boundaries in the descriptor system, so the weighting
matrices of Lyapunov function have to be introduced in
special forms.

Considering the quadratic integral form

J1 =

∞∫

0

u◦T (t)Xu◦(t)dt =

=

∞∫

0

t∫

t−τ(η)

q̇T(η)dη X

t∫

t−τ(η)

q̇(η)dηdt

(31)

then using (17) it is obvious that

J1 ≤
∞∫

0

t∫

t−h

q̇T(η)dη X

t∫

t−h

q̇(η)dηdt ≤

≤
∞∫

0

h

t∫

t−h

q̇T(η)Xq̇(η)dηdt = h2

∞∫

0

q̇T(η)Xq̇(η)dη

(32)

It is evident that the integral norm-weighting matrix in
(32) is independent of d. Analogously, respecting

J2 =

∞∫

0

qT(t−τ(t))Xq(t−τ(t))dt (33)

then setting

t−τ(t) = η, (1−τ̇(t))dt = dη (34)

(33) can be rewritten as follows

J2 =

∞∫

−τ(0)

1

1−τ̇(η(t))
qT(η)Xq(η)dη ≤

≤ 1

1−d

∞∫

0

qT(η)Xq(η)dη

(35)

Conversely, the integral norm-weighting matrix in (35) is
independent of h as long as h is strictly greater than 0.
Using (35) property then

∞∫

0

[
qT(t−τ(t)) qT(t)

][ X
X

][
q(t−τ(t))

q(t)

]
dt ≤

≤
∞∫

0

qT(η)Xq(η)dη +
1

1 − d

∞∫

0

qT(η)Xq(η)dη =

=
2 − d

1 − d

∞∫

0

qT(η)Xq(η)dη

(36)

Considering |τ̇(t)| ≤ d, 1 < d ≤ 2 it is evident that (36) is
negative.

Summarizing, such forms as (36) cannot be generally
included into Lyapunov-Krasovskii functional if 1 < d ≤ 2
since may cause its negative definiteness, and only the
standard form of Lyapunov function is proposed to use.

Theorem 1. Autonomous linear time-delay system (1) is
stable for |τ̇(t)| ≤ d, 1 < d ≤ 2 if there exist symmetric
positive definite matrices P > 0, Q > 0, P , Q ∈ IRn×n,
such that

P = P T > 0 Q = QT > 0 (37)
[
Π11 h2(A + Ad)

TQAd + PAd

∗ h2AT
dQAd − Q

]
< 0 (38)

Π11 = (A + Ad)
TP + P (A + Ad)+

+h2(A + Ad)
TQ(A + Ad)

(39)

Proof. Lyapunov function candidate can be chosen as

0 < v(q(t)) = qT(t)Pq(t)+

+

t∫

0

(h2y◦T(r)Qy◦(r)−u◦T(r)Qu◦(r))dr
(40)

where P = P T > 0, Q = QT > 0. Evaluating derivative
of v(q(t)) with respect to t results in

v̇(q(t)) = −u◦T(t)Qu◦(t)+

+(qT(t)A◦T + u◦T(t)B◦T )Pq(t)+

+qT(t)P (A◦q(t) + B◦u◦(t))+

+h2(C◦q(t)+D◦u◦(t))T Q(C◦q(t)+D◦u◦(t)) < 0

(41)

Thus, introducing the composite vector q◦(t) as follows

q◦T(t) =
[
qT(t) u◦T(t)

]
(42)

it is possible to write the Lyapunov function derivative
(42) as follows

v̇(q◦(t)) = q◦T(t)P ◦q◦(t) < 0 (43)

where

P ◦ =

[
P ◦

11 h2C◦TQD◦ + PB◦

∗ h2D◦TQD◦ − Q

]
< 0 (44)

P ◦
11 = A◦TP + PA◦ + h2C◦TQC◦ (45)

Subsequently, inserting (30) then (44), (45) implies (38),
(39). This concludes the proof.
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5. CONTROL LAW PARAMETER DESIGN

Theorem 2. Linear time-delay system (1) is stable for
|τ̇(t)| ≤ d, 1 < d ≤ 2 with mentioned quadratic perfor-
mance ‖C(sI−A)−1B+D‖∞ ≤ γ if there exist symmetric
positive definite matrices X > 0, Z > 0, X, Z ∈ IR n×n,
a matrix Y ∈ IR r×n, and a scalar γ > 0, γ ∈ IR such that

X = XT > 0 Z = ZT > 0 (46)



Γ11 AdZ B hX(A+Ad)
T XCT

∗ −Z 0 hZAT
d 0

∗ ∗ −γIr 0 0
∗ ∗ ∗ −Z 0
∗ ∗ ∗ ∗ −Im


<0 (47)

Γ11 = (A + Ad)X + X(A + Ad)
T − BY − Y TBT (48)

Then the control law gain matrix be computed as

K = Y X−1 (49)

Proof. Choosing Lyapunov function candidate as

0 < v(q(t)) = qT(t)Pq(t)+

+

t∫

0

(yT(r)y(r)−γuT(r)u(r))dr+

+

t∫

0

(h2y◦T(r)Qy◦(r)−u◦T(r)Qu◦(r))dr

(50)

where P = P T > 0, Q = QT > 0, then derivative
evaluating of v(q(t)) with respect to t gives

v̇(q(t)) = yT(t)y(t)−γuT(t)u(t)+

+(qT(t)A◦T + u◦T(t)B◦T )Pq(t)+

+qT(t)P (A◦q(t) + B◦u◦(t))+

+h2(C◦q(t) + D◦u◦(t))T Q(C◦q(t) + D◦u◦(t))−
−u◦T(t)Qu◦(t)+qT(t)PBu(t)+uT(t)BTPq(t) < 0

(51)

Introducing the composite vector q•(t) as follows

q•T(t) =
[
qT(t) u◦T(t) uT(t)

]
(52)

the Lyapunov function derivative (52) takes form

v̇(q•(t)) = q•T(t)P •q•(t) < 0 (53)

where

P • =




P •
11 h2C◦TQD◦+PB◦ BP
∗ h2D◦TQD◦−Q 0
∗ ∗ −γIr


<0 (54)

P •
11 = A◦TP + PA◦ + h2C◦TQC◦ + CTC (55)

Thus, inequality (55) can be written as

P • = P •
1 + P •

2 + P •
3 (56)

with

P •
1 =




A◦TP + PA◦ PB◦ PB
∗ −Q 0
∗ ∗ −γIr


 (57)

P •
2 =




h2C◦TQC◦ h2C◦TQD◦ 0
h2D◦TQC◦ h2D◦TQD◦ 0

0 0 0


 =

=




[
hC◦T

hD◦T

]
Q [hC◦ hD◦ ] 0

0 0


 ≥ 0

(58)

P •
3 =




CTC 0 0
0 0 0
0 0 0


 =




CT

0
0


[C 0 0] ≥ 0 (59)

Now, using Schur complement property it yields

P •
2 =




0 0 0 hC◦T

∗ 0 0 hD◦T

∗ ∗ 0 0
∗ ∗ ∗ −Q−1


 ≥ 0 (60)

P •
3 =




0 0 0 0 CT

∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ ∗ −Im


 ≥ 0 (61)

and subsequently

P • =




A◦TP +PA◦ PB◦ PB hC◦T CT

∗ −Q 0 hD◦T 0
∗ ∗ −γIr 0 0
∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ −Im




< 0 (62)

Defining the congruence transform matrix

T = diag
[
P −1 Q−1 Ir I Im

]
(63)

and pre-multiplying left-hand side as well as right-hand
side of (62) by T gives



P ⋄
11 B◦Q−1 B hP −1C◦T P −1CT

∗ −Q−1 0 hQ−1D◦T 0
∗ ∗ −γIr 0 0
∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ −Im




< 0 (64)

P ⋄
11 = P −1A◦T +A◦P −1 (65)

Denoting

P −1 = X, Q−1 = Z, Y = KP −1 (66)

and inserting

A◦P −1 = (A + Ad)P
−1 − BKP −1 =

= (A + Ad)X − BY
(67)

C◦ = A+Ad, B◦ = D◦ = Ad (68)

then (64), (65) implies (47), (48). This concludes the proof.

6. ILLUSTRATIVE EXAMPLE

The system is given by (1), (2), where h = 2.5,

A =

[ −2.6 0.0 0.8
−1.2 0.2 0.0

0.0 0.5 −3.0

]
, B =

[
0 2
3 1
1 0

]
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Fig. 1. Output of the system

Ad =

[
0.00 0.02 0.00
0.00 0.00 −1.00

−0.02 0.00 0.00

]
, CT =

[
1 1
2 1
1 0

]

Solving (46), (47) with respect to LMI matrix variables X,
Y , Z, γ using SeDuMi (Self-Dual-Minimization) package
for Matlab (Peaucelle et al. (1994)) given task was feasible
with

X =

[
1.7362 −0.7762 −0.0051

−0.7762 1.0524 −0.1625
−0.0051 −0.1625 0.8490

]

Z =

[
3.4802 0.0113 0.0097
0.0113 6.4817 0.0071
0.0097 0.0071 0.5562

]

Y =

[
0.0611 1.6975 −0.3312

−0.7696 0.6231 −0.0458

]

γ = 5.0659

and giving the control system parameters as follows

K =

[
1.1377 2.4656 0.0886

−0.2642 0.4004 0.0210

]

Ac = A − BK =

[ −2.0716 −0.8008 0.7579
−4.3488 −7.5972 −0.2867
−1.1377 −1.9656 −3.0886

]

Acs = A + Ad − BK =

[ −2.0716 −0.7808 0.7579
−4.3488 −7.5972 −1.2867
−1.1577 −1.9656 −3.0886

]

ρ(Ac) = {−1.3917, −3.2964, −8.0692}
ρ(Acs) = {−1.3742, −2.9561, −8.4271}

It is evident, that the both sets of eigenvalues spectra
ρ(Ac), ρ(Acs) of the closed loop system matrices are
stable.

In the presented Fig. 1 the example is shown of the
unforced closed-loop system output response, where the
initial state was qT (−2) = [−1 0.5 3], h = 2.5, 1 < d ≤ 2.
It is possible to verify that closed-loop dynamic properties
for this unstable autonomous time-delay system are better
than any obtained using results implying from Lyapunov-
Krasovskii inequality (Lyapunov-Krasovskii functional can
stay negative).

7. CONCLUDING REMARKS

Stability conditions for autonomous linear time delay sys-
tems as well as the feedback control gain matrix parameter
design method are derived in the paper. Considering the
delay parameter as an unknown time-varying function
with given upper bounds on the magnitude and the vari-
ation, the influence of time-varying delay is considered as
perturbation in the system, and the presented algorithm
gives necessary and sufficient conditions for design in the
sense of H∞ control if the time-delay variation is from the
specified range. The advantage of this approach is that the
results can be easily generalized for systems with multiple
delays, and extended to deal with systems with parametric
uncertainties.
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Abstract: Solution to the problem of fault accommodation in nonlinear time delay dynamic systems is 
related to constructing the control law which provides full decoupling with respect to fault effects. Existing 
conditions are formulated and calculating relations are given for the control law. 

 

1. INTRODUCTION 

Fault tolerant control (FTC) is a tool intended for increasing a 
reliability and safety for critical purpose control systems. The 
goal of FTC is to determine such control law that preserves 
the main performances of the faulty system while the minor 
performances may degrade. There are two principal 
approaches to FTC. The first of them involves adaptive 
control techniques and assumes on-line fault detection and 
estimation followed by control law accommodation, see, e.g. 
(Blanke et al 2003, Jang et al 2006, Staroswiecki et al 2006). 
The second approach is focused on such control law 
determination which provides full decoupling with respect to 
fault effects in the output space of the system. In contrast to 
the first approach, the second one does not need in fault 
estimation. Therefore, such approach looks reasonable if on-
line fault estimation is impossible. 

Full decoupling problem solution under appropriate its 
statement has been obtained in (Isidori 1995) for affine 
systems. But the possibility of this solution applying in the 
framework of FTC problem is strictly limited by the demand 
on the system state vector availability (this vector is 
immediately included into the control law description). As a 
rule, not all components of the state vector are immediately 
measurable in practice, and estimation of full state vector for 
the system with unknown (affected by the faults) dynamics is 
impossible.  

In (Shumsky et al 2009, Shumsky & Zhirabok 2010) a 
solution to the accommodation problem in nonlinear systems 
has been obtained on the basis of algebra of functions and 
differential geometry (Shumsky & Zhirabok 2006). In present 
paper, this problem is solved for time delay systems. These 
systems form an important class of nonlinear systems. They 
are used to represent a wide variety of processes and systems 
including hydraulic/pneumatic systems, communication 
systems, biological systems, etc. To solve the problem of 
fault accommodation for this class of systems, we use so-
called logic-dynamic approach which allows obtaining a 
solution for time delay nonlinear systems with no 
differentiable nonlinearities using linear methods. Besides, 
we use more sophisticated treatment in contrast to the paper 

(Shumsky et al 2009) which allows obtaining in some cases 
more simple solution with the point of view of designed 
systems dimensions. 

Consider nonlinear systems described by equation  

. )(=)(
 , )()(          

))(),(()(+)()(

tHxty
tLtGu

tutAxCtxFtFxtx d

ϑ+
+ϕ+τ−=&

         (1) 

In (1), x, y, and u are vectors of state, output, and control; F , 
dF , C, A, G , L, and H are known matrices of appropriate 

dimensions; ϕ  is an arbitrary scalar nonlinear function, 
vRt ∈ϑ )(  is the vector describing the fault. Assume that for 

healthy system it holds 0)( =ϑ t . For simplicity, the system 
with a single nonlinearity is considered. Denote system (1) as 
Σ .  

It is assumed that fault detection procedure is performed by 
known methods (Blanke et al 2003). If a fault occurs, )(tϑ  
becomes an unknown function, and a solution to the control 
problem based on model (1) becomes impossible. To 
overcome this difficulty, it is suggested to obtain the vector 

)(tu  according to 

))(),(),(()( 0 tutxtygtu ∗=                         (2) 

for some function g where mRtu ∈∗ )(  is a new control 

vector, ,)(0
qRtx ∈  ,nq ≤  is a state vector of the system has 

to be determined and described by equation 

).()())(,
)(
)(

(

)(+)()(

00
0

00

00000

tyJtuGtu
ty
tx

AC

txFtxFtx d

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

+τ−=&

             (3) 

Note that model (3) does not depend on the unknown vector 
)(tϑ .  

Assume that the model obtained by substitution (2) into (1) 
can be transformed to the form 
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                   (4) 

with qpRtx p ≤∈ ,)(* . If the control (2) exists and the fault 
occurred and detected, then a solution to the control problem 
is performed on the basis of model (4) which does not contain 
the unknown vector )(tϑ . As a result, fault accommodation 
effect is achieved. Scheme for system Σ control is shown in 
Figure 1. 

Note that the use of the control (2) assumes moving system 
(1) only in some subspace of its state space which 
corresponds to the state space of system (4). Under this, the 
goal of control should be achieved by appropriate choosing 
the trajectory belonging to this subspace. The need of 
appropriate trajectory existence (or a possibility to correct the 
goal of control for finding appropriate trajectory) restricts the 
sphere of the considered approach application.  

The problem is to determine the existing condition for the 
control (2) and to obtain all matrices describing systems (3) 
and (4). To solve this problem, is it necessary initially to 
design the auxiliary system Σ′  described by equation 

).()())(,
)(
)(

(

)(+)())(),(),(()(

tyJtuGtu
ty
tx

AC

txFtxFtutytxftx d

′+′+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
′ϕ′

+τ−′′′′=′′=′&

     (5) 

2. LOGIC-DYNAMIC APPROACH 

So-called logic-dynamic approach developed in (Zhirabok & 
Usoltsev 2002) will be used for designing the system Σ′ . The 
feature of this approach is the use of conventional linear 
algebraic tools in contrast to nonlinear algebraic and 
differential geometric tools of the work (Shumsky & 
Zhirabok 2006).  

The logic-dynamic approach for systems in the form (1) 
includes the following three steps. 

Step 1. Replacing the initial nonlinear system (1) by certain 
linear system. 

Step 2. Solving the problem under consideration for this 
linear system with some additional restrictions. 

Step 3. Transforming the obtained linear system into the 
nonlinear one by adding a nonlinear term. 

 

Fig. 1. Scheme for system Σ control 

At the first step of this approach, the nonlinear term 
))(),(( tutAxCϕ  is removed from system (1). The 

corresponding linear system is of the form 

)()()()()( tLtGutxFtFxtx d ϑ++τ−+=& , 

)()( tHxty = .                             (6) 

It will be named the linear part of system (1).  

At the second step, according to the logic-dynamic approach, 
a linear part of system (5) is designed. It is well-known from 
the fault detection and isolation theory of linear systems 
(Frank 1990) that for this linear part design, the state x′  is a 
linear combination of system (6) state according to  

)()( txtx ′=Φ  

in the unfaulty case after the response to unlike conditions 
has died out. We will say, with this equality in mind, that 
system (5) estimates the initial system state vector with 
accuracy to a function realized by the matrix Φ. In the 
absence of faults, the following set of equations can be 
obtained by analogy with (Zhirabok & Usoltsev 2002): 

HJFF ′+Φ′=Φ ,     Φ′=Φ dd FF , 

GG Φ=′ .                                (7) 

It follows immediately from definition of the matrix Φ  and 
(7) that  

)).(,
)(
)(

(

))(,
)(
)(

(),(
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tHx
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AC
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tx

ACuAxC
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⎝

⎛Φ
′ϕ′

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
′ϕ′=ϕΦ

 

This equality is true if the following relations hold:  

CC Φ=′ ,      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ
′=

H
AA . 

One can show that the relation ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ
′=

H
AA  is equivalent to 

the equality 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ Φ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Φ

A
Hrank

H
rank .                           (8) 

By analogy, it can be shown that the second equation in (7) is 
equivalent to equality 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ

Φ
=Φ

dF
rankrank )( .                         (9) 

These conditions are those mentioned at Step 2. If the matrix 
Φ  satisfies the first equation in (7) and these conditions, the 
problem under consideration can be solved.  

y u 

x

      Σ 

Σ0

g 
u∗ 
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To ensure if system (3) is independent of the unknown vector 
)(tϑ , or if the full decoupling demand is fulfilled, the 

equality 0=ΦL  has to hold.  

3. SYSTEM Σ′  DESIGN 

The matrix Φ  can be obtained as follows. Introduce the 
matrix 0L  of maximal row rank such that 00 =LL . 
Condition 0=ΦL  implies the equality  

0NL=Φ  

for some matrix N . Replace the matrix Φ  in the first 
equation in (7) with 0NL  that gives HJNLFFNL ′+′= 00  
and transform it as follows: 

0)( 0

0

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⋅′−′−
H
L

FL
JNFN .                   (10) 

Expression (10) can be considered as an algebraic equation 
for the matrices N , F ′ , and J ′ .  

Let the matrix (A B C) presents all linearly independent 
solutions to equation (10), i.e. 

0)( 0

0

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⋅
H
L

FL
CBA .                          (11) 

To use the matrices A and B for the system Σ′  design, the 
relation AFB ′−=  for the matrix F ′  must hold according to 
(10) and (11). To obtain these matrices, find rows of the 
matrix B which are independent of the matrix A rows and 
remove them from (A  B  C). Denote the obtained matrix as 
( 0A  0B  0C ). Set 0AN =  and 0NL=Φ . If the matrix Φ  
satisfies conditions (8) and (9), the system Σ′  can be built 
otherwise the problem under consideration is not solvable 
because in this case full decoupling can not be achieved.  

Suppose that conditions (8) and (9) hold. Take GG Φ=′  and 
0CJ −=′ ; the matrices F ′  and dF ′  are solutions to the 

algebraic equations 0BNF −=′  and Φ′=Φ dd FF  
respectively.  

As a result, a linear part of the system Σ′  is described by the 
following equation:  

)()()(+)()( tyJtuGtxFtxFtx d ′+′+τ−′′′′=′& .         (12) 

At the third step of design, it is necessary to transform the 
obtained linear system into the nonlinear one. According to 
(Zhirabok & Usoltsev 2002), the nonlinear term  

))(,
)(
)(

( tu
ty
tx

AC ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
′ϕ′  

with the matrices CC Φ=′  and A′  obtained from the 
algebraic equation  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ
′=

H
AA  

must be added to the right-hand side of equation (12) that 
gives  

).()())(,
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tyJtuGtu
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     (13) 

Note that the algebraic equations ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ
′=

H
AA  and 

Φ′=Φ dd FF  are solvable because conditions (8) and (9) hold 
respectively.  

4. CONTROL LAW DETERMINATION 

To carry out an analysis of the system Σ′ , introduce the 
matrices H ′  and R whose rows present all linearly 
independent solutions to the algebraic equation  

0)( =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ
−′

H
RH . 

Note that the vector Ry  presents those components of the 
vector y  and their linear combinations which can be 
computed as a function of the state vector x′ , i.e. 

xHRy ′′= . Consider two cases.  

(1) Every component of the function f ′  contains only those 
components of the vector y  which depend on the vector Ry  
components; in this case set  

jj uu *= ,      mj ,...,1= . 

This means that a block “g” in Figure1 is absent.  

(2) Suppose that Case 1 does not hold and find in the function 
f ′  all terms with minimal numbers of variables in the form  

),,( uyxi ′α ,      ri ,...,1= , 

which contain the control u  and components of the vector y  
functionally independent of the vector Ry  (some terms do 
not contain the variable x′ ). Denote 

).,,(
             

),,,(

*

11*

uyxu

uyxu

rr ′α=

′α=
M                           (14) 

To check solvability of these nonlinear algebraic equations, 
assume that  
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rank =⎟
⎠
⎞

⎜
⎝
⎛

∂
α∂  

for all yx ,′ , and u except perhaps on a set of measure zero, 

where T
1 )( rαα=α K , and the function α  contains 

m′ , mm ≤′ , components of the vector u as its arguments. It 
is obvious that the inequalities sm ≥′  and sr ≥  hold by 
definition of rm ,′ , and s . Assume for simplicity that if some 

ju  is contained in the function α , then it is not in other part 

of the function f ′ . Consider three cases. 

(1) srm ==′ ; in this case the system of equations (14) is 
solvable for some m′  components of the control vector u 
(without loss of generality suppose that they are 1u , …, mu ′ ): 

),,( *uyxu jj ′γ= ,     mj ′= ,...,1 .              (15) 

Take 

jj uu *= ,     mmj ,...,1+′= . 

(2) srm =>′ ; in this case the function α  contains rm −′  
redundant components of the vector u. Without loss of 
generality assume that these components are the last rm −′  
ones, i.e. 1+ru , …, mu ′ . Using additional equations for these 
components  

jj uu *= ,     mrj ,...,1+= ,                   (16) 

one can solve the system of equations (14) in the form (15) 
for rj ,...,1= . 

(3) srm >≥′  or smr ≥′> ; in these cases find the matrix P 
with s rows such that  

s
u

Prank =⎟
⎠
⎞

⎜
⎝
⎛

∂
α∂  

for all yx ,′ , and u except perhaps on a set of measure zero. 
The matrix P collects s functionally independent components 
from all ones of the function α . The redundant components 

1+su , …, mu ′  (when sm >′ ) are now in the function αP . 
Using (16) for msj ,...,1+= , one can solve the equation  

α= Pu*  

in the form (15) for sj ,...,1= . 

5. SYSTEM 0Σ  DESIGN 

Note that in some cases all relations in (15) do not depend on 
the components of the vector x′ ; in this case the system 0Σ  
is absent. In some cases these relations depend on all 
components of the vector x′ ; in this case the system 0Σ  
coincides with Σ′ .  

Generally, (15) depends on some components of the vector 
x′ , in this case it is necessary to design the nontrivial system 

0Σ . To do this, define the matrix Q  (by analogy with Φ ) 
such that  

)()( 0 txtxQ =′       t∀ .                         (17) 

It can be shown that the following set of equations 
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⎞
⎜⎜
⎝

⎛
′
′

=⎟⎟
⎠

⎞
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⎝

⎛

dd FQ
FQ

Q
F
F

0

0 ,                           (18) 

101 AQA ′=                                  (19) 

holds where )( 21 AAA ′′=′ , )( 02010 AAA = . Equations 
(18) and (19) are equivalent to equations  

⎟
⎟
⎟
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⎜
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⎝

⎛

′
′=

dFQ
FQ

Q
rankQrank )( ,                       (20) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

=
1

)(
A
Q

rankQrank                           (21) 

respectively. The matrices 0F , 0dF , and 01A  are obtained 
from (18) and (19) respectively, other matrices described the 
system 0Σ  can be found as follows:  

JQJ ′=0 ,     GQG ′=0 , 

CQC ′=0 ,     202 AA ′= .                      (22) 

Equality (17) is used for replacing the vector x′  in (15) by 
0x . As a result, (15) is transformed into  

),,( *0 uyxgu jj = ,       mj ′= ,...,1 , 

corresponding to the general law (2). 

The matrix Q  can be constructed according to the following 

procedure. Let )1(x′  be a subvector of x′  whose components 
are in the function α  and xQx ′=′ )1()1( . Consider three 
cases.  

(1) If conditions (20) and (21) hold with )1(QQ = , then set 
)1(QQ =  and define the matrices 0F , 0dF , 0J , 0G , 0C , 0A  

from (18), (19), and (22) respectively.  

(2) If some rows of the matrix 1A′  (denote them A ′′ ) do not 

satisfy condition (21), set ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′′
=

A
QQ

)1(
(2) , otherwise 

)1((2) QQ = . If condition (20) holds with )2(QQ = , then set 
)2(QQ =  and define the matrices 0F , 0dF , 0J , 0G , 0C , 

0A  from (18), (19), and (22) respectively. 
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(3) If some rows of the matrix ⎟
⎟
⎠
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dFQ
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 (denote them 

)2(Q′ ) do not depend on the rows of the matrix )2(Q , then 

set ⎟
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⎛

′
= )2(

)2(
(3)Q

Q
Q  and check condition (20). If it holds, set 

)3(QQ =  and define the matrices 0F , 01A , 0J , 0G , 0C , 

02A  from (18), (19), and (22) respectively. Otherwise repeat 
above operations until condition (20) satisfies. Let Q  be 

equal to the final matrix (*)Q ; define the matrices 0F , 0dF , 

0J , 0G , 0C , 0A  from (18), (19), and (22) respectively.  

As a result, the system 0Σ  is described as follows: 
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6. SYSTEM *Σ  DESIGN 

Consider two kinds of components of the function f ′ : the 
first kind contains components of the vector y  functionally 
independent of the vector Ry  and do not depend on the 
control u ; the second kind contains those components of the 
function α  which are not in the function αP  (if α≠αP ). 
Denote a set of these components numbers by 

),...,,( 21 knnnN = .  

If ∅≠N , then the system Σ′  contains components of the 
vector y which can not be decoupled from the unknown 
function )(tϑ . In this case Σ′  must be redesigned as follows. 
Remove rows with numbers knnn ,...,, 21  from the matrix 

( 0A  0B  0C ) and analyze the obtained matrix by analogy 
with the matrix (A B C). Denote the obtained matrix as 
( 00A  00B  00C ) and set  

00AN = ,     0NL=Φ ,     GG Φ=′ ,     00CJ −=′ ; 

the matrix F ′  is a solution to the equation 00BNF −=′  (we 
denote the redesigned system and its elements as the initial 
ones for simplicity). Other matrices of the redesigned system 
can be obtained as it is described above.  

If ∅=N , then the system Σ′  is not need to be redesigned. 
Assume that the general description of the initial or 
redesigned system is given by (13).  

Consider the redesigned system Σ′  and find all terms in the 
form  

),,( uyxi ′α ,      ri ,...,2,1= , 

which are investigated in Section 4. Replace all these terms 
by components of the new control vector *u  according to 

(14). The system Σ′  may contain components of the vector 
y  which depend on the vector Ry  only. These components 

must be replaced by components of the vector x′  as follows. 
Suppose that some jy  is in Σ′  and )(Ryy j δ=  for some 
function δ . Then 

)()()()( xHxHRHxRyy j ′′δ=Φ′δ=δ=δ= . 

Take  

jj xx ′=* , xpj ′== dim,...,1 . 

These replacements transform the system Σ′  into the system 
*Σ . 

7. ILLUSTRATIVE EXAMPLE 

Consider the system described by the model 

,

)()()(
)()()(

)()()()()(
)()()()()(

)()()()(

)(

21

423

1214

2111

2511

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ϑ++
−−

ϑ−+−−
ϑ−−−+τ−

+−−

=

ttxtx
txtxtx

ttutxtxtx
ttxtxtutx

tutxtxtx

tx&

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

)(
)(
)(

)(

5

4

1

tx
tx
tx

ty . 

The following matrices can be chosen for logic-dynamic 
description of the initial system: 
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51
)2()1( ),,( xxuxAxA =ϕ . 

The matrix 0L  is computed as follows: 
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Equation (11) 0)( 0
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It can be shown that  
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It is easily to check that conditions (8) and (9) hold. As a 
result, system (3) is described as follows 
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An analysis shows that  
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Because the first equation contains the variable 3y  which is 
functionally independent of Ry , then take 

231),,( uyxuyx +′=′α , 1==′= smr . Set 2312* uyxu +′= , 
then 312*2 yxuu ′−= . It is easy to show that 

)0001()1( =Q . One can check that conditions (20) and 

(21) hold, then )1(QQ = , 101 xx ′= , and the system 0Σ  is 
described by equation  

)()()()()( 23010101 tutytxtxtx +−−=& . 

Finally, law (2) takes a form  

1*1 uu = ,     3012*2 yxuu −= .                (23) 

Since ∅=N , the system Σ′  is not need to be redesigned. 
Description of the system *Σ  is as follows:  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−+−
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+τ−
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=

)()()(
)()(

)()(
)()(

23*2*

1*2

1*1*

2*1*

*

tytxtx
tuty

tutx
tutx

x& .                 (24) 

It should be noted that methods suggested in the paper 
(Shumsky et al 2009) can be modified for time delay 
systems. Applying them to the considered example, one 
obtains the following results: the system 0Σ  coincides with 
Σ′  and is 4-dimensional in contrast to the above 1-
dimensional system 0Σ ; an equation for the control 1u  is not 
trivial in contrast to our case 1*1 uu = ; the system *Σ  is 2-
dimensional in contrast to our 4-dimensional system (24). 

For simulation, set 1=τ , the control ttu sin)(1 = , 
ttu sin5)(2 = . The function )(tϑ  is modelled by variate with 

the mean equal to zero and the variance equal to 20. Figure 2 
shows the output 1y  behaviour under 0)( =ϑ t ; Figure 3 
shows the output 1y  behaviour under 0)( ≠ϑ t  without use of 
the law (2); Figure 4 shows the output 1y  behaviour under 

0)( =ϑ t  with use of the law (23).  

Clearly, this law provides full decoupling the output 1y  with 
respect to the fault, and the fault accommodation effect has 
been achieved.  

8. CONCLUSION 

The problem of fault accommodation in nonlinear time delay 
systems has been studied. More general case with several 
nonlinearities can be considered based on the logic-dynamic 
approach by analogy with (Zhirabok & Usoltsev 2002). Since 
this approach uses linear operations only, it is easy to show 
that the theory described in the paper can be applied to 
discrete-time dynamic systems.  
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Fig. 2. Output 1y  behaviour under 0)( =ϑ t  

 

Fig. 3. Output 1y  behaviour under 0)( ≠ϑ t  without 
correction of the input 2u   

 

Fig. 4. Output 1y  behaviour under 0)( ≠ϑ t  with the input 

2u  corrected according (23) 
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Abstract: The coordination of available actuators in modern gasoline engines is a challenging
task. An available scheme for efficient coordination that respects the actuator constraints is
model predictive control, but a specialised implementation of the incorporated optimisation
algorithm is necessary to cope with the timing requirements. The numerical efficiency of the
developed algorithm and the performance of the realised torque and speed control are presented
in simulation and real-time in a Volkswagen T5 transporter respectively.

Keywords: Engine control, Model Predictive Control, Torque Coordination

1. INTRODUCTION

The number of the actuators in modern gasoline engines
increases due to rising requirements regarding emissions
and fuel consumption. The coordination of the available
actuators (e.g. throttle, ignition plug, exhaust gas recir-
culation and turbo charging) is a challenging task. The
electronic control unit (ECU) needs to calculate appropri-
ate signals, which are hardly optimal because of the disre-
garded coupling within the actual structure, the non-linear
characteristics and limitations on the actuator signals.
These computed signals are mostly based on heuristics and
look-up tables that are to a large extent chosen manually.
This leads to high expenses and a later time-to-market.
A possibility to arrange the available torque sources in
a systematic way is model predictive control (MPC). By
superordinating this controller an efficient coordination of
the subsidiary torque control structures is possible, due
to the predictive nature of the controller and inherent
consideration of constrained actuators.
Over the decades the MPC concept has proved successfully
in controlling plants with complex dynamics. Due to its
high computational complexity its usage is being limited to
plants with slow dynamics like in the process industry. Nu-
merous companies developed reliable software for process
automation systems (PAS) (e.g. Aspen Technology, Inc.
(2010)) and programmable logic controllers (PLC) (e.g.
Siemens AG (2008)).
In contrast, controlling plants with fast dynamics still
poses a problem. The fast sampling times necessary are
perceived to prevent the MPC of these plants on standard
embedded systems, beside the interest in this control
approach is growing in the automotive industry and the
benefits are already proven by e.g. Saerens et al. (2008)
and del Re et al. (2010). To address this limitation several

techniques have been developed to enlarge the field of
MPC to embedded systems with small sampling times.
An implementation with sufficient worst case timing for
the MPC of a single-input single-output (SISO) system is
presented by Wills et al. (2008). It suggests the enhance-
ment of embedded systems by a digital signal co-processor
(DSP) for the fast evaluation of the underlying algorithms.
The implementation strategies and the actual implemen-
tation on field programmable gate array (FPGA) chips are
presented by Knagge et al. (2009) and Ling et al. (2006) re-
spectively. While the former address the specific architec-
ture, like parallelism, explicitly and therefore the greater
improvement is expected, the effort of implementing the
necessary algorithms in a hardware description language
should not be underestimated. To compete against high-
potential micro-controllers in terms of computational time
is a challenging task.
Another approach is the combination of on-line optimi-
sation and a partial enumeration method presented by
Pannocchia et al. (2006). The solutions of the optimisa-
tion problem with active constraint sets that appear with
highest frequency are computed off-line and stored in a
table. This table is searched on-line for the best control.
In case, that meanwhile the on-line computation an active
constraint set does not exist in the table, it is adapted.
With this method a significant speed-up is possible. The
drawbacks are performance degradation and the memory
requirements.
The explicit MPC has gained much attention in the
recent years. Therefore the state space is partitioned
into polyhedral regions. The control law is formulated
as a function of the plant state and the piecewise linear
solutions to the control problem with respect to the
constraints are calculated as described by Bemporad et al.
(2002). The on-line computational complexity reduces to
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the selection of the appropriate control law depending on
the actual state. Numerous successful applications followed
by e.g. Ortner et al. (2006), Naus et al. (2008) and
Arce et al. (2009). On the other hand, explicit MPC is
limited to plants with a small number of inputs and short
control horizons (for an explanation of this term see section
2) as the number of regions grows exponentially with
these parameters. A prohibitively large amount of memory
would be necessary, which is addressed e.g. by Rossiter and
Grieder (2004). Additionally the control parameters and
the constraints of the actuating variables are commonly
fixed, which is undesired in some control problems. This
limitation is addressed by Baric et al. (2005), but results
in additional optimization variables and therefore a larger
demand on memory. Hence, it quickly exceeds available
resources in practical situations.
With the advent of multi-core controllers for embedded
systems (e.g. XMOS Ltd. (2010)) and multi-core DSPs
(e.g. Texas Instruments Inc. (2010)) it seems reasonable
that parallel algorithms for MPC could lower the compu-
tational burden. To the knowledge of the author the main
developments occur in the field of large-scale and sparse
problems (e.g. Gondzio and Grothey (2006) and Gondzio
and Grothey (2007)) and focus on the parallelisation of
incorporated operations (e.g. matrix multiplication and
inversion) as by Ruano and Daniel (1997). In a recent
publication by Behrendt et al. (2010) a parallelisation
approach on the optimisation level is presented that allows
for super-linear speed-up of the computation at time-
critical sampling instances.
The purpose of this paper is to show that the MPC of
gasoline engines on a commonly used ECU is already
feasible by utilising a specifically tailored algorithm and a
limited number of actuators. This conclusion is evident by
simulative results and by measurements in a Volkswagen
T5 transporter with a 2l TFSI (Turbo Fuel Stratified
Injection) engine.
The paper is organised as follows. The basics of MPC and
the features of the applied algorithm for the solution of the
incorporated optimisation are presented in section 2. The
section 3 explains the utilised model structure. In section
4 the numerical properties are obtained by a Hardware-In-
The-Loop simulation and the practical relevance is proven
by controlling the engine of the Volkswagen T5.

2. MODEL PREDICTIVE CONTROL BASICS

In this section a short introduction to the MPC funda-
mentals is presented. For a more comprehensive survey on
the theory of MPC the reader is referred to Maciejowski
(2002) and Camancho and Bordons (2004).
The MPC method combines the advantages of predict-
ing the behaviour of the plant, namely the output, and
respects constraints on the actuators. Therefore the cost
function

J(k) =
Hp∑

i=1
‖ŷ(k + i|k) − w(k + i|k)‖2

Q(i) +

Hu−1∑

i=0
‖∆u(k + i|k)‖2

R(i) (1)

with the prediction horizon Hp, the control horizon Hu,
the weights on the control deviation Q, the weights on
the rate of change of the difference control action R, the
predicted output ŷ, the reference w and the difference
control action ∆u needs to get minimized with respect
to ∆u.
The prediction follows from the state equations of the
discrete-time linear plant

x(k + 1) = Ax(k) + Bu(k) (2)
y(k) = Cx(k) (3)

with the states x ∈ Rnx , the input u ∈ Rnu and the output
y ∈ Rny by

ŷ(k) = Ψx̂(k) + Υu(k − 1) + Θ∆U(k) . (4)
Thereby Ψ, Υ, Θ and ∆U(k) are in the notation as
presented by Maciejowski (2002). With the reference signal
w(k + i|k), i = 1, . . . , nyHp, the control difference over the
prediction horizon

ε(k) =




w(k+1|k)
w(k+2|k)

...
w(k+Hp|k)


 − Ψx̂(k) − Υu(k − 1) (5)

leads to the cost functional
J(k) = ∆U(k)TH∆U(k) − g(k)T∆U(k) (6)

with
H = ΘTQΘ + R and g(k) = 2ΘTQε(k) . (7)

By means of the diagonal matrices Q ≥ 0 und R > 0,
which elements consist of Q(i) with i = 1, . . . , Hp and R(i)
with i = 0, . . . , Hu − 1 respectively, the resulting control is
parametrised.
Additionally constraints on the actuating variables are
defined by the linear matrix inequality

A∆U(k) ≤ b(k) . (8)

The minimization of the cost function (6) subject to the
constraints (8)

min
∆U(k)

{
∆U(k)TH∆U(k) − g(k)T∆U(k) : A∆U(k) ≤ b(k)

}

(9)
defines a mathematical standard problem that can be
solved by quadratic programming (QP). A variety of
methods for solving the QP are commonly used. For an
overview we refer to Nocedal and Wright (2006). The
basis of the herein used algorithm is the active-set method
described by Fletcher (1981), but is optimised for the
solution of the QP within the MPC algorithm. Therefore
several enhancements are applied like
tuning for the specific structure of the constraint

The applied algorithm only accounts for constraints on
the actuating variables. Therefore the matrix product
A∆U(k) equals an accumulated sum of the elements
of ∆U(k) that belongs to the same actuating signal.
Therefore a decreases number of operations in necessary.

restriction to a certain process class The actual im-
plementation requires a certain process class that occurs
in engine control as shown by Fritzsche et al. (2009).
This specialisation allows for the on-line adjustment of
the process model with a reasonable demand on process-
ing time.
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enhanced warm-starting feature The usage of the so-
lution of the QP at the previous time instant for initial-
isation often decreases the processing time significantly.
In case of reference changes or large disturbances this
approach can have the opposite effect. An enhanced
initialisation routine based on the procedure by Hil-
dreth (1957) is capable of avoiding such conditions (see
Behrendt et al. (2010)).

pre-computing the system of equations In each it-
eration of the active-set method a system of equations
needs to get solved that varies in size depending on
the number of active constraints. The application of a
LDLT-decomposition allows to pre-compute this system
of equations to some extent. Behrendt (2009) has shown
that this leads to a significantly lowered numerical com-
plexity for the online iterations.

multiple activation and deactivation of constraints
The active constraints in the solution are identified
sequentially in the active-set method. Because of the
independence of ∆U(k) terms in (8) that are associated
to different actuating signals a concurrent activation of
constraints is viable. This often leads to a decreased
number of iterations and improves the result in case of
an early interruption of the algorithm.

exploit the influence of active constraints Active
constraints correspond to optimisation variables that are
fixed. Hence, the computed step towards the minimum
of (6) is equal to zero. Due to this a priori knowledge
the calculation of the step is avoided and a decreased
number of operations has to be performed.

These enhancements limit the region of attraction, but
allow for real-time control of a certain process class.

3. A SPECIAL CLASS OF SYSTEMS FOR ENGINE
CONTROL

This paper deals with a special class of systems that
consists of a number of main control variables Yi, i =
1, . . . , m (e.g. torque and engine speed), a main actuating
variable U1 (e.g. torque by air path) and a number of
auxiliary actuating variables Ui, i = 2, . . . , n (e.g. torque
by ignition path, exhaust gas recirculation and electric
engine). The general system can be described by the
discrete-time transfer function




Y1(z)
...

Ym(z)
A1(z)

...
An(z)




=




G11(z) G12(z) · · · G1n(z)
... . . . . . . ...

Gm1(z) Gm2(z) · · · Gmn(z)
0 Gaux(z) · · · 0
...

. . . . . .
...

0 0 · · · Gaux(z)







U1(z)
U2(z)

...
Un(z)


 .

(10)

The purpose of the auxiliary variables is to dynamically
support the main actuating variable, but return to their
references in the steady state. The transfer function Gaux
in (10) represents the dynamic of the auxiliary variable
realisation. In case, that the auxiliary variable is freely
alterable within the constraints in every engine cycle the
transfer function

Gaux(z) = z−1 . (11)

Air Path

Ignition Path

Constraints

Torque
Crankshaft

Speed
Torque Reference
by Air Path

Difference Torque Reference
by Ignition Path

Constraints
+

Fig. 1. Considered process structure

Therefore by controlling the variables Ai, i = 1, . . . , n the
auxiliary variables are controlled to a prescribed reference
(e.g. optimal ignition angle) provided by the combustion
process supervision. The relation between the main control
variables and the main actuating variable described by
Gi1(z), i = 1, . . . , m is of slower dynamic in comparison to
the remaining sub-systems. This encourages the evident
active aid by the auxiliary variables for controlling the
plant.
The considered process structure for the specific purpose
of this paper is shown in Fig. 1. Two actuating variables
have been chosen for engine control. Namely the torque
by the air path (AP), which determines the amount of air
in the cylinder by altering the throttle opening angle. The
amount of air directly affects the resulting torque at the
crankshaft. The difference torque by the ignition path (IP),
which determines the ignition angle, serves as auxiliary
variable and allows for an efficiency deterioration. Thus,
it is possible to establish a torque reserve by means of the
ignition angle. Because the time constant of the ignition
path is significantly smaller than that of the air path
a faster response to reference changes or disturbances is
available. Additionally both actuating signals are subject
to constraints which are inherently respected by MPC.
These constraints result from safety reasons in case of
the air path, because an exceeding torque could damage
the engine. The ignition path is constrained to prevent
knocking in the cylinder. For an explanation of this term
we refer to Gupta (2006).
The control variables are chosen to be the generated torque
at the crankshaft T and the resulting engine speed n. The
resulting model can be written as
[

T (z)
n(z)

∆T _IP (z)

]
=




GT _AP (z) GT _IP (z)
Gn_AP (z) Gn_IP (z)

0 z−1




[
T _AP (z)

∆T _IP (z)

]
.

(12)

Naturally the torque and speed cannot be controlled
independently. The controller may take only one control
variable at a time into account. This can be achieved by
not considering the control offset of the particular process
output by setting the associated element in the weight of
the control deviation q to zero. Otherwise the MPC would
attempt to track both references that would lead to an
offset on both control signals.
Hence, a single controller structure grants to track different
references in dependency on the choice of one parameter.
In the field of automotive control this would allow to join
the torque controller that tracks the commands of the
driver by the gas pedal and the idle speed controller. This
approach would significantly simplify the control structure
within nowadays ECUs.
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Table 1. Control parameters and implementa-
tion details

Parameter Value

prediction horizon Hp 20
control horizon Hu 3

control deviation weight q [0.1 0.004 0.05]
control action weight r [10 1]
min. control variable [10 -10]
max. control variable [55 0]

processor clock rate 150 MHz
code memory (without FP libs) 6.3 KB

code memory (with FP libs) 13.2 KB
data memory 2.0 KB

It should be mentioned again that we are not going to
influence the throttle or the advance angle directly. Instead
the MPC is used as superordinate controller that supplies
optimal references for the air and ignition path. These
references are tracked by the subsidiary control structures
that are already included in the ECU. This approach
leads to some extent to a linearisation of the underlying
structures and therefore a linear MPC can be applied.

4. RESULTS

The results presented in this section are based on the
model (12) derived in the previous section. The parameters
are obtained by experimental identification at a Volkswa-
gen T5 transporter with 2l TFSI engine.

4.1 Hardware-In-The-Loop Simulation

By means of a Hardware-In-The-Loop (HiL) simulation on
the target platform Tricore TC1796 by Infineon Technolo-
gies AG (2010) we will show the performance of the control
and the algorithm. The TC1796 is a high-potential micro-
controller that meets the demands of nowadays engine
control. It incorporates an effective floating point unit
(FPU), a digital signal processor (DSP) with fixed point
arithmetic and a peripheral controller (PCP).
The experimentally chosen control parameters for MPC
are summarised in Table 1 and the resulting control is
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Fig. 3. Constrained actuating signals (solid) and the dif-
ference torque reference by IP (dashed)

shown in Fig. 2. Until t = 5 s the torque is controlled to
follow the reference. Therefore the weight on the speed
control deviation q2 is set to zero. At t = 5 s the control
objective changes by setting the weight on the speed
control deviation according to Table 1, but the weight on
the torque control deviation q1 is set to zero. This modifies
the MPC to track the speed reference until the end of the
simulation.
The difference torque by the ignition path (IP) actively
supports the torque by the air path (AP) to reduce the
control deviation in the transient phases as shown in Fig. 3.
As the control deviation tends to zero the difference torque
by IP returns to its reference of −2 Nm. This realises a
torque reserve to allow for quickly reaction on reference
changes and disturbances. Nevertheless the constraints on
the actuating signals according to Table 1 are respected at
any time.
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Fig. 4. The computational time for calculating the appro-
priate actuating signals is shown in the upper graph
and the lower graph shows the number of iterations
of the active-set algorithm (solid) and the number of
active constraints (dashed)
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According to the intended operation in an ECU the sample
time is set to 10 ms, because that is the fundamental
sample time for the air path functionalities. Fig. 4 reveals
that the necessary computational time is sufficient for real-
time computation of the MPC. The maximum execution
time is approximately 180 µs at the beginning of the
simulation that leaves enough resources for the remaining
functions in the ECU. At the time t = 5 s the control
objective is adapted by changing the weights and at time
t = 9 s the plant parameters are slightly changed to
demonstrate the effect on the computational time. Both
changes cause the re-computation of parameters of the
QP, but show moderately increased computational time.
The lower graph of Fig. 4 shows the benefit of warm-
starting the optimisation algorithm with the solution of
the previous time instant. The number of iterations equals
the number of necessary changes to the identified active
constraints, but not to the number of active constraints
itself.

4.2 Evaluation in a Volkswagen T5 transporter

The internal bypass concept by Accurate Technologies
(2011) facilitates the easy insertion of additional func-
tionality into existing software states without changing
software source code. This allows for expanding an ECU
for engine control by the MPC algorithm. The algorithm
bypasses the ECU functions that would calculate the
torque by AP and the torque by IP in a production ECU.
By means of this technique the evaluation of the MPC on
the intended hardware platform provides an insight into
the applicability of the entire approach.
The first measurements occurred in the idle running of
the engine. The Fig. 5 shows the controlled torque (green)
and the torque reference (red) that is subject to changes.
In case of a reference change the difference torque by IP
(magenta) supports the torque by AP (blue) to reduce
the control deviation e.g. at the time t = 452 s, but does
not exceed the minimal difference torque of −10 Nm. In
the steady state it returns to its reference (cyan) again.
The changes to the difference torque reference by IP are
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Fig. 5. Torque control at the vehicle in idle running subject
to changes of the difference torque reference by IP
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Fig. 6. Torque control at the vehicle in idle running subject
to changes of control action weight of torque by AP

stationary compensated by means of the torque by AP and
show minor influence on the controlled torque itself e.g. at
the time t = 477 s.
The applied MPC algorithm provides the opportunity to
change the control parameters during operation. In Fig. 6
an adjustment of the control action weight for the torque
by AP takes place. At the time t = 594 s the AP is
manipulated dynamically to quickly reduce the control
deviation due to the reference change. The difference
torque by IP does not exceed the maximal difference
torque of 0 Nm and immediately returns to its reference.
In contrast at the time t = 620 s the weight is adapted to
moderately utilise the AP. Consequently the torque control
deviation and the deviation of the difference torque by IP
persists for a longer period of time. This can be interpreted
as a sport and economy mode respectively as it is available
in nowadays vehicles.
Fig. 7 reveals the possibility of changing the control
objective. Until the time t = 128 s the torque (green) is
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Fig. 7. Online change of the control objective from torque
control to engine speed control at the vehicle in idle
running
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Fig. 8. Torque control at the vehicle on a test track
controlled to its reference (red). Afterwards the control
objective is adapted to force the engine speed (magenta)
to its reference (cyan).
The evaluation of the MPC on a test track proves the
ability to dynamically control a driving scenario. The
torque reference in Fig. 8 is shaped by the driver by means
of the gas pedal. The actuating variables are manipulated
accordingly. Because of seldom steady state phases the
difference torque by IP almost always differs from its
reference, but never exceeds the constraints. The figure
shows, that the torque by AP also remains below the
safety constraint of 200 Nm. The vehicle accelerated from
20 km h−1 to 66 km h−1 and at the time t = 209 s the
gear is changed. Nevertheless, an adaptation of the process
model is not necessary to cope with the changes in the
process behaviour.

5. CONCLUSION

While the attractive features of MPC are especially inter-
esting in the automotive industry for e.g. engine control,
the numerical complexity of the incorporated optimisation
is perceived to prevent its application in embedded sys-
tems like production ECUs. This concern has motivated
this paper and it could be shown that model predictive
engine control is feasible by utilising a specifically tailored
algorithm and a limitation to two actuators. A worst case
timing of approximately 180 µs during a sample control
scenario by using a common micro-controller leaves the
necessary resources for the remaining functions in the
ECU. Further studies have unveiled that a worst case
timing of 800 µs results if four actuators are utilised. That
could be recognised of being acceptable as well.
The evaluation in the vehicle has pointed the practicability
out. The actuating signals are manipulated in an efficient
manner and the ability to control the torque and the engine
speed by a single MPC could significantly simplify the ex-
isting control structure in nowadays ECUs. Nevertheless,
the approach is not yet usable in production units. More
work is necessary to account for e.g. overrun fuel cut-
off, cylinder shut-off and the integration in the existing
structure.
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Abstract: The paper deals with modeling and design of hybrid control using HYSDEL modeling 

language and MPT toolbox for MATLAB, respectively. We created optimal structure model using hybrid 

systems theory and designed predictive control of traffic lights of three interconnected intersections. 

Considered intersections are in detail described in proposed article. A model has been built describing the 

evolution of the queue based on number of incoming and outgoing cars and traffic lights. A realistic 

intersections model has been built and achieving optimal traffic lights control was successfully verified 

on many model variations. 

1. INTRODUCTION 

During last tenths of year traffic in towns has become serious 

problem and traffic jam everyday occurrence. As traffic lights 

are tool to control traffic we need to control the lights 

optimally. Many authors dealt this problem and various 

approaches were examined. For example in (Zhang, 2008) 

traffic light control system was considered to be hybrid 

system and hybrid Petri nets were used to examine this 

problem. Timed coloured Petri nets were used in (Huang, 

2010) and in (Schutter, 1998) the problem was solved as 

minimization of special performance function. 

In this paper we created model of intersection as a hybrid 

system and use hybrid systems control theory to control 

traffic lights. The main aim is to design effective and fast 

control of traffic lights of three interconnected intersections 

in optimal way. 

The paper has the following structure. In the second section 

examined system structure is described and simplified yet 

precise model is derived. The section three deals with control 

problem definition and obtained results and finally in section 

four is conclusion of this paper. 

 

2. DESCRIPTION AND MODEL OF INTERSECTIONS 

2.1 Description of intersections  

In this study, we work with three interconnected 

intersections. It means that cars outgoing from one of arms of 

intersection 1 are coming to arms of intersections 2 and 3 and 

vice versa. Scheme of this system is depicted in Figure 1. 

First intersection depicted in Figure. 2. consists of 4 two-way 

arms labelled A, B, C, D second intersection depicted in 

Figure 3. consists of 3 two-way arms labelled E, F, G and 

third intersection depicted in Figure 4. consists of 3 two-way 

arm labelled H, I, J. 

 

 

Fig. 1. System of interconnected intersections 

Now we are going to describe first intersection. Streams of 

cars entering the intersection are labelled A1, B1, B2, C1, C2, 

D1, D2 and controlled by traffic lights SA1, SB1, SB2, SC1, 

SC2, SD1, SD2, respectively. Each of traffic lights has 3 

phases: green, amber and red. 

Intersection is depicted in Figure 2. from which it is possible 

to identify which directions are allowed for cars entering the 

intersection. Cars in A1, C1 and D1 streams can only drive 

straight, cars in B2, C2 and D2 streams can drive to the right 

and from B1 stream straight and left. 

The amount of cars coming into the intersection for each of 

the directions is denoted as λi, where i {A1, B1, B2, C1, C2, 

D1, D2}. Function λi is formed by a series of Dirac pulses, 

and for each of the stream is different. One Dirac pulse 
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represents coming of one car. When the traffic light is green 

or amber, amount of outgoing cars for each of the streams is 

denoted as μi or κi, respectively. Functions μi and κi are also 

formed by a series of Dirac pulses. 

 

 

Fig. 2. Scheme of intersection 1 

Intersection 2 which is depicted in Figure 3. can be described 

accordingly to intersection 1. Streams of intersection 2 are 

labelled E1, E2, F1, F2, G1 and G2 and are controlled by 

traffic lights SE1, SE2, SF1, SF2, SG1 and SG2 respectively. 

 

Fig. 3. Scheme of intersection 2 

Intersection 3 is similar to intersection 2. Streams of 

intersection 3 are labelled H1, H2, I1, I2, J1 ans J2 and are 

controlled by traffic lights SH1, SH2, SI1, SI2, SJ1 ans SJ2 

respectively. 

 

Fig. 4. Scheme of intersection 3 

Cars outgoing from arm B of intersection 1 are coming to arm 

E of intersection 2, cars outgoing from arm C or intersection 

1 are coming to arm I of intersection 3, cars outgoing from 

arm F of intersection 1 are coming to arm H of intersection 3 

and wice versa. Time needed car to come from one 

intersection to another is 15 seconds. 

2.2 Model of intersections 

Proposal of intersection model was based on ideas in 

(Schutter, 1998). We again describe just model of 

intersection 1, models is of intersection 2 and intersection 3 

were done accordingly. Let us denote length of waiting car 

queues as Li, where i {A1, B1, B2, C1, C2, D1, D2}. When 

traffic light Si is red cars are just coming to intersection when 

it is green or amber cars are coming and outgoing. Difference 

of queue length is determined by equation (1): 

 

 

     amber""Si if         

      ""Si if         

          red""Si if                   

 (t)κ-(t)λ

green (t)μ-(t)λ

(t)λ

dt

dL

ii

ii

i

i
 (1) 

 

where  i {A1, B1, B2, C1, C2, D1, D2}. 
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Stream 1 Stream 2 

A1 D1 

A1 D2 

A1 B1 

D1 C1 

D1 C2 

D1 B1 

D2 B1 

C1 B1 

Table 1. List of stream pairs which can not enter intersection 

1 at the same time 

For a realistic model of intersection it is important to define a 

constraint to the queue length: Li ≥ 0. Due to avoid collisions 

in the intersection it is necessary to impose restrictions on the 

concurrent green color for determined pairs of traffic lights. 

These were determined on the basis of intersection 

specification. The list is in Table 1. Since the B2 stream is 

not in conflict with any other stream, it is not necessary to 

control it and we miss it. 

Similar restrictions related to intersection 2 are listed in Table 

2, restrictions for intersection 3 are listed in Table 3. 

Stream 1 Stream 2 

E1 G2 

E2 F1 

E2 F2 

E2 G2 

F2 G1 

F2 G2 

Table 2. List of stream pairs which can not enter intersection 

2 at the same time 

Stream 1 Stream 2 

H1 J2 

H2 I1 

H2 I2 

H2 J2 

I2 J1 

I2 J2 

Table 3. List of stream pairs which can not enter intersection 

3 at the same time 

2.3 Simplified intersection model 

Previous intersection model is too complicated for 

mathematical analysis, therefore, in this section we simplify 

the model so that it is easier to work with it while still precise 

enough. It includes following changes: 

- lengths of queues are continuous variables, 

-comings and outgoings of cars from intersection are 

represented by constant function, 

-amber phase is missing. 

Working with intersection 1 let us denote amount of 

incoming cars as πi and amount of outgoing cars as τi for each 

stream where i {A1, B1, B2, C1, C2, D1, D2}. 

Difference of queue length is determined by equation (2): 

 

 
  ""Si if          

      ""Si if                   

green(t)τ-(t)π

red(t)π

dt

dL

ii

ii
 (2) 

 

Intersection model is thus simplified, so that when traffic 

light is green, cars are coming and outgoing from intersection 

in constant rate when traffic lights is red cars are just 

outgoing in constant rate. Amber phase is omitted. The model 

was created by HYSDEL modelling language described in 

(Bemporad, 2004), (Bemporad, 2007) and (Bemporad, 2009) 

which was designed for modelling of hybrid systems. 

HYSDEL model is than translated into MLD model using 

HYSDEL compiler which is one of most used hybrid models. 

Disadvantage of hybrid models is rapid complexity increase 

in dependance on number of binary variables which from 

control point of view results to very difficult and time 

consuming optimisation problem. Next factor which 

increases model complexity are constraints on state, input and 

output variables. That is why we try to create intersection 

model as simple as possible – with minimum number of 

binary variables and constraints. 

Since the generated model is designed to simulate changes in 

the length of streams of cars on each of intersection arms, 

state of system is defined as the number of cars waiting in 

individual streams thus it is vector of length 6. The basic idea 

is simple: a queue of cars waiting before the intersection is 

increasing when the light is red and decreasing when the light 

is green. 

Since the intersection is controlled by 6 traffic lights, 

intersection model will have 6 input binary control signals 

one for each of traffic lights. Traffic light can be green if it 

does not violate the restrictions in Table 1. For example, if 

SC1 light is green also SC2 and SD2 lights or SC2 and SA1 

lights can be green. SB1 and SD1 lights have to be red. We 

need not therefore to subject to each of the traffic lights in 

particular. With this feature it is possible to reduce the 

number of control signals, thus simplifying the intersection 

model and hence the problem of control. Our aim is to 

determine the minimum number of control signals. Task is 

therefore to determine minimum normal disjunctive form 

(MNDF) on the basis of Karnaugh map. Table 4 shows 

Karnaugh map for the intersection 1. 

MNDF for given map is: 

(!A1 & !B1 & !D1) + (!B1 & !D1 & !D2) + (!A1 & !C1 & 

!D1 & !D2) + (!A1 & !B1 & !C1 & !C2) 

where ! denotes operator of negation. 
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Table 4. Karnaugh map for intersection 1 

 

It flows from MNDF that to control the intersection we need 

4 signals which control the traffic lights following way: 

S1 = !A1 & !B1 & !D1 – green light for B2, C1, C2, D2 

streams 

S2 = !B1 & !D1 & !D2 – green light for A1, B2, C1, C2 

streams 

S3 = !A1 & !C1 & !D1 & !D2 – green light for B1, B2, C2 

streams 

S4 = !A1 & !B1 & !C1 & !C2 – green light for B2, D1, D2 

streams 

Instead of restrictions listed in the Table 1. we get a new 

restriction: at most one of the signals can be set to TRUE. 

Because of maximum intersection throughput we can modify 

this restriction so that it is: just one of the signals must be set 

to TRUE. 

Let us define vector X as system state and vector U as system 

input: 

 

D2

D1

C2

C1

B1

A1

L

L

L

L

L

L

x , 

4

3

2

1

S

S

S

S

u  (3) 

 

Model of system is then defined by (4): 

 fBu(k)Ax(k))x(k 1  (4) 

where: 
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Table 5 shows parameters used to create intersection 1 

model. Row  Inc. contains number of cars incoming to 

assigned stream per 1 second. Row Out. contains number of 

cars outgoing from assigned stream if traffic lights is green. 

 

  A1 B1 B2 C1 C2 D1 D2 

Inc. 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Out. 1.8 2 1.2 2.2 0.8 1.8 1.4 

Table 5. List of intersection 1 parameters 

    D2     D2     D2     D2    
     D1           D1         
       C2                   
   C1                       

  A1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 

B2   1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 

 B1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

B2   0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

   1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 

   1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 
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Using similar methodology we get following results for 

intersection 2. Based of restrictions in Table 2, we create 

Karanugh map shown in Table 6. 

MNDF of this map is: 

(!E2 & !G1 & !G2) | (!E1 & !E2 & !F2) | (!F1 & !F2 & !G2) 

| (!E2 & !F2 & !G2) 

Based on MNDF we have 4 control signals: 

S5 = !E2 & !G1 & !G2 – green light for E1, F1, F2 

S6 = !E1 & !E2 & !F2 – green light for F1, G1, G2 

S7 = !F1 & !F2 & !G2 – green light for E1, E2, G1 

S8 = !E2 & !F2 & !G2 – green light for E1, F1, G1 

And we get similar intersection model. 

 

    F1          

     E2         

   E1           

  F2 1 1 0 0 0 0 1 1 

G2    0 0 0 0 0 0 0 0 

  G1   0 0 0 0 0 0 0 0 

     0 0 0 0 0 0 0 0 

    1 1 0 1 1 0 1 1 

     0 0 0 0 0 0 1 1 

    0 0 0 0 0 0 1 1 

   1 1 0 1 1 0 1 1 

Table 6. Karnaugh map for intersection 2 

Table 7 shows parameters used to create intersection 2 

model. Row  Inc. contains number of cars incoming to 

assigned stream per 1 second. Row Out. contains number of 

cars outgoing from assigned stream if traffic lights is green. 

 

  E1 E2 F1 F2 G1 G2 

Inc. 0.4 0.6 0.4 0.2 0.4 0.4 

Out. 1 2 1.2 0.6 1.2 1.8 

Table 7. List of intersection 2 parameters 

 

    I1          

     H2         

   H1           

  I2 1 1 0 0 0 0 1 1 

J2    0 0 0 0 0 0 0 0 

  J1   0 0 0 0 0 0 0 0 

     0 0 0 0 0 0 0 0 

    1 1 0 1 1 0 1 1 

     0 0 0 0 0 0 1 1 

    0 0 0 0 0 0 1 1 

   1 1 0 1 1 0 1 1 

Table 8. Karnaugh map for intersection 3 

 

Using similar approach we get Karnaugh map for intersection 

3 shown in Table 8. 

MNDF of this map is: 

(!H2 & !J1 & !J2) | (!H1 & !H2 & !I2) | (!I1 & !I2 & !J2) | 

(!H2 & !I2 & !J2) 

Based on MNDF we have 4 control signals: 

S9 = !H2 & !J1 & !J2 – green light for H1, I1, I2 

S10 = !H1 & !H2 & !I2 – green light for I1, J1, J2 

S11 = !I1 & !I2 & !J2 – green light for H1, H2, J1 

S12 = !H2 & !I2 & !J2 – green light for H1, I1, J1 

And we get similar intersection model. 

Table 9 shows parameters used to create intersection 3 

model. Row  Inc. contains number of cars incoming to 

assigned stream per 1 second. Row Out. contains number of 

cars outgoing from assigned stream if traffic lights is green. 

 

  H1 H2 I1 I2 J1 J2 

Inc. 0.3 0.4 0.6 0.6 0.4 0.2 

Out. 1 2 1.2 1 1.2 1.4 

Table 9. List of intersection 3 parameters 

 

3. CONTROL DESIGN 

Design of control was made using MPT toolbox for Matlab 

described in (Kvasnica, 2004) and (Kvasnica, 2009). The aim 

of control is to set traffic lights so that throughput of 

intersection is maximum, while the cars on less busy streams 

do not wait too long to get to turn. Theoretical maximum 

throughput is achieved when all the lights are green, which of 

course due to collisions is not possible. Restrictions are 

summarized in Table 1., Table 2. and Table 3. 

Aim of approach used in this paper is to minimize the number 

of cars facing red lights. To avoid permanent switching of 

traffic lights performance function penalizes also changes in 

traffic lights. The aim is to minimize performance function 

(5): 
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The sence of ||u||1=1 constraint is to ensure that during all 

control time just one of input singnals is set to TRUE. 

Using this approach we get three similar control laws – one 

for each intersection. Relation between these three systems is 

presented by “road” which connects two arms of 

intersections. 

During testing of this method we created temporary bigger 

amount of cars coming to stream B1 of intersection 1. In 

resulting graphs we can see that designed control algorithm is 

able to adapt to changed conditions. 

Results of this method are depicted in Figures 5-7 for 

intersection 1, Figures 8-10 for intersection 2 and Figures 11-

13 for intersection 3. 

 

Fig. 5. Time response of number of cars waiting in individual 

streams in intersection 1 

 

Fig. 6. Input signal S in intersection 1 is set to TRUE when 

value of function in graph is i 

 

Fig. 7. Time response of total number of cars waiting in 

streams of intersection 2 

 

Fig. 8. Time response of number of cars waiting in individual 

streams in intersection 2 
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Fig. 9. Input signal S in intersection 2 is set to TRUE when 

value of function in graph is i 

 

Fig. 10. Time response of total number of cars waiting in 

streams of intersection 2 

Fig. 11. Time response of number of cars waiting in 

individual streams in intersection 3 

Fig. 12. Input signal S in intersection 3 is set to TRUE when 

value of function in graph is i 

Fig. 13. Time response of total number of cars waiting in 

streams of intersection 3 

 

4. CONCLUSION 

The paper deals with the design of optimal model structure 

and innovative hybrid predictive control of typical hybrid 

dynamic real traffic systems. The main result of the paper is 

proposal of two interconnected intersections control based on 

hybrid predictive control. The main objective for traffic lights 

setting is the number of cars faced to red light. This is a “fair” 

approach because we let pass through cars which are in 

longest queue. 

To get information about other approaches to modelling and 

control of transport systems we refer reader to (Kvasnica, 

2009), (Saez, 2007), (Cortes, 2009), (Zhang, 2008) and 

(Huang, 2010). 

Advantage of this approach is that it computes with actual 

lengths of car queues so it is able to adapt to changes in 

amount of cars coming to intersection as it was shown. 
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Modelling and simulation obtained results proved that the 

proposed approach is suitable for real intersections.  
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Abstract: The paper presents a method for design of robust PI controllers for systems with
interval uncertainty. The method is based on plotting the stability boundary locus in the (kp, ki)-
plane and sixteen plant theorem. The stability boundaries obtained for interval plants split the
(kp, ki)-plane in stable and unstable regions. The parameters of robust PI controllers are chosen
from the stable region. The designed robust PI controller is used for control of a laboratory
chemical continuous stirred tank reactor (CSTR). The reactor is used for preparing of NaCl
solution with desired concentration. The conductivity of the solution is the controlled variable
and the volumetric flow rate of water is the control variable.

Keywords: robust control, PI controller, interval uncertainty, process control

1. INTRODUCTION

Chemical reactors are ones of the most important plants
in chemical industry, see e.g. Mikleš and Fikar (2007).
Their operation, however, is corrupted with various uncer-
tainties. Some of them arise from varying or not exactly
known parameters, as e.g. reaction rate constants, reaction
enthalpies or heat transfer coefficients. In other cases,
operating points of reactors vary or reactor dynamics is
affected by various changes of parameters of inlet streams.
All these uncertainties can cause poor performance or even
instability of closed-loop control systems. Application of
robust control approach can be one of ways for overcoming
all these problems, which may seriously influence control
design for chemical reactors and other chemical processes,
see e.g. Alvarez-Ramirez and Femat (1999), Gerhard et al.
(2004).

In this paper, a simple method for design of robust PI con-
trollers is presented (Tan and Kaya (2003)). The method
is based on plotting the stability boundary locus in the
(kp, ki)-plane and then parameters of a stabilizing PI con-
troller are determined from the stability region. The PI
controller stabilizes a controlled system with interval para-
metric uncertainties, when the stability region is found for
sufficient number of Kharitonov plants (Barmish (1994)).

The approach is used for design of a robust PI controller for
a laboratory continuous stirred tank reactor, which can be
modelled in the form of a transfer function with parametric
interval uncertainty. The reactor serves for preparing of the
NaCl solution with required concentration. Composition of
the solution is determined by measurement of the solution
conductivity and the conductivity is the controlled vari-
able. The volumetric flow rate of water which is used for
adulterating of NaCl solution, is the control variable.

2. DESCRIPTION OF THE LABORATORY CSTR

Multifunctional process control teaching system - The
Armfield PCT40 (Armfield (2005), Vojtešek et al. (2007))
is the system which enables to test a wide class of techno-
logical processes, as a tank, a heat exchanger, a continu-
ous stirred tank reactor and their combinations (Armfield
(2006a), Armfield (2006b)).

PCT40 unit consists of two process vessels, several pumps,
sensors and connection to the computer. Additional equip-
ments PCT41 and PCT42 represent a chemical reactor
with a stirrer and a cooling/heating coil.

Inlet streams of reactants can be injected into the reactor
via a normally closed solenoid valve or by a proportional
solenoid valve (PSV). The third possibility for feeding
water into the reactor is using one of two peristaltic pumps.
The technological parameters of the reactor are shown in
Table 1.

Table 1. Technological parameters of the reac-
tor

Parameter Value

Vessel diameter 0.153 m

Maximum vessel depth 0.108 m

Maximum operation volume 2 l

Minimum vessel depth 0.054 m

Minimum operation volume 1 l

The connection to the computer is realized via an I/O con-
nector, which is connected to the PCL card. The card
used is the MF624 multifunction I/O card from Humusoft.
This card has 8 inputs and 8 outputs. The whole system
provides 9 inputs and 17 outputs, hence two MF624 cards
were used. This connection enables use of Matlab Real-
time Toolbox and Simulink or data entry from the Matlab
command window.
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NaCl solution with the concentration 0.8555 mol/dm3 is
fed into the reactor by a peristatic pump. The performance
of the pump may be theoretically set in the range 0−100%.
But for the pump performance less than 30%, revolutions
of the rotor are very small and the produced force is
not high enough to transport the fluid from the barrel.
The volumetric flow rate of the NaCl solution for all
measurements was 0.00175 dm3/s, which represents the
pumpe performance 40%.

The water was dosed into the reactor by the PSV. Applica-
tion of the PSV allowed flow measurements by the adjoint
flowmeter. The PSV opening could be again done in the
range 0 − 100%, but the volumetric flow rate of water for
the PSV opening in the range 0 − 30% was negligible.

For control purposes, the laboratory continuous stirred
tank reactor is a SISO system. The control variable is
the volumetric flow rate of water (F ) and the controlled
variable is the conductivity of the NaCl solution (G) inside
the reactor. Used water was cold water from the standard
water distribution. The volume of the solution in the
reactor was kept constant with the value 1 dm3 during
all experiments.

3. PROCESS IDENTIFICATION

Identification of the controlled laboratory reactor was done
from measured step responses. The constant flow rate
0.00175 dm3/s of NaCl solution dosed into the reactor was
assured by the peristaltic pump with performance 40% in
all experiments. Fourteen various step changes of water
flow rate were realized between 0.0032 dm3/s - 0.01145
dm3/s which represented the PSV opening 50−100%. The
step responses were measured repeatedly. The resultant
transfer function of the laboratory reactor was identified
in the form of a transfer function (1) with the parametric
interval uncertainty. The software LDDIF (Čirka and Fikar
(2007)) was used for identification, which is based on
the least squares algorithm. The values of the uncertain
parameters are shown in Table 2.

G(s) =
b1s + b0

a2s2 + a1s + a0
(1)

Table 2. Uncertain parameters

Parameter Minimal Maximal
value value

b1 0.0028 0.0428

b0 -0.2776 -0.0156

a2 1 1

a1 0.6349 5.5024

a0 0.2084 3.1351

4. DESIGN OF A ROBUST PI CONTROLLER

A simple method based on plotting the stability boundary
locus in the (kp, ki)-plane and the sixteen plant theorem is
used for robust PI controller design, Tan and Kaya (2003),
Závacká et al. (2008), Barmish (1994). Parameters of a
stabilizing PI controller are determined from the stability
region of the (kp, ki)-plane. The PI controller stabilizes a
controlled system with interval parametric uncertainties,

when the stability region is found for sufficient number of
Kharitonov plants.

For the controlled system in the form of the trans-
fer function (1) with interval uncertainty (Table 2), the
Kharitonov polynomials Ni(s), i = 1, 2, 3, 4 for the nu-
merator and Dj(s), j = 1, 2, 3, 4 for the denominator can
be created, as it is seen in (2), (3).

N1(s) = b−
1 s + b−

0

N2(s) = b+
1 s + b+

0

N3(s) = b+
1 s + b−

0

N4(s) = b−
1 s + b+

0

(2)

D1(s) = a−
2 s2 + a−

1 s + a+
0

D2(s) = a+
2 s2 + a+

1 s + a−
0

D3(s) = a+
2 s2 + a−

1 s + a−
0

D4(s) = a−
2 s2 + a+

1 s + a+
0

(3)

where b−
k and b+

k , k = 0, 1 are lower and upper bounds of

the intervals of the numerator and a−
l and a+

l , l = 0, 1, 2,
are lower and upper bounds of intervals of the denominator
parameters. 16 Kharitonov systems (4) can be obtained
using polynomials (2), (3)

Gij(s) =
Ni(s)

Dj(s)
(4)

Substituting s = jω into (4) and decomposing the numera-
tor and the denominator polynomials of (4) into their even
and odd parts one obtains

Gij(jω) =
Nie(−ω2) + jωNio(−ω2)

Dje(−ω2) + jωDjo(−ω2)
(5)

The closed loop characteristic polynomial is as follows

∆(jω) = [kiNie(−ω2) − kpω
2Nio(−ω2)−

−ω2Djo(−ω2)] + j[kpωNie(−ω2)+
+kiωNio(−ω2) + ωDje(−ω2)]

(6)

Then, equating the real and imaginary parts of ∆(jω) to
zero, one obtains

kp(−ω2Nio(−ω2)) + ki(Nie(−ω2))
= ω2Djo(−ω2)

(7)

and

kp(Nie(−ω2)) + ki(Nio(−ω2))
= −Dje(−ω2)

(8)

After denoting

Fi(ω) = −ω2Nio(−ω2)
Gi(ω) = Nie(−ω2)
Hi(ω) = Nie(−ω2)
Ii(ω) = Nio(−ω2)
Jj(ω) = ω2Djo(−ω2)
Kj(ω) = −Dje(−ω2)

(9)

(7), (8) and (9) can be written as
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kpFi(ω) + kiGi(ω) = Jj(ω)
kpHi(ω) + kiIi(ω) = Kj(ω)

(10)

From these equations, parameters of the PI controller are
expressed in the form

kp =
Jj(ω)Ii(ω) − Kj(ω)Gi(ω)

Fi(ω)Ii(ω) − Gi(ω)Hi(ω)
(11)

and

ki =
Kj(ω)Fi(ω) − Jj(ω)Hi(ω)

Fi(ω)Ii(ω) − Gi(ω)Hi(ω)
(12)

Consider one of the systems (4), where i = 2 and j = 3

G23(s) =
0.0428s − 0.0156

s2 + 0.6349s + 0.2084
(13)

Then

kp =
a+
2 b+

0 ω2 − a−
0 b+

0 − a−
1 b+

1 ω2

(b+
1 )2ω2 + (b+

0 )2

ki =
a−
1 ω2 + kpb

+
1 ω2

b+
0

(14)

The stability boundary of the closed loop with the system
(13) in the (kp,ki)-plane for ω = [0, 0.6267] is plot in the
Figure 1. Then parameters kp and ki of the stabilizing
controller are chosen from the stable region.
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k
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k i

Stability region for G
23

Fig. 1. Stability region of parameters kp, ki for the system
G23

Stable regions for all 16 Kharitonov systems are obtained
alike. In the Figure 2 are shown stable regions for 16
Kharitonov systems (4). The controller which stabilizes all
16 Kharitonov systems has to be found in the intersection
of all stable regions (the intersection lies in the red
rectangle), which is in detail displayed in the Figure 3.

The parameters of the robust PI controller for control of
the laboratory reactor (15) were chosen from the stable
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Fig. 2. Stability regions for 16 Kharitonov plants
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Fig. 3. Detail of the stability region for 16 Kharitonov
plants

region of parameters kp, ki according to simulation results
obtained for various choices of the PI controllers.

C(s) =
kps + ki

s
=

−7s − 1.5

s
(15)

The designed PI controller was used for control of the
laboratory reactor. The controlled variable y(t) was the
conductivity G [mS] of the NaCl solution, the control
variable u(t) was the water flow rate F [dm3/s] and the
reference w(t) was the conductivity of the NaCl solution
which corresponded to the required concentration of the
NaCl solution.

Obtained experimental results are presented in the Fig-
ures 4 and 5. Robustness of the designed PI controller (15)
was tested by setting the reference value in a wider area.
Control responses of the reactor are shown in Figure 4 for
w ∈ [12; 32] mS and in the Figure 5 for w ∈ [18; 30] mS.
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Fig. 4. Control of the reactor with robust PI controller

5. CONCLUSION

The robust PI controller was designed for control of the
laboratory continuous stirred tank reactor. A simple ro-
bust synthesis was used which was based on plotting the
stability boundary locus in the (kp, ki)-plane and the six-
teen plant theorem. The robust PI controller was chosen
from the stable region of the (kp, ki)-plane. The designed
controller was tested experimentally by control of a lab-
oratory reactor. Obtained experimental results confirmed
that the designed robust PI controller successfully con-
trolled the laboratory reactor where controlled variable -
conductivity G [mS] of NaCl, was controlled by water flow
rate F [dm3/s]. The varying reference was always reached.
The control responses were without overshoots and fast
enough.
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Abstract: Neural network is one of many models used in power engineering process prediction.
In most cases, the accuracy of prediction models is critical in operational safety or is used to
support human irreversible decisions. We use neural network, when the real model of process is
unknown, or it is too di�cult to identify them in domain speci�c environment. Neural networks
training algorithms are di�erent. Typically, measured data are divided into 2 sets called train
and test set. On the train set, algorithms set neural network parameters so that network simulate
process on train interval. On the test set is network tested if it can generalize the process from
train set. We take a look on special genetic training and compare it with algorithm used today
to generalize the process.

Keywords: neural network genetic plant energetics

1. INTRODUCTION

Nuclear power plant performance is the result of complex
system composed of nuclear reactor, warm and cold wa-
ter, radioactive water, turbines and electricity generator.
Source of generated energy are graphite rods containing
uranium. Uranium is fuel for controlled nuclear reactions,
which results into non-linear amount of irradiated heat.
This heat is transfered through two system of warm water
to large generator turbines - �gure 11. Even though we
know the physical background of the nuclear chain reaction
and thermodynamic laws, we are not able to compute
physical model because of many (but measurable) external
impacts. Instead of assembling mathematical model of
physical laws a�ecting the outputs in nuclear power plant,
we are trying to create soft-computing methods to solve
the prediction problem. Performance modeling is critical
in 2 cases: security and economic. To prevent and avoid
critical situation, we can't generate more energy in reactor
than the water system can absorb. From economic reasons
we have to generate just enough energy, which is possible
to consume by customers.

Described process is nonlinear dynamic system, where
the current state strongly depends on previous situation
and outside conditions. It is possible to model dynamic
systems in many ways, but with neural networks we hold a
great tool - universal approximator. O�ine training (which
is speci�c for neural networks with supervisor) bring us
opportunity to research new algorithms without a�ecting
the real world. The only important point on generated
neuro-model is generalization quality - the ratio between
test and train prediction error. Classical algorithms use
during the training process prediction error as error signal
to calculate new network parameters. In this work, we are

going to describe and show special genetic algorithm for
training neural network, and compare them with standard
methods used nowadays in nuclear plants for training
neural networks.

Main area of the proposed paper is creation of e�ective
dynamic models for prediction of possible critical situ-
ations. Created system can be used in supervisor mode
for supporting decision processes by human professionals.
Measured data were obtained from collecting the real sys-
tem values in nuclear plant.

Neural network models used nowadays in nuclear power
plants are described in APVV project documentation for
VVER 400 reactor. They are trained with iterative -
newton methods provided by toolbox NNSYSID because
of low prediction error in real usage.

There are many publications about neural networks, but
for purposes of this paper we are using only NNSYSID
toobox, which is fully described at NNSYSID homepage.

2. PROBLEM FORMULATION

Because of previously used models of neural network im-
plementations in nuclear plant 1 we are going to train
recurrent network - multilayered percepton in toolbox
NNSYSID. This architecture of recurrent connections al-
lows connect previous outputs only at input layer of neu-
rons, not hidden layers of network in input vector, as
shown in �gure 1

As an activation function we are using hyperbolic tangent
sigmoid:
1 Project APVV - Application of arti�cial intelligent methods in
modeling and control of critical processes in power industry.
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Fig. 1. Neural network architecture, x - input, y - output,
t - time sample

y = f(x) = tanh

(
n∑

i=1

wixi − wi+1θ

)
(1)

where:
x is input vector
N is number of connections to given neuron
wi is weight, which a�ects input signal
θ is threshold
wi+1 is weight for threshold

It is possible to use another activation function, for exam-
ple:

y =
1

1 + e−x
(2)

where:
e is Euler's number

Because of the gradients of those functions are similar, it is
not necessary to determine which function is better. Only
the interval used to initialize network with random weights
correlate with this gradient.

The whole network activity is computed by connected lay-
ers of neurons into one intelligent object and the resulting
signal is computed by (for MISO neuro model):

x = x1, ..., xNy1, ..., yN−1 (3)

y(t) = fact

(
i=L∑

i=1

woutfact

(
i=K∑

i=1

wihidx

))
(4)

where:
x1...xN are input values with delay
y1...yN−1 are previous network outputs
fact is activation sigmoid function
wout is vector of output layer weights
whid is matrix of hidden neurons weights

For simulating a dynamic system, we are searching for
speci�c hidden and output layer weights combination.
The solution can be interpolated into n-dimensional space
(where n is number of weights in network). Than we can
simply represent the solution or state of network with one
point:

y(t) = F (Ww1hid
, ...,WwKhidWw1out

, ...,WwLhid) (5)

where:
F () is transfer function to y(t) from n-dimensional space
W is vector of all weights in network

To specify the su�cient condition for evaluating a quality
of prediction we use prediction error and average predic-
tion error for one sample:

ε =

N∑

i=1

1

2
(F (x)−G(x))2 (6)

εavg =

∑N
i=1

1
2 (F (x)−G(x))2

N
(7)

where:
ε is general error
εavg is average error for 1 sample
N is number of samples used in test set
F (x) is computed output of simulated system
G(x) is real output of the system

Di�erent training algorithms comparison should be done
trough monitoring the neural network state in n-dimensional
space after each iteration (if the algorithm is iterative-
based, but most are). Next preference of algorithm is one
step Hamming distance between the iterations. Stochastic
model evaluating the next-step position in n-dimensional
state is useful for measurement the probability of Ham-
ming distance:

x(t+ 1)p1...pN ∈ sph(x(t)p1...pN ; δ) (8)

δ = ∆maxp
2
1; ...; ∆maxp

2
N (9)

where:
sph(x, y) is n-dimensional spheroid function
x(t)p1...pN are neural network state coordinates
δ is vector of n-dimensional spheroid dimensions
x(t+ 1)p1...pN is possible state in next iteration
∆maxp is maximum possible change in current weight

Main idea - nuclear plant performance prediction, should
be computed from reactivity, neutron �ux (in nuclear
reactor) and warm and cold balance valves temperatures 2 .
Progress examples of these variables are displayed at
�gures 2, 3, 4, 5. The output of system (which is also the
expected output of our model) - performance is displayed
at �gure 6.

As seen on �gures (and also all industry data) data are
recorded with some noise (additive white noise, 1/f pink
noise, gray noise 3 ). To avoid network from learning useless
noise, it is necessary to �lter all input signals before
putting it to neural network inputs. The mostly used
�ltration methods to smooth a noise are: moving average
and Savitzky-Golay �lter. One good example of moving
average is exponential moving average:

EMAN =

∑N
i=N−n wα

N−im(i)
∑N
i=N−n wα

N−i
(10)

2 Same, as were trained models in project APVV
3 In this case we have a white noise on our data
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Fig. 2. Time response of reactivity

Fig. 3. Time response of neuron �ux

where:
N is index of measurment
w is weight of previous measurment
α is decreasing coe�cient of previous weights
m is vector of measured values
Savitzky-Golay �lter is able to represent local extremes on
noisy data.

3. CASE STUDY: MODEL IMPLEMENTATION

The goal is to explore new methods in neural network
training, reduce known disadvantages of currently used
learning algorithms. When we use Newton optimization
methods, training process strongly depends on Gradients,
Hessians, local extremes, process characteristic. These
properties have major impact on train / test set prediction
error ratio. Genetic optimizations are di�erent. The main
di�erence is, that the steps between iterations are the
same 4 and the error signal doesn't a�ect the weights
directly, but networks with bad results are replaced with
4 not strictly, but comparing to newton optimization methods

Fig. 4. Time response of cold valve temperature

Fig. 5. Time response of warm valve temperature

better ones. Before solving an optimization problem with
genetic (evolutionary) algorithm is necessary to create
transfer function from problem state to gene. After a
transfer function is created, we have to specify a �tness
function. Fitness function is used to evaluation given gene.
After that, the optimization begins with M 5 randomly
initialized genes. These genes are evaluated with �tness
function, and sorted from the best to worst. After sort,
we take some better genes for the application of genetic
methods - crossover, mutation 6 . This process is repeated
in iterations while we found acceptable solution.

In neural networks, genes should be simple all the weights,
which represent the state. So the transfer function is simple
- matrix form hidden and output layers weights. Fitness
function should be prediction error on train data.

5 Typically M is between 20 - 40
6 These are the most used in evolutionary programming, typically
each genetic optimization problem need separate analysis of appro-
priate methods
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Fig. 6. Time response of performance

For better understanding both approaches, lets assume
that the acceptable neuro-model solution is situated in n-
dimensional space in hypercube with dimensions [−1w1

...−
1wN ; 1w1 ...1wN ], or simply all the weights are from interval
< −1, 1 > 7 . In Newton optimization methods are
the next-step Hamming distance of weights smaller and
strongly depends on error signal, so the state where can
next state occur in n-dimensional space is very irregular
and small spheroid 8 . Otherwise, in genetic algorithm
we use mutation - random change in random weights in
some genes, so the next state, where can network occur is
situated into sphere, not spheroid, and this sphere covers
the whole hypercube of possible solutions 9 .

Before training, we must specify how much neurons should
network have, and how much earlier measured data is
necessary to put on network input. Experimentally we set
40 as number of hidden layer neurons, 3 past inputs and
previous outputs on input.

First, let's look at neural network trained with Newton
optimization method - Levenberg-Marquadt. This method
is implemented in toolbox NNSYSID used with Matlab
environment. We took some 35 minute data as a train set
10 and we started the training process. The result is shown
at �gure 7.

After that, we test the model on some randomly selected
data (more than 5 hours). The result on test set is shown
at �gure 8

In genetic training, �rst we have to specify crossover func-
tion and mutation functions(s). For crossover we choose
this function:

Gnew = MGrand1 + inv(m)Grand2 (11)

7 It's not necessary to think about bigger interval, because of fast
convergence of used sigmoid functions
8 Something like "irregular spheroid" doesn't exist, but the radiuses
of every dimensions are di�erent - also depends on error signal
9 The probability of next state in sphere is smaller with his increas-
ing radius, but always possible
10Where were performance decreasing and increasing

(a) Time response of prediction error

(b) Prediction (red) and reality (blue)

(c) Prediction error histogram

Fig. 7. Levenberg-Marquadt method, train set
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(a) Time response of prediction error

(b) Prediction (red) and reality (blue)

(c) Prediction error histogram

Fig. 8. Levenberg-Marquadt method, test set

where:
Gnew new gene matrix, which represent neural network
state
Grand1 , Grand2 are two randomly chosen genes
M is randomly generated binary matrix
inv is inverse function

And for mutation, we choose 2 mutation: classic and
output layer moving mutation:

Gnew = Mrand(−1, 1)Grand (12)

where:
Gnew is new gene matrix
Grand are randomly chosen gene from population
M is randomly generated binary matrix
rand is random function

Gnew = rand(−1, 1)hid(Grand) (13)

where:
Gnew is new gene matrix
Grand are randomly chosen gene from population
rand() is random function
hid() is function for extracting only hidden layer weights

Our algorithm creates 40 randomly generated genes and
sorts it in every iteration, after application of genetic meth-
ods shown above. We stop the algorithm after 1370000
iterations and it takes more than 8 days to run. To bet-
ter comparison, we let the train and test set the same
as in Levenberg-Marquadt method. The result of genetic
method is shown at �gure 9 (genetic training) and 10 (test
set). Comparison of prediction errors between genetic and
Levenberg-Marquadt method is shown at table 1.

Although that the prediction error with genetic training
is greater, the important thing is, that the ratio between
train/test set error is smaller. From this point of view we
can declare, that genetic algorithm has better ability to
learn process characteristic from train set and it is valuable
alternative to another training methods.

This genetic algorithm was implemented in Matlab en-
vironment, integrated with NNSYSID toolbox using the
same data structures describing the neural network state
as have been chosen by NNSYSID toolbox authors. Al-
gorithm has constant memory requirements, uses all CPU
resources and was tested in Matlab 2010. Both approaches
were tested with NNSYSID function NNVALID.

Table 1. Levenberg-Marquadt and genetic
training method comparison

Genetic alg. LM alg.

Prediction error (Train) 3.0420× 10−6 3.0521× 10−7

Prediction error (Test) 1.5191× 10−5 3.2994× 10−6

Prediction error ratio 5 10

Runtime 8 days approx. 15 min.
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(a) Time response of prediction error

(b) Prediction (red) and reality (blue)

(c) Prediction error histogram

Fig. 9. Genetic method, train set

(a) Time response of prediction error

(b) Prediction (red) and reality (blue)

(c) Prediction error histogram

Fig. 10. Genetic method, test set
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4. CONCLUSION

In this paper, we provide comparison of real imple-
mented soft-computing genetic algorithm for neural net-
work training with often used Levenbeg-Marquadt op-
timization method. With these methods were 2 neural
networks trained with real data, on same test and train in-
tervals. The result is, that genetic neural network training
is acceptable alternative to other training methods with
respect on better overlearning resistance. Modeled system
provide prediction of nuclear plant power performance,
and the prediction error were calculated from real data.

Solution should help with prediction of critical situations
in nuclear engineers decisions processes with supporting
and precalculating the state of nuclear reactor and other
power systems. Main advatage of using neural networks in
proces prediction is, that there is no need to strictly de�ne
process identi�cation parameters of models (the model
shall be also very good after adding more neurons and
neuro-connections) unlike in many other system identi�-
cation techniques.
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Fig. 11. Nuclear plant scheme - reactor VVER 440 Scheme
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Abstract: Modern wind turbines operate in a wide range of wind speeds. Power contained
in the wind is proportional to the third power of wind speed and therefore increases rapidly
with increase of wind speed. To enable wind turbine operation in such a variety of operating
conditions, sophisticated control and estimation algorithms are needed. In this paper, a method
for wind turbine state and parameter estimation is proposed. The described estimation is
experimentally tested on laboratory wind turbine.

Keywords: Wind turbine, state estimation, parameter estimation, dual Kalman filter.

1. INTRODUCTION

Modern wind turbines operate in a wide range of wind
speeds, typically from 3 m/s to 25 m/s. Power contained
in wind is proportional to the third power of wind speed
and therefore increases rapidly with increased wind speed,
Burton et al. (2001). To enable wind turbine operation
in such a variety of operating conditions, a sophisticated
control system is needed. During weak winds, the control
system has to optimise wind energy conversion by using
appropriate generator torque. On the other hand, during
strong winds, wind turbine power has to be constrained.
An efficient way to constrain wind energy capture is
pitching the rotor blades around their longitudinal axis,
i.e. pitch control.

To employ more complex control algorithms, state estima-
tion is often needed, Simon (2006). Due to wind turbine
high nonlinearity and parameters uncertainty, it is not pos-
sible to use a linear model for control design and state esti-
mation in the whole operating region. Therefore, Kalman
filter for state and parameter estimation is proposed in
this paper. The estimation is experimentally verified in
Laboratory for Renewable Energy Sources (LARES) on
Faculty of Electrical Engineering and Computing, Univer-
sity of Zagreb. Brief description of LARES can be found
in Section 2. In Section 3, mathematical model of the wind
turbine is given. State and parameter estimation method
based on Kalman filter theory is presented in Section 4.
Wind speed estimation is described in Section 5. Finally,
in Section 6, experimental results are shown with brief
conclusion.

2. DESCRIPTION OF THE LABORATORY

Laboratory for Renewable Energy Sources is located at
the Faculty of Electrical Engineering and Computing,
University of Zagreb. The research in the laboratory is
focused on three areas: (i) wind energy, (ii) solar energy
and (iii) energy storage using hydrogen fuel cell stack

with metal hydride storage. Besides the research of each
area independently, their connection into a micro grid is
also being investigated, see Perić et al. (2010) for more
details. The principle scheme of the laboratory is shown in
Figure 1.
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Fig. 1. Principle scheme of the Laboratory for Renewable
Energy Sources, Perić et al. (2010).

The laboratory’s wind turbine set-up consists of scaled
wind turbine placed in air chamber with wind blower for
generating wind, as shown in Figure 2.

The laboratory wind turbine is specially constructed so
all aerodynamic relations present at MW-scale wind tur-
bines are preserved. Furthermore, construction of labora-
tory wind turbine tower enables oscillatory fore-aft tower
motion. To be able to use the same control strategies as
on MW-scale wind turbine, the laboratory wind turbine
is equipped with: (i) three servo drives that enable indi-
vidual pitch control and (ii) synchronous generator with
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Fig. 2. The laboratory wind turbine set-up.

frequency converter for torque control. Control algorithms
are implemented on PC using LabVIEW (Laboratory Vir-
tual Instrumentation Engineering Workbench) platform,
Johnson and Jennings (2006). Measurements of the system
variables and control signal generation are obtained by a
specialized input-output PXI and cRIO circuits, as shown
in Figure 3.

PXI – 1033 Chasis:

• 6704 (Analog Output)
• 6284 (M Series Multifunction

DAQ)
• 6514 (Industrial Digital I/O)
• 2586 (10 SPST Power Relay

Module)

LabVIEW

Blower speed ± 10 V

WLAN

cRIO 9014:
(fitted in wind turbine rotor)

• 9219 (Universal Analog Input Module)
• S.E.A. WLAN Module

Generator torque ± 10 V

Blade pitching - PWM

Wind turbine speed ± 10 V

Wind speed ± 10 V

Pitch angle 0÷5 kΩ

GENERATOR

BLOWER

AIR CHAMBER

Fig. 3. The basic wind turbine control scheme.

3. WIND TURBINE MATHEMATICAL MODEL

Very common method used for wind turbine modelling is
blade element and momentum theory which yields reliable
and detailed wind turbine model (Burton et al. (2001)).
However, such models describe wind turbine behaviour
with implicit equations which are not suitable for con-
troller design. Therefore, a simpler model that uses quasi
steady state relations for aerodynamic phenomena is pre-
ferred. Such model can easily be used for control and
estimator design, but it is still detailed enough to offer
necessary insight into physics of the wind turbine.

The motion of the rotor can be described with equation:

Jtω̇ = Ma − Mg, (1)

where ω is rotor speed, Mg is generator electromagnetic
torque, Ma is aerodynamic torque and Jt is turbine mo-

ment of inertia. The aerodynamic torque can be computed
as:

Ma =
π

2
ρaR3

b v̄
2
wCQ(v̄w, ω, β), (2)

where v̄w is effective wind speed on wind turbine rotor, Rb

is blade length, and ρa is air density and CQ is torque
coefficient. Torque coefficient CQ describes the steady
state dependence of aerodynamic torque on wind speed,
rotor speed and pitch angle β, Hau (2006).

It should be noted that wind is not uniform and its speed
varies over the rotor area. Therefore effective wind speed
v̄w used in this model is not wind speed in any particular
point on rotor area. The effective wind speed v̄w is defined
as wind speed of uniform wind that would have the same
effect on wind turbine as real nonuniform wind. For most
applications, information about effective wind speed is
more useful than information about wind speed on any
particular point on rotor area, cf. van der Hooft and van
Engelen (2003).

Important parts of wind turbine dynamics are tower os-
cillations. Namely, wind turbine structure is very flexible
due to great dimensions of its components and need for
their moderate mass. In this paper, only tower flexibility is
considered, while blades are assumed to be completely stiff.
This assumption is valid for most MW-scale wind turbines
that are in use at the present time and for the laboratory
wind turbine described in Section 2. However, for larger
turbines, (5 MW and more) we should probably take into
account flexing of the blades as well. The first harmonic in
tower oscillations is the most dominant, so tower dynamics
can be approximated by (van Engelen et al. (2007)):

Mẍt + Dẋt + Cxt = Ft, (3)

where xt is the tower top deflection and M , D and C are
the modal mass, damping and stiffness, respectively. The
aerodynamic thrust force is defined similarly to aerody-
namic torque:

Ft =
π

2
ρaR2

b v̄
2
wCT (v̄w, ω, β), (4)

where thrust coefficient CT describes the steady state
dependence of aerodynamic thrust force on wind speed,
rotor speed and pitch angle, Hau (2006).

Due to tower motion, wind turbine rotor is not influenced
by absolute wind speed vw, but by apparent wind speed
that is derived from absolute wind speed and tower top
speed:

v̄w = vw − ẋt. (5)

Tower oscillations are small in magnitude compared to
wind speed, but they significantly contribute to wind tur-
bine behaviour and pose main limitation to wind turbine
pitch control (Jelavić and Perić (2009)).

For parameter estimation, it is more convenient to have
a linear discrete-time state space model of the system. To
this end we introduce state vector x ∈ R3 and input vector
u ∈ R3 as follows:

x =

[
ω
xt

ẋt

]
, u =

[
vw

β
Mg

]
. (6)
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The nonlinear mathematical model (1) – (5) can now be
linearised around an operating point (O.P. ≡ (x0, u0)) and
written in the state space form:

ẋ = Ax + Bu, (7)

with matrices A ∈ R3×3 and B ∈ R3×3 as follows:

A =




Mω

Jt
0 −Mv

Jt

0 0 1

Fω

M
− C

M
−Fv + D

M




, (8)

B =




Mv

Jt

Mβ

Jt
− 1

Jt

0 0 0

Fv

M

Fβ

M
0




, (9)

The coefficients Mω, Fω , Mv, Fv, Mβ and Fβ , introduced
in (8) and (9), are partial derivatives of aerodynamic
torque and thrust force around operating point:

Mω =
∂Ma

∂ω

∣∣∣∣
O.P.

, Fω =
∂Ft

∂ω

∣∣∣∣
O.P.

,

Mv =
∂Ma

∂vw

∣∣∣∣
O.P.

, Fv =
∂Ft

∂vw

∣∣∣∣
O.P.

,

Mβ =
∂Ma

∂β

∣∣∣∣
O.P.

, Fβ =
∂Ft

∂β

∣∣∣∣
O.P.

.

(10)

Partial derivatives (10) and other wind turbine parameters
used in this section can be obtained from professional wind
turbine simulation tools, e.g., GH Bladed Bossanyi (2009).

Finally, a discrete time model of the wind turbine in the
form:

x(k + 1) = Φx(k) + Γu(k), (11)

can be obtained from the continuous-time model (7)–(10)
with the following approximation (Franklin et al. (1997)):

Φ = eAT ≈ I + AT, (12)

Γ =

∫ T

0

eAτBdτ ≈ BT, (13)

where T is the sampling time.

4. STATE AND PARAMETER ESTIMATION

As shown in Section 3, wind turbine is a highly nonlinear
system. For this reason we have chosen the extended
Kalman filter (EKF) as an algorithm for the state and
parameter estimation, cf. Simon (2006).

In general, the discrete-time EKF considers the nonlinear
system in the state space form:

xk = fk−1(xk−1, uk−1, wk−1),
yk = hk(xk, vk),

(14)

where xk ∈ Rn is the state vector, uk ∈ Rm is the input
vector, yk ∈ Rp is the output (measurement) vector, wk

is the process noise, and vk is the measurement noise

at time step k. The process and measurement noise are
assumed to be zero-mean stochastic variables with normal
distribution, i.e.,

wk ∼ (0, Qk),
vk ∼ (0, Rk),

(15)

where Qk and Rk are corresponding covariances.

The basic idea of the extended Kalman filter is to linearise
(i.e., compute the first order Taylor approximation of) the
nonlinear system (14) around the Kalman filter estimate
of the states. At the same time the Kalman filter estimate
of the states is based on the obtained linearised system.

Kalman filter is a recursive estimator that can be decom-
posed into two phases: prediction and correction, which
are performed at every time instant k. In the prediction
phase a priori estimation of the state (x̂−

k ) is obtained
from the system model (14) as if there was no process
noise. In the correction phase an improved state estimate
is found (x̂+

k ) by utilizing the actual measurements. This
update is achieved via the so-called Kalman gain matrix,
Kk. The quality of the estimation is captured in the error
covariance matrix Pk, which is also updated in two phases,
i.e., we have a priori value P−

k and a posteriori value P+
k .

In the following we give brief summary of the computa-
tional steps for discrete-time extended Kalman filter, see
Simon (2006) for more details:

(1) Initialize the filter

x̂+
0 = E(x0),

P+
0 = E

[
(x0 − x̂+

0 ) · (x0 − x̂+
0 )T

]
,

k = 1.

(16)

(2) Prediction phase: compute the time update of the
state estimate and estimation-error covariance

x̂−
k = fk−1(x̂

+
k−1, uk−1, 0),

P−
k = Fk−1P

+
k−1F

T
k−1 + Lk−1Qk−1L

T
k−1,

(17)

where

Fk−1 :=
∂fk−1

∂x

∣∣∣∣
(x̂+

k−1
,uk−1,0)

Lk−1 :=
∂fk−1

∂w

∣∣∣∣
(x̂+

k−1
,uk−1,0)

(18)

(3) Correction phase: compute the measurement update
of the state estimate and estimation-error covariance

Kk = P−
k HT

k

(
HkP−

k HT
k + MkRkMT

k

)−1
,

x̂+
k = x̂−

k + Kk

[
yk − hk(x̂−

k , 0)
]
,

P+
k = (I − KkHk)P−

k ,

(19)

where

Hk :=
∂hk

∂x

∣∣∣∣
(x̂−

k
,0)

Mk :=
∂hk

∂v

∣∣∣∣
(x̂−

k
,0)

(20)

(4) Increase k and go to step 2.

The estimation process is illustrated in Figure 4.

As already mentioned, besides estimation of the signals,
the extended Kalman filter can be used for parameter
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x̂−
k−1

P−
k−1

x̂+
k−1

P+
k−1

x̂−
k

P−
k

x̂+
k

P+
k

k − 1 k

yk−1 yk

uk−1

time

Fig. 4. Kalman filter estimation process.

estimation as well, cf. Wan and Nelson (2001). Basic idea
is to define state vector with parameter values and perform
estimation procedure.

In control systems one usually assumes that the parameter
changes are slow, i.e., that one can write:

pk+1 = pk + δk, (21)

where pk is the parameter vector and δk is the parameter
uncertainty at discrete time step k. The parameter uncer-
tainty δk is defined as a stochastic variable with a zero
mean value and standard deviation Qδ.

In case of a wind turbine, the parameter changes cannot
be observed as in (21), because parameter values depend
on wind speed. So, mathematical model, given in (12) and
(13) is used to obtain expected parameter values. In this
paper, both of these approaches are used in order to obtain
a priori estimation as it is proposed in following equation:

p−
k = α · p+

k−1 + (1 − α) · p̃k, (22)

where p−
k is a priori parameter estimation at discrete

time step k, p+
k−1 is a posteriori parameter estimation at

discrete time step (k − 1), p̃k is expected parameter value
based on mathematical model and α is tuning coefficient.

It must be noted that a posteriori estimation is calculated
using Kalman gain matrix as in case of state estimation.

Wind turbine is a highly nonlinear system whose dynamics
strongly depend on wind speed, so its parameters are
changing in time. The goal of this paper is to estimate
the changing parameters and use obtained estimates to
improve estimation of the system states. To this end
we employ extended Kalman filter, which is suitable for
parallel estimation of the system states and parameters,
see Wan and Nelson (2001) for more details.

To carry out the dual task of state and parameter esti-
mation it is necessary to enable synchronous operation
of two Kalman filters as it is shown in Figure 5. This is
achieved using the state estimator and available measure-
ments, which will converge towards the correct estimation
values. Furthermore, these values will be used as an input
data to parameter estimator. Finally, calculated values are
returned in the first estimator using feedback. In this way,
one gets two estimators, which interact with each other,
and thus provide two types of data from the process, state
and parameters values. These data are usually hard or
even impossible to measure. It is necessary to point out
that possible estimation problems are expected because of
limited number of signals that are actually measurable.

Note that, in general, the algorithm is able to calculate
all parameters and state values. However, the obtained

STATE

PREDICTION

STATE

CORRECTION

q
-1

PARAMETER

PREDICTION

PARAMETER 

CORRECTION

q
-1

x k-1
^ + ^ -

x k x k
^ +

measurement yk

^ +
p k-1 p k

^ - ^ +
p k

Fig. 5. Dual Kalman filter scheme.

solution may not be accurate, because estimated values
may be only one of possibly many solutions that satisfy
system dynamics and initial conditions. So, there are
limitations to the number of signals which can be reliably
estimated.

5. WIND SPEED ESTIMATION

As it can be seen in (6), wind speed is one of process
inputs and it can be shown that it contributes significantly
to wind turbine behaviour. Although it would be possible
to use the wind speed measurement in the Laboratory,
such information about wind speed on the rotor is typi-
cally not available on a MW-scale wind turbines. Namely,
anemometers are placed on wind turbine nacelle, so wind
speed measurement has a significant time lag. Also, wind
measured by the anemometer on a MW-scale turbine is
deformed due to passing through the wind turbine rotor.
Therefore, wind speed estimation is used in this paper
instead of the real wind speed measurement.

Furthermore, in Section 4, it is mentioned that there may
be a limit on a number of states and parameters one
could estimate sufficiently well depending on the number of
measured outputs. Therefore, instead of augmenting EKF
from Section 4 to estimate wind speed, another approach
is used. As it is shown by van der Hooft and van Engelen
(2003), the effective wind speed can be estimated from (1)
that describes the wind turbine rotor motion. By using
expression for aerodynamic torque (2), one can readily
form the following nonlinear function:

fw(v̂w) =
π

2
ρaR3

b v̂wCQ(v̂w , ω, β) − Mg − Jtω̇. (23)

Pitch angle β and electromagnetic torque Mg can be
easily measured, while rotor speed ω can be obtained
from Kalman filter described in Section 4. The torque
coefficient CQ is based on the aerodynamic characteristics
of the turbine, and can be calculated using professional
simulation tools, e.g. GH Bladed, Bossanyi (2009). Clearly,
when the estimated wind speed v̂w is equal to the effective
wind speed on the wind turbine rotor v̄w then the function
(23) has a zero value. Therefore, the wind speed estimation
can be done by numerically solving the nonlinear equation:

fw (v̂w) = 0. (24)
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Fig. 6. Comparison between wind speed estimation and wind speed measurement.

Figure 6 shows comparison between wind speed estimation
and measurement.

6. EXPERIMENTAL RESULTS

The state and parameter estimation method described
in Section 4 was experimentally tested in Laboratory
for Renewable Energy Sources (LARES) at the Faculty
of Electrical Engineering and Computing, University of
Zagreb. The wind turbine in question has the following
parameters:

Jt = 4 Nms2,
M = 2.321 · 104 Ns2/m,
D = 4.672 · 103 Ns/m,
C = 8.468 · 105 N/m.

In the Laboratory setup the control system comprises
two separated control loops. First controller is used below
rated wind speed to set up the moment reference. The
second controller is used above rated wind speed to obtain
pitching of the rotor blades around their longitudinal
axis in order to constrain the capturing of wind energy.
The goal of the experiment was to verify the state and
parameter estimation based on the Kalman filter theory.

Two series of experiments were made. In the first set
of experiments the state and parameter estimation is
performed below rated wind speed. In that case the blade
pitch angle is constant and the moment controller is active.
In the second set of experiments, during strong winds
above rated wind speed, generator torque is on its rated
value and pitch controller is active.

Estimated wind speed and rotor speed in the experiment
below rated wind speed are shown in Figure 7 and Figure 8,
respectively. Initial values of parameters in (10) are

Mω = −0.082663 Nms/rad,
Fω = −19.774 Ns/rad,
Mv = 1.26908 Ns,
Fv = 5.06419 Ns/m,
Mβ = 0.048625 Nm/rad,
Fβ = −19.774 N/rad,

and initial continuous-time model (7) with

A =




−0.0207 0 −0.3173
0 0 1

−8.55 · 10−4 −36.627 −0.2023


 ,

B =




0.3173 0.012156 −0.25
0 0 0

2.19 · 10−4 −6.364 · 10−4 0


 ,

is discretized with the sampling time of 20 ms to get a
discrete-time model (11).
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Fig. 7. Wind speed estimation below rated wind speed.

Representative results in experiments above rated wind
speed are reported in Figure 9 (estimated wind speed) and
Figure 10 (estimated rotor speed).

Estimation results show that the measurement noise is
suppressed and estimation error is negligible in both cases
– both below and above rated wind speed.

For illustration, in Figure 11 we report one representative
sample of the parameter estimation results: estimation of
parameter Γ1,1. The blue line represents the expected value
of Γ1,1 based on the mathematical model (13). A posteriori
estimation using the extended Kalman filter is plotted with
a red line.
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7. CONCLUSION

In this paper, wind turbine state and parameter estimation
based on a dual Kalman filter theory is implemented and
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Fig. 11. Parameter estimation below rated wind speed,
parameter Γ1,1.

experimentally tested in Laboratory for Renewable Energy
Sources. A modification of the parameter estimation is
used to improve a priori estimation of the state vector.

We report results for wind speed estimation and rotor
speed estimation. Experiment is performed in two different
operating modes, below and above rated wind speed. It
is shown that the rotor speed can be estimated with a
high quality in both cases. It is also possible to implement
this estimation method for other states, e.g. tower top
deflection.
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Abstract: This paper describes a H∞ controller design procedure for tensor product based
model of gantry crane augumented with friction model in order to minimize friction effects. The
Tensor Product (TP) model transformation is a recently proposed technique for transforming
given Linear Parameter Varying (LPV) state-space models into polytopic model form, namely,
to parameter varying convex combination of Linear Time Invariant (LTI) systems. H∞ controller
guarantee stability and L2 norm bound constraint on disturbance attenuation. H∞ controller
is found using relaxed LMIs which have proof of asymptotic convergence to the global optimal
controller under quadratic stability. Control algorithm is experimentally tested on single
pendulum gantry (SPG).

Keywords: Parallel Distributed Compensation, Linear Matrix Inequalities, Tensor Product
(TP) model transformation, gantry crane control, friction compensation.

1. INTRODUCTION

In modern industrial system, gantry cranes are widely used
for the heavy loads transfer. Fast load positioning and
load swinging minimization are conflicting requirements
imposed to the traveling crane control systems.

For the position and anti-sway control of travelling cranes,
there are several solutions, i.e., by fuzzy control, optimal
control, pole placement, etc. and each of them is reported
to be effective (Popadić et al., 2005), (Nalley and Trabia,
2000), (Omar, 2003). All these approaches are based on
linear/linearized model of gantry crane.

Recently, nonlinear control approach based on tensor prod-
uct model representation (TP) of the process is proposed
(Baranyi et al., 2003), (Petres, 2006) and successfully
applied to control of Single Pendulum Gantry process
(Kolonić et al., 2006). The TP model represents the Lin-
ear Parameter Varying (LPV) state-space models by the
parameter varying combination of Linear Time Invariant
(LTI) models.

However, none of these approaches takes into account
friction effect, which is unavoidable in real applications
(Olsson et al., 1998). This effect may seriously degrade
the performance of the control system, specially when
high precision positioning is required. As a consequence
steady state error due to static friction is common for all
these approaches. Introducing integral action in control
loop, to eliminate steady state error due to friction effects,
may result in limit cycling called hunting phenomenon, see
Hensen et al. (2003).

One way to cope with friction phenomena is to introduce
friction compensator based on friction model. The friction
model may be a-priory known or learned in an on-line
manner (Lee and Tomizuka, 1996), (Huang et al., 2000),
(Matuško et al., 2010), (Boras et al., 2010).

Another approach consider the friction effect as an un-
known disturbance and design the robust controller. In
Cheang and Chen (2000), Burul et al. (2010), H∞ con-
troller for linearised model is synthesized using loop-
shaping methodology, and experimentally proved effective.

In this paper a combination of these two approaches is
used. It is assumed that friction model is partially known,
and nominal model is identified, while its associated uncer-
tainty is considered as a disturbance. In order to cope with
nonlinear nature of the gantry crane model, as well as fric-
tion model, non-linear model of gantry crane augmented
with nominal friction model is rewritten in LPV form,
suitable for TP transformation. As a result of TP model
transformation, polytopic model of process is obtained. For
such model representation, LMI control approach is used
to design a controller (Tanaka and Wang, 2001), (Boyd
et al., 1994), (Gahinet et al., 2002). In this paper such
approach is used to synthesize H∞ controller.

The paper is organized as follows: Section II discusses the
theoretical background of TP model transformation-based
control design. Section III introduces the LPV model aug-
mented with friction and its TP transformation. Section
IV discuses the LMI relaxations used in controller design.
Section V presents the experimental results obtained on
the single pendulum gantry (SPG) experimental model,
and Section VI concludes this paper.
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2. TENSOR PRODUCT MODEL
TRANSFORMATION-BASED CONTROL DESIGN

METHODOLOGY

Consider the linear parameter-varying state-space model

(
ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
(1)

with input u(t) ∈ Rk, output y(t) ∈ Rl and state vector
x(t) ∈ Rm. The system matrix

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ R(m+k)×(m+l) (2)

is a parameter-varying object, where p(t) ∈ Ω is time
varying parameter vector, where Ω is a closed hypercube
in RN , Ω = [a1, b1] × [a2, b2] × . . . × [aN , bN ]. Parameter
p(t) can also include the elements of the state vector x(t),
therefore LPV system given in Eq. (1) is considered in the
class of non-linear dynamic state space models.

The main idea of TP model transformation is to discretize
the given LPV model given in Eq. (1) over hyper rectan-
gular grid M in Ω, then via executing Higher Order Sin-
gular Value Decomposition, the tensor product structure
of given model is obtained. By ignoring singular values,
TP model of reduced complexity and accuracy can be
obtained. For more details se Petres (2006) and Tikk et al.
(2004).

Tensor product structure can be written as follows

S(p(t)) = S
N
�
n=1

wn(pn)

=

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

in=1

N∏

n=1

wn,in(pn)Si1,i2··· ,iN ,
(3)

where S ∈ RI1×I2×···IN×(m+k)×(m+l) denotes obtained
tensor, In denotes number of LTI systems in n-th dimen-
sion Ω, � denotes multiple n-mode product of a tensor by
a matrix, wn is row vector containing wn,in(pn) ∈ [0, 1]
which is corresponding one variable weighting function
defined on the n-th dimension of Ω and

Si1,i2···iN =

(
Ai1,i2···iN Bi1,i2···iN
Ci1,i2···iN Di1,i2···iN

)
, (4)

is LTI system matrix obtained by TP model transforma-
tion.

Controller is determined in same form as TP model.
Control signal is given by

u = −
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

in=1

N∏

n=1

wn,in(pn)Ki1,i2··· ,iNx (5)

where the Ki1,i2··· ,iN are corresponding LTI feedback
gains.

By using i as linear index, equivalent to the multilinear
array index with the size of I1 × I2 × · · · IN , TP model
(3) and control signal (5) can be rewritten in standard
polytopic form

S(p) =
R∑

i=1

wi(p)Si, (6)

u = −
R∑

i=1

wi(p)Ki, (7)

where R = I1 + I2 + · · · + IN and wi(p) is corresponding
weighting function.

3. TP MODEL-BASED CONTROLLER DESIGN
APPLIED TO THE SINGLE PENDULUM GANTRY

CRANE EXPERIMENTAL MODEL

3.1 Mathematical model of the gantry crane

Experimental laboratory model of Single Pendulum Gantry
(SPG) is used to emulate industrial crane application, see
Fig 1.

(a) (b)

Fig. 1. SPG photo in mechatronics laboratory a), and
schematics of the model b)

Non-linear model of single pendulum gantry (SPG) can be
described by following equations 1 :

(Mc +Mp)ẍc +Mplpα̈ cos(α)−Mplpα̇
2 sin(α) =

= Fm − Ff −Beqẋc,
(Ip +Mpl

2
p)α̈+Mplpẍc cos(α) +Mpglp sin(α) = −Bpα̇,

(8)

where Fm is DC motor force while Ff is the friction force.
Driving force obtained from DC motor is given by:

Fm =
ηgηmKgKt

rmp

1

Rm
Um. (9)

The meanings and the values of other parameters in
equations (8) and (9) are given in Table 1.

In this paper Stribeck friction model is used, see Olsson
et al. (1998). It can be described by

Ff (ẋc) = sgn(ẋc)
[
FC + (FS − FC)e−(

ẋc
vs

)δ
]
, (10)

1 Derivation using Lagrangian formulation is omitted for brevity and
can be found in (QUANSER User Manual, 1999)
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where FC is Coulomb friction, FS is static friction force,
vs is Stribeck velocity, and δ is emprirical exponent.

The parameters of the model (10) are experimentally
identified and following values are obtained:

FC = 2.70, FS = 3.10, vs = 0.10, δ = 2.
(11)

3.2 LPV model of single pendulum gantry (SPG)

Letting x = [x1 x2 x3 x4]
T

= [xc ẋc α α̇]
T

, u = Um and
w norm bounded disturbance, the equations of motion in
linear parameter varying state space form are:

ẋ = A(x(t))x+B(x(t))u+ E(x(t))w,

y = C(x(t))x+D(x(t))u+ F (x(t))w.
(12)

The system matrix in LPV form for the model (12) can be
written as:

S =




0 1 0 0 0 0
0 a1/ax a2/ax a3/ax b11/ax e1/ax
0 0 0 1 0 0
0 a4/ax a5/ax a6/ax b12/ax e2/ax
1 0 c1 0 0 0


 , (13)

where :

a1 = −(Ip +Mpl
2
p) ·
(
ηgηmK

2
gKtKm

r2mpRm
+Beq

)

a2 =
M2
p l

2
pg sin (x3) cos (x3)

x3
a3 = (M2

p l
3
p + lpMplp) sin(x3)x4 +MplpBp cos(x3)

a4 = Mplp cos(x3) ·
(
Beq −

ηgηmK
2
gKtKm

rmp

1

Rm

)

a5 = − (Mc +Mp)Mplp sin (x3)

x3
a6 = −(Mc +Mp)Bp −M2

p l
2
p cos(x3) sin(x3)x4

ax = (Mc +Mp)Ip +McMpl
2
p +M2

p l
2
p sin2(x3)

b11 = −(IpMplp)
2sgn(ẋc)

[
FC + (FS − FC)e−(

ẋc
vs

)δ
]

b12 = −Mplp cos(x3)sgn(ẋc)
[
FC + (FS − FC)e−(

ẋc
vs

)δ
]

e1 = −(IpMplp)
2 ηgKgηmKt

Rmrmp

e2 = −Mplp cos(x3)
ηgKgηmKt

Rmrmp

c1 = −0.614
sinx3
x3

(14)

3.3 Single pendulum ganty TP model representation

Operating area for single pendulum gantry, is selected as

Ω = [ẋcmin, ẋcmax]× [αmin, αmax]× [α̇min, α̇max]

= [−0.6, 0.6]× [−0.0873, 0.0873]× [−0.8, 0.8].
(15)

Applying the TP transformation to the model (13) yield to
the TP model representation consisting of 20 LTI models.
The LTI system matrices of the TP model are:

S1,1,1 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.009566 1.529 1.153

0 0 0 1.0 0 0

0 26.71 −26.05 −0.09477 −3.509 −2.647
1.0 0 0.6132 0 0 0




S2,1,1 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.009566 1.529 −1.153
0 0 0 1.0 0 0

0 26.71 −26.05 −0.09477 −3.509 2.647

1.0 0 0.6132 0 0 0




S1,2,1 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.000189 1.529 1.153

0 0 0 1.0 0 0

0 26.71 −26.05 −0.07325 −3.509 −2.647
1.0 0 0.6132 0 0 0




S2,2,1 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.000189 1.529 −1.153
0 0 0 1.0 0 0

0 26.71 −26.05 −0.07325 −3.509 2.647

1.0 0 0.6132 0 0 0




S1,3,1 =




0 1.0 0 0 0 0

0 −11.64 1.517 0.008731 1.529 1.154

0 0 0 1.0 0 0

0 26.78 −26.08 −0.0929 −3.517 −2.653
1.0 0 0.6136 0 0 0




(16)

S2,3,1 =




0 1.0 0 0 0 0

0 −11.64 1.517 0.008731 1.529 −1.154
0 0 0 1.0 0 0

0 26.78 −26.08 −0.0929 −3.517 2.653

1.0 0 0.6136 0 0 0




S1,4,1 =




0 1.0 0 0 0 0

0 −11.65 1.517 −0.001939 1.53 1.154

0 0 0 1.0 0 0

0 26.79 −26.08 −0.06834 −3.518 −2.654
1.0 0 0.6136 0 0 0




S2,4,1 =




0 1.0 0 0 0 0

0 −11.65 1.517 −0.001939 1.53 −1.154
0 0 0 1.0 0 0

0 26.79 −26.08 −0.06834 −3.518 2.654

1.0 0 0.6136 0 0 0




S1,5,1 =




0 1.0 0 0 0 0

0 −11.66 1.525 0.006239 1.531 1.155

0 0 0 1.0 0 0

0 26.89 −26.13 −0.0872 −3.532 −2.665
1.0 0 0.6143 0 0 0




S2,5,1 =




0 1.0 0 0 0 0

0 −11.66 1.525 0.006239 1.531 −1.155
0 0 0 1.0 0 0

0 26.89 −26.13 −0.0872 −3.532 2.665

1.0 0 0.6143 0 0 0




(17)

S1,1,2 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.000189 1.529 1.153

0 0 0 1.0 0 0

0 26.71 −26.05 −0.07325 −3.509 −2.647
1.0 0 0.6132 0 0 0




S2,1,2 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.000189 1.529 −1.153
0 0 0 1.0 0 0

0 26.71 −26.05 −0.07325 −3.509 2.647

1.0 0 0.6132 0 0 0




S1,2,2 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.009566 1.529 1.153

0 0 0 1.0 0 0

0 26.71 −26.05 −0.09477 −3.509 −2.647
1.0 0 0.6132 0 0 0




S2,2,2 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.009566 1.529 −1.153
0 0 0 1.0 0 0

0 26.71 −26.05 −0.09477 −3.509 2.647

1.0 0 0.6132 0 0 0




S1,3,2 =




0 1.0 0 0 0 0

0 −11.64 1.517 0.001048 1.529 1.154

0 0 0 1.0 0 0

0 26.78 −26.08 −0.07522 −3.517 −2.653
1.0 0 0.6136 0 0 0




(18)
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Table 1. PARAMETERS OF THE SPG SYSTEM

Symbol Description Value Unit

Um DC motor voltage V
Im DC motor armature current A
Rm DC motor armature resistance 2.6 Ω
Lm DC motor armature inductance 0.18 mH
Kt Motor torque constant 0.007 67 N m A−1

ηm Motor efficiency 1
Km Back electro-motive force constant 0.007 67 V s/rad
Jm Rotor moment of inertia 3.9001 × 10−7 kg m2

Ip Pendulum moment of inertia 0.007 883 8 kg m2

Kg Planetary gearbox gear ratio 3.71
ηg Planetary gearbox efficiency 1
Mc Lumped mass of the cart system 1.0731 kg
lp Pendulum length from pivot to COG 0.3302 m
Mp Pendulum mass 0.23 kg
rmp Motor pinion radius 0.006 35 m
Beq Equivalent viscous damping coeff. 5.4 N m s rad−1

Bp Viscous damping coefficient 0.0024 N m s rad−1

Fc Driving force N
g Gravitational constant of earth 9.81 m/s2

α Pendulum angle rad
xc Chart position mm

S2,3,2 =




0 1.0 0 0 0 0

0 −11.64 1.517 0.001048 1.529 −1.154
0 0 0 1.0 0 0

0 26.78 −26.08 −0.07522 −3.517 2.653

1.0 0 0.6136 0 0 0




S1,4,2 =




0 1.0 0 0 0 0

0 −11.65 1.517 0.01172 1.53 1.154

0 0 0 1.0 0 0

0 26.79 −26.08 −0.09978 −3.518 −2.654
1.0 0 0.6136 0 0 0




S2,4,2 =




0 1.0 0 0 0 0

0 −11.65 1.517 0.01172 1.53 −1.154
0 0 0 1.0 0 0

0 26.79 −26.08 −0.09978 −3.518 2.654

1.0 0 0.6136 0 0 0




S1,5,2 =




0 1.0 0 0 0 0

0 −11.66 1.525 0.003582 1.531 1.155

0 0 0 1.0 0 0

0 26.89 −26.13 −0.08108 −3.532 −2.665
1.0 0 0.6143 0 0 0




S2,5,2 =




0 1.0 0 0 0 0

0 −11.66 1.525 0.003582 1.531 −1.155
0 0 0 1.0 0 0

0 26.89 −26.13 −0.08108 −3.532 2.665

1.0 0 0.6143 0 0 0




(19)

Weighting functions of the TP model are given in Fig. 2.

4. CONTROLLER DESIGN

4.1 Linear Matrix Inequalities

Recently a class of numerical optimization problems called
linear matrix inequality (LMI) problems has received sig-
nificant attention. These optimization problems can be
solved in polynomial time and hence are tractable, at least
in a theoretical sense. Interior-point methods, developed
for these problems, have been found to be extremely effi-
cient in practice. For systems and control, the importance
of LMI optimization stems from the fact that a wide vari-
ety of system and control problems can be recast as LMI
problems. Except for a few special cases these problems
do not have analytical solutions. However, the main point
is that through the LMI framework they can be efficiently
solved numerically in all cases. Therefore recasting a con-

trol problem as an LMI problem is equivalent to finding a
solution to the original problem.

Generally, a linear matrix inequality (LMI) has the form

F (x) = F0 +

m∑

i=1

xiFi > 0, (20)

where x ∈ Rm is the variable and the symmetric matrices
Fi = FTi are given. The inequality symbol in (20) means
that F (x) is positive definite

4.2 Control objective

In Kolonić et al. (2006) the control objective was to
find stabilizing controller under quadratic stability (QS)
with prescribed decay rate with minimal overshoot and
constrained control signal. In order to obtain stabilizing
controller Lyapunov stability approach is used, with Lya-
punov function candidate given by:

V (x) = xTPx > 0. (21)

The speed of response is related to decay rate α, that is,
the largest Lyapunov exponent. Therefore, the condition
for desired decay rate can be written as

V̇ (x) ≤ −2αV (x). (22)

The equilibrium of the continuous system in polytopic
form (3) is globally asymptotically stable if there exists
a common positive definite matrix P such that

ATi P + PAi + 2αP < 0; i ∈ (1, R). (23)

Next, let us consider the stability of the closed-loop control
system of TP model of single pendulum gantry. It is
globally asymptotically stable if there exists a common
positive definite matrix P such that

GTiiP + PGii + 2αP < 0,
(
Gij +Gji

2

)T
P + P

(
Gij +Gji

2

)
+ 2αP ≤ 0, i < j,

(24)
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Fig. 2. Weighting functions of the TP model

where

Gij = Ai +BiFj , (25)

denotes closed loop state matrix.

Largest possible decay rate can be found by solving gen-
eralized eigenvalue minimization problem (GEVP):

maximize α

subject to

X > 0

−XATi −AiX +MT
i B

T
i +BiMi + 2αX > 0

−XATi −AiX −XATj −AjX +MT
j B

T
i

+BiMj +MT
i B

T
j +BjMi − 4αX ≥ 0

(26)

where X = P−1 and Mi = FiX.

In order to satisfy the constraints on control input and
output constraints, the following LMIs are added to the
(26).

Constraint on the control value:

Assume that initial condition x(0) is unknown, but its
upper bound ‖x(0)‖ ≤ φ is known, which can be recast
as following LMI

φ2I ≤ X, (27)

the constraint ‖u‖2 ≤ µ is enforced ∀t ≥ 0 if the following
LMI holds

(
X MT

i

Mi µ
2I

)
≥ 0. (28)

Constraint on the output:

Assume that condition (27) is satisfied, the constraint
‖y(t)‖2 ≤ λ is enforced, ∀t ≥ 0, if the following LMI holds(

X XCTi
CiX λ2I

)
≥ 0. (29)

LMI conditions (26) - (29) guarantee stability, constrained
control signal and constrained output, however since fric-
tion effects were neglected it resulted in steady state error.
In order to minimize steady state error, H∞ norm was
minimized since it is related to the capacity of the closed-
loop system to reject energy bounded disturbance.

If there exist Lyapunov function (21) such that

V̇ (x) + yT y − γ2wTw ≤ 0, (30)

closed loop system has guaranteed H∞ disturbance atten-
uation less than γ,

‖y(t)‖2 ≤ γ‖w(t)‖2, (31)

besides being quadratically stable. Condition (30) can be
rewritten as

R∑

i=1

w2
i (p)Tii +

R−1∑

i=1

R∑

j=i+1

wi(p)wj(p)(Tij + Tji) < 0, (32)

where

Tij =



(
AiX +XATi +BiMj+

+MT
j B

T
i + EiE

T
i

)
?

CiX + FiE
T
i +DiMj FiF

T
i − γ2I


 , (33)
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which is in literature known as LMI representation of
bounded real lemma (Boyd et al., 1994), (Fridman and
Shaked, 2001).

Since γ is related to the level of disturbance attenuation
it is of great interest to compute controller which ensures
minimum value of γ.

minimize γ

subject to (33) (34)

Classical LMI conditions test the negative definiteness
of (33), by imposing that the coefficients Tii < 0 and
Tij + Tji < 0, which is obviously only sufficient condition.
Instead we use condition with proved convergence towards
(33) in following theorem

Theorem 1 : The TP model in (3) is quadratically stabi-
lizable by means of all linear parameter-dependent state

feedback control gain K(p) =
∑R
i=1 wi(p)Ki with an H∞

guaranteed cost γ > 0 if and only if there exist a symmetric
positive definite matrix X ∈ Rn×n, matrices Mi ∈ Rm×n,
i = 1, ..., N , matrices Xk ∈ R2n+p+q×n+q, k ∈ N (g), a
degree g ≥ 1, g ∈ N, and a sufficiently large d ∈ N such
that

∑

k′∈N (d)
k�k′


 ∑

i∈{1,...,N}ki>k′i

d!

π(k′)

(
Xk−k′−eiBi + BTi XT

k−k′−ei
)

+

+
∑

i,j∈{1,...,N}
k−k′−ei−ej�0

d!

π(k′)
· (g − 1)!

π(k − k′ − ei − ej)

×



BiMj +MT

j B
T
i X 0 MT

i D
T
j

? 0 0 0
? ? I 0
? ? ? −γ2I





 < 0,

∀k ∈ N (g + d+ 1),
(35)

with

Bi =

[
ATi −I 0 CTi
ETi 0 −I FTi

]
, (36)

where N (g) is set of N-tuples obtained as all possible
combinations of nonnegative integers ki, i ∈ [1, N ], such

that
∑N
i=1 ki = g., for N-tuples k, k′, comparation,

summation and substraction are defined componentwise,
N-tuple ei denotes N-tuple with all components equal 0,
except i-th component which equals 1, and where π(k) is
defined as π(k) = (k1!)(k2!) . . . (kN !).

Minimising γ subject to LMI constraints proposed in The-
orem 1., have the asymptotic convergence to the mini-
mum H∞ guaranteed cost under quadratic stabilizability,
for more details and proof of Theorem 1 see Montagner
et al. (2009), http://www.dt.fee.unicamp.br/~ricfow/
robust.htm.

In the affirmative case, local feedback gains are given by
Ki = MiX

−1, i = 1, ..., N .

In order to ensure constrained control input (27) and (28)
are added to (35).

By using Yalmip 2 and Sedumi 3 1.3, the following feasible
solution and feedback gains are obtained:

K1,1,1 =
(

64.55 22.34 −5.605 8.128
)T

K2,1,1 =
(

64.55 22.34 −5.605 8.128
)T

K1,2,1 =
(

64.52 22.32 −5.616 8.118
)T

K2,2,1 =
(

64.52 22.32 −5.616 8.118
)T

K1,3,1 =
(

65.29 22.52 −5.287 8.213
)T

K2,3,1 =
(

65.29 22.52 −5.287 8.213
)T

K1,4,1 =
(

65.34 22.51 −5.267 8.212
)T

K2,4,1 =
(

65.34 22.51 −5.267 8.212
)T

K1,5,1 =
(

66.71 22.86 −4.684 8.374
)T

K2,5,1 =
(

66.71 22.86 −4.684 8.374
)T

K1,1,2 =
(

64.52 22.32 −5.616 8.118
)T

K2,1,2 =
(

64.52 22.32 −5.616 8.118
)T

K1,2,2 =
(

64.55 22.34 −5.605 8.128
)T

K2,2,2 =
(

64.55 22.34 −5.605 8.128
)T

K1,3,2 =
(

65.27 22.5 −5.296 8.206
)T

K2,3,2 =
(

65.27 22.5 −5.296 8.206
)T

K1,4,2 =
(

65.38 22.54 −5.251 8.225
)T

K2,4,2 =
(

65.38 22.54 −5.251 8.225
)T

K1,5,2 =
(

66.7 22.86 −4.687 8.371
)T

K2,5,2 =
(

66.7 22.86 −4.687 8.371
)T

(37)

4.3 Results

Simulation and experimental results are shown on Fig
3. During simulation and experimental tests proposed
H∞ approach is compared to original TP model based
approach (QS) described in Kolonić et al. (2006). It can
be seen that proposed approach has successfully minimized
steady state error of chart position from 14.55 mm to
2.4 mm in simulation, and from 7mm to 0.4 mm in
experimental results. However, slower decay rate as well
as oscillatory angle response is obtained due to increased
control action needed to overcome static friction force.

5. CONCLUSION

TP transform (HOSVD) creates polytopic model suitable
for PDC controller synthesis via LMIs. Presented results
for gantry crane are obtained by using exact TP trans-
form. Simulation and experimental results verify that H∞
controller has successfully minimized steady state error
due to friction effect, however it resulted in oscillatory
angle response and slower decay rate. In order to minimize
oscillations H∞ controller could be extended with robust
pole placement inside LMI regions.
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Fig. 3. Simulation and experimental results after step reference position, where y is pendulum tip position, xc is cart
position, α is pendulum angle and Um is control input, respectively
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Friction compensation of gantry crane model based on
the B-spline neural compensator. In 14th Interna-
tional Power Electronics and Motion Control Confer-
ence, EPE-PEMC 2010.

Montagner, V., Oliveira, R., and Peres, P. (2009). Con-
vergent LMI relaxations for quadratic stabilizability and
H∞ control of Takagi-Sugeno fuzzy systems. IEEE
Transactions on Fuzzy Systems, 17(4), 863–873.

Nalley, M. and Trabia, M. (2000). Control of overhead
cranes using a fuzzy logic controller. Journal of Intelli-
gent and Fuzzy systems, 8(1), 1–18.

Olsson, H., Astrom, K., Canudas De Wit, C., Gafvert, M.,
and Lischinsky, P. (1998). Friction models and friction
compensation. European Journal of Control, 4, 176–195.

Omar, H. (2003). Control of gantry and tower cranes.
Ph.D. thesis, Virginia Polytechnic Institute and State
University.

Petres, Z. (2006). Polytopic Decomposition of Linear
Parameter-Varying Models by Tensor-Product Model
Transformation Ph. D. Thesis Booklet.
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Abstract: In this paper, the tuning method, based on characteristic areas and Magnitude 

Optimum (MO) criterion for some unstable processes is presented. The proposed approach is to 

use inner compensator, of the first or the second order, to stabilise the process. The stabilised 

process is controlled by 2-DOF PI controller, tuned by using MOMI or DRMO tuning method 

(depending on desired tracking or disturbance-rejection performance). The proposed method was 

tested on five linear process models. The responses were relatively fast and without oscillations, 

all according to the MO criterion.  

Keywords: unstable processes, internal feedback, PID control 

 

1.  INTRODUCTION 

Most processes in chemical and process control industries 
are stable and can be controlled by various types of controller 
structures and relatively wide range of controller parameters. 
However, some types of processes, like continuous stirred 
reactors, bioreactors or polymerisation reactors are inherently 
unstable. Those processes require closer attention, since, to 
stabilise them, controller structure and parameters should be 
carefully chosen (Lee et al., 2010).  

 Several tuning rules for different types of unstable 
processes have been proposed so far. Some of the methods are 
dedicated to PI(D) controller design for unstable processes. 
Jacob and Chidambaram (1996) provided tuning formulas for 
the first-order unstable process with delay (FODUP) for PI 
controllers by using model reference method, synthesis method 
and internal model control (IMC) method. Park et al., (1998) 
proposed inner proportional feedback loop for stabilising the 
process and outer loop with PID controller. The proposed 
approach is equivalent to using 2-degrees-of-freedom (2-DOF) 
PID controller, which is also used by Prashanti and 
Chidambaram (2000) to reduce process overshoots. 
Construction of PID controller with lead/lag filter for 
integrating and FODUP processes was proposed by 
Shamsuzzoha and Lee (2008). Additional set-point filter was 
applied to reduce the overshoots. Panda (2009) designed PID 
controller for integrating and unstable processes, based on IMC 
design. 

The proposed approach in this paper is to use internal 
feedback loop to stabilise the system, similar to Park et al. 

(1998). However, the inner compensator is of the first or the 
second order. The parameters of the compensator are calculated 
so as to equalise characteristic areas of the actual and desired 
closed-loop transfer functions. Then, Magnitude Optimum 
Multiple Integration (MOMI) or Disturbance Rejection 
Magnitude Optimum (DRMO) tuning rules (Vrančić et al.; 
1999a, 2001, 2004) are applied to calculate PI(D) controller 
parameters for such stabilised process. The proposed control 
scheme is given in Figure 1. 

GP

r
y

+

u

GC

GCN

controller process

uC

+

+

d

+

compensator

inner loop

 

Fig. 1. Block diagram of the proposed closed-loop control. 

 

2. DESIGN OF INTERNAL COMPENSATOR 

The purpose of the compensator (Fig. 1) is to stabilise the 
process by forming the inner closed-loop. The compensator 
parameters depend on desired closed-loop properties. Let us 
assume that the process transfer function is the following: 
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and KPR and Tdel are process gain and time-delay, respectively. 
Let us choose the following compensator’s structure: 
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Then, the closed-loop transfer function of the inner 
feedback loop (between signals uC and y in Fig. 1) is: 

 
del

del
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. (5) 

Let us define a desired closed-loop transfer function of the 
inner loop to have the same steady-state gain, numerator and 
pure time-delay as in (5): 
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where 

 CPR KKK =1 , (7) 

and denR is a desired closed-loop denominator: 

 L++++= 3

3

2

211 sesesedenR . (8) 

In order to make GCL (5) and GCLD (6) equal, the following 
sub-functions should become equal: 
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However, exact matching of G1 and G2 is not possible, 
since G1 contains numerator and pure time-delay in 
denominator, which cannot be developed into finite number of 
terms. One possibility to make G1 as close as possible to G2 is 
to make them equal in lower frequency region by equating 
terms of their “characteristic areas” (Rake, 1987; Vrančić et al, 
1999a). Namely, for the following transfer function: 
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the characteristic areas can be calculated as (Vrančić et al., 
1999a,b): 
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Function G1 (9) can be expressed in terms of parameters αi 

and βi (10) by applying Taylor’s expansion of time-delay term 
in denominator: 

 L+−+−≈−

!3!2
1

3322

deldel
del

sT TsTs
sTe del , (12) 

as follows: 
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Function G2 (9) can be simply expressed in terms of 

parameters αi and βi (10) as follows:  
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In order to simplify derivations, denominator denC (3) will 
be chosen a-priori. Its main task is to filter out the process 
output noise signal, so it should be of the same or higher order 
(n) than the numerator: 

 ( )n

FC sTden += 1 , (15) 
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where TF can be chosen as several times smaller than absolute 
values of the process time constants. 

Now, the internal compensator’s parameters can be 
calculated by equating characteristic areas (11) of G1 and G2 
(9). In order to simplify practical realisation of the 
compensator, the first- and the second-order numerator (numC) 
will be derived (note that it does not limit us to calculate 
higher-order compensators). When choosing the first-order 
compensator’s numerator, the first two areas (11) of sub-
processes G1 (13) and G2 (14) should be equal. The following 
parameters are obtained: 
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By equating the first three areas, we get:  
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Compensator gain KC can be calculated from (7) as: 

 
PR

C
K

K
K 1= . (18) 

Note that the areas (11) can also be calculated in time-
domain by integrating the process input and output signals after 
changing the process (10) set-point (Vrančić et al., 1999b).  

Illustrative example 

Let us calculate compensator’s parameters for the following 
process transfer function (Panda, 2009; Park et al., 1998): 
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The desired closed-loop denominators (8) are chosen to be 
of the same order as the process denominator. The first one has 

been chosen to have the same absolute time constants as the 
process, while the second one has faster response:  
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According to expression (6), the desired closed-loop 
transfer functions, for both denominators, are: 
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Note that K1 is not known a-priori. However, it does not 

have any influence on stability (when K1≠1). The a-priori 
chosen denominator of the compensator (to filter out high-
frequency noise) is: 

 ( )3
1.01 sdenC += . (22) 

Let us now calculate the remaining compensator’s 
parameters by using expressions (17) and (18). The 
compensators become: 
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Both compensators were tested in the closed-loop 
configuration, as shown in Fig 1 (without controller gain GCN). 
Response on unity step-change of signal uC is shown in Fig. 2. 

It is clear that the obtained responses (solid lines) are very 
close to desired responses, defined by function GCLD (6). 

 

3. DESIGN OF CONTROLLER 

Since the process is already stabilised by the compensator, 
a controller design is not very critical. Therefore, relatively 
simple controller structures can be used. In this paper, due to 
simplicity, the 2-DOF PI controller structure has been chosen: 
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where K, Ki and b are proportional gain, integral gain and 
proportional weighting factor, respectively. Note that other 
types of controllers can be applied as well. A Magnitude-
Optimum-Multiple-Integration (MOMI) tuning method for PI 
controllers has been chosen for tracking, since it usually results 
in a relatively fast closed-loop responses without oscillations 
for different types of process models (Vrančić et al., 1999a; 
2001). If disturbance rejection properties are more important, a 
DRMO method (modified MOMI method for improving 
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disturbance rejection performance) can be applied (Vrančić et 
al., 2004).  
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Fig. 2. Response of the inner loop when using both 
compensators. 

 

The tuning rule for MOMI method is the following (see 
Vrančić et al., 1999a; 2001): 
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The tuning rule for DRMO method is (Vrančić et al., 2004): 
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where K can be calculated from the second-order equation in 
(26). Areas A0 to A3 in (25) and (26) can be calculated from 
expression (11) if the controlled process is given by expression 
(10). However, note that the controlled process from 
controller’s viewpoint is the desired closed-loop transfer 

function (6). Also note that parameters αi and βi can be 
expressed by equating expressions (6) and (10): 
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  The Matlab toolset, which performs the calculation of the 
compensator’s and PI controller parameters for the chosen and 
arbitrary linear process models, is available on-line (Vrančić, 
2010). 

Illustrative example 

Let us calculate the PI controller parameters for the same 
process (19) and compensators (23) as in the previous example. 
The PI controller is actually controlling the closed-loop transfer 
function (5) which is similar to desired closed-loop transfer 
function (21). The areas of desired transfer functions can be 
calculated from expressions (11) and (27) for both 
compensators: 
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The PI controller parameters are calculated by using MOMI 
(25) or DRMO (26) tuning method for both compensators: 
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The closed-loop response is given in Fig. 3. It can be seen 
that responses, when using MOMI method, have faster tracking 
responses, while DRMO method results in better disturbance 
rejection performance. Naturally, compensator 2 also gives 
faster closed-loop responses than compensator 1. 

 

4. EXAMPLES 

The proposed method will be tested on the following 
process models: 
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which were tested by some other authors (see Jacob and 
Chidambaram, 1996; Panda, 2010; Park et al., 1998; Prashanti 
and Chidambaram, 2000; Shamsuzzoha and Lee, 2008). The 
desired denominators are: 
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The calculated compensators, by using the proposed 
method, are the following: 

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

103



 

( )
( )

( )
( )

( )
( )

( )
( )24

3

2

3

22

3

2

1

1.01

228.0164.1

1.01

434.013.1169.1

1.01

105.1139.0

1.01

97.51.18116.0

s

s
G

s

ss
G

s

s
G

s

ss
G

C

C

C

C

+

+
=

+

++
=

+

+
=

+

−−
=

. (32) 

 

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Process G
P
 output with compensator 1

time [s]

MOMI
DRMO

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Process G
P
 output with compensator 2

time [s]

MOMI
DRMO

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

1.5

Process G
P
 input with compensator 1

time [s]

MOMI
DRMO

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

1.5

Process G
P
 input with compensator 2

time [s]

MOMI
DRMO

 

Fig. 3. Closed-loop response when using both compensators 
when using MOMI and DRMO method. 

 

The calculated controller parameters, for all four process 
models with compensators, are given in Table 1. Note that 
Matlab toolset, which performs the calculation of all the 
parameters for the given process models, is given in Vrančić 
(2010). 

Table 1. PI controller parameters 

 MOMI DRMO 

 Ki K b Ki K b 

GP1 0.15 0.325 1 0.21 0.34 0 

GP2 -0.037 -0.148 1 -0.056 -0.166 0 

GP3 -0.227 -0.336 1 -0.266 -0.361 0 

GP4 -0.81 -0.816 1 -1.359 -0.92 0 

 

The closed-loop responses for all four process models are 
given in Figs. 4-7. The difference between the desired and the 
actual inner closed-loop responses are relatively small for all 
four processes. The closed-loop responses with controller are 
relatively fast, without oscillations, and with relatively small 
overshoots, all according to the MO tuning criterion. The 

tracking performance is better when using MOMI method, 
while disturbance rejection performance is better with DRMO 
method. 
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Fig. 4. Closed-loop responses of the process GP1 when using 
MOMI and DRMO method. 
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Fig. 5. Closed-loop responses of the process GP2 when using 
MOMI and DRMO method. 

 

5. CONCLUSIONS 

Controller design is divided into two stages. The first stage 
is design of inner compensator by means of equating 
characteristic areas of the actual and desired inner closed-loop 
transfer function. The comparison of both responses in five 
examples confirms the efficiency the compensator. 

The second stage is design of outer 2-DOF PI controller by 
applying MOMI or DRMO tuning method. According to all 
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five examples, the proposed approach resulted in a relatively 
fast responses without oscillations. 

The advantages of the proposed method are that it is not 
limited to the first- or the second-order processes models. 
Moreover, the method can be extended to higher order 
compensators or different controller structures (e.g. PID 
controllers or Smith predictors). 

Disadvantage of the proposed method is that it requires, 
similar to other methods, the a-priori definition of desired 
closed-loop transfer function. In our case, the desired closed-
loop time constants have been chosen to be the same or slightly 
faster to absolute values of process time constants.  
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Fig. 6. Closed-loop responses of the process GP3 when using 
MOMI and DRMO method. 
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Fig. 7. Closed-loop responses of the process GP4 when using 
MOMI and DRMO method. 

In our further work we will investigate robustness of the 
proposed tuning approach.  
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Abstract: The paper concerns the problem of the bounded real lemma for linear continuous-
time systems. Using free weighting matrices to express the relationship between the terms
of the system state equation a modified equivalent LMI approach to bounded-real-lemma
representation is presented. Immediate extension to design method of a memory-free feedback
controller, which performs H∞ properties of the closed-loop system, is formulated as a feasibility
problem and expressed over a set of LMIs. Numerical example is included to illustrate the
feasibility and properties of the proposed representations.
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1. INTRODUCTION

Over the past decade, H∞ theory seems to be one of the
most sophisticated frameworks for robust control system
design. Based on concept of quadratic stability which at-
tempts to find a quadratic Lyapunov function (LF), H∞
norm computation problem is transferred into a standard
linear matrix inequality (LMI) optimization task, which
includes bounded real lemma (BRL) formulation (Her-
mann et al. (2007), Veselý and Rosinová (2009), Wu et
al. (2010)). A number of more or less conservative analysis
methods are presented to assess robust stability for linear
systems using a fixed Lyapunov function.

The first version of the BRL presents simple conditions
under which a transfer function is contractive on the
imaginary axis. Using it, it was possible to determine the
H∞ norm of a transfer function, and the BRL became a
significant element to shown and prove that the existence
of feedback controllers (that results in a closed loop trans-
fer matrix having the H∞ norm less than a given upper
bound), is equivalent to the existence of solutions of certain
LMIs (Boyd et al. (1994), Filasová et al. (2010)). Linear
matrix inequality approach based on convex optimization
algorithms is extensively applied to solve the above men-
tioned problem (Jia (2003), Pipeleers et al. (2009)) since
it can be solved numerically efficiently by using developed
interior-point algorithm.

In this paper, equivalent LMI representations of BRL for
linear continuous-time systems are introduced. Motivated
by the underlying ideas in Filasová and Krokavec (2009),
Wu and Duan (2006), and Xie (2008) a simple technique
for the BRL representation of linear systems is presented,
and used modifications are explained in a context. The
proposed LMI representations are proven to be necessary
and sufficient and their extensions to state feedback con-

troller design, performing system H∞ properties is im-
mediate. Translating into LMI framework the closed-loop
system stability is characterized in the terms of convex
LMIs.

2. PROBLEM DESCRIPTION

Through this paper the task is concerned with the com-
putation of a state feedback u(t), which control the linear
dynamic system given by the set of equations

q̇(t) = Aq(t) + Bu(t) (1)

y(t) = Cq(t) + Du(t) (2)

where q(t) ∈ IR n, u(t) ∈ IR r, and y(t) ∈ IR m are
vectors of the state, input and measurable output vari-
ables, respectively, nominal system matrices A ∈ IR n×n,
B ∈ IR n×r, C ∈ IR m×n and D ∈ IR m×r are real matrices.

Problem of the interest is to design asymptotically stable
closed-loop system with the linear memoryless state feed-
back controller of the form

u(t) = −Kq(t) (3)

where matrix K ∈ IR r×n is a gain matrix.

3. BASIC PRELIMINARIES

Proposition 1. (Bounded real lemma) System (1), (2) is
asymptotically stable if there exist a symmetric positive
definite matrix P > 0 and a positive scalar γ > 0 such
that 


ATP + PA PB CT

∗ −γ2Ir DT

∗ ∗ −Im


 < 0 (4)

where Ir ∈ IR r×r, Im ∈ IR m×m are identity matrices,
respectively,
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Hereafter, ∗ denotes the symmetric item in a symmetric
matrix.

Proof. (see. e.g. Krokavec and Filasová (2008)) Defining
Lyapunov function as follows

v(q(t)) = qT(t)Pq(t)+

+

t∫

0

(yT (r)y(r)− γ2uT (r)u(r))dr > 0
(5)

where P = P T > 0, P ∈ IR n×n, γ > 0 ∈ IR, and
evaluating the derivative of v(q(t)) with respect to t along
a system trajectory then it yields

v̇(q(t)) = q̇T (t)Pq(t) + qT (t)P q̇(t)+

+yT (t)y(t)− γ2uT (t)u(t) < 0
(6)

Thus, substituting (1), (2) into (6) gives

v̇(q(t)) = (Aq(t) + Bu(t))T Pq(t)+

+qT (t)P (Aq(t)+Bu(t))−γuT(t)u(t)+

+(Cq(t)+Du(t))T (Cq(t)+Du(t)) < 0

(7)

and with the next notation

qT
c (t) =

[
qT (t) uT (t)

]
(8)

it is obtained

v̇(q(t)) = qT
c(t)P cqc(t) < 0 (9)

where

P c =

[
ATP + PA PB

∗ −γ2Ir

]
+

[
CTC CTD

∗ DTD

]
< 0 (10)

Since [
CTC CTD

∗ DTD

]
=

[
CT

DT

]
[ C D ] ≥ 0 (11)

Schur complement property implies



0 0 CT

∗ 0 DT

∗ ∗ −Im


 ≥ 0 (12)

and using (12) the LMI condition (10) can be written
compactly as (4). This concludes the proof.

4. IMPROVED BRL REPRESENTATION

Theorem 1. System (1), (2) is asymptotically stable if
there exist a symmetric positive definite matrix P > 0,
P ∈ IR n×n, matrices S1, S2 ∈ IR n×n, and a positive
scalar γ > 0, γ ∈ IR such that




−S1A−ATST
1 −S1B P +S1−ATST

2 CT

∗ −γ2Ir −BTST
2 DT

∗ ∗ S2+ST
2 0

∗ ∗ ∗ −Im


 < 0 (13)

Proof. Since (1) implies

q̇(t)−Aq(t)−Bu(t) = 0 (14)

then with arbitrary square matrices S1, S2 ∈ IR n×n it
yields

(
qT(t)S1+q̇T(t)S2

)(
q̇(t)−Aq(t)−Bu(t)

)
= 0 (15)

Thus, adding (15), as well as its transposition to (6) and
substituting (2) it can be written

v̇(q(t)) = −γuT(t)u(t)+q̇T(t)Pq(t)+qT(t)P q̇(t)+

+(Cq(t)+Du(t))T (Cq(t)+Du(t))+

+
(
q̇(t)−Aq(t)−Bu(t)

)T(
ST

1 q(t)+ST
2 q̇(t)

)
+

+(qT(t)S1+q̇T(t)S2)(q̇(t)−Aq(t)−Bu(t)) < 0

(16)

and using the notation

qT
c (t) =

[
qT (t) uT (t) q̇T (t)

]
(17)

it can be obtained

v̇(q(t)) = qT
c(t)P

◦
cqc(t) < 0 (18)

where

P ◦
c =




CTC CTD 0
∗ DTD 0
∗ ∗ 0


+

+



−S1A−ATST

1 −S1B P +S1−ATST
2

∗ −γ2Ir −BTST
2

∗ ∗ S2+ST
2


 < 0

(19)

Thus, analogously using (11), (12) the inequality (19) can
be written compactly as (13). This concludes the proof.

Remark 1. Setting S1 =−P then (13) is transformed in



PA+ATP PB −ATST
2 CT

∗ −γ2Ir −BTST
2 DT

∗ ∗ S2+ST
2 0

∗ ∗ ∗ −Im


<0 (20)

Thus, inserting S2 = −δI, where δ > 0, δ ∈ IR gives



PA+ATP PB δAT CT

∗ −γIr δBT DT

∗ ∗ −2δIn 0
∗ ∗ ∗ −Im


<0 (21)




PA+ATP PB AT CT

∗ −γIr BT DT

∗ ∗ −2δ−1In 0
∗ ∗ ∗ −Im


<0 (22)

respectively. Then (22) can be written as



ATP + PA PB CT

∗ −γIr DT

∗ ∗ −Im


+

+0.5 δ




AT

BT

0


 [A B 0] < 0

(23)

Choosing δ as a sufficiently small positive scalar satisfying
the condition

0 < δ < 2
λ1

λ2
(24)
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λ1 =λmin



−



PA+ATP PB CT

∗ −γ2Ir DT

∗ ∗ −Im






 (25)

λ2 =λmax








ATA ATB 0
BTA BTB 0

0 0 0






 (26)

(21) be negative definite for a feasible P of (4).

Corollary 1. Setting S1 = −P , and S2 = δI, where
0 < δ ∈ IR then (20)-(22) implies




ATP + PA PB CT

∗ −γIr DT

∗ ∗ −Im


−

−0.5 δ



−AT

−BT

0


 [−A −B 0] < 0

(27)

and a feasible solution P of (4) is also a feasible solution
of (27) for all δ > 0, δ ∈ IR.

Theorem 2. System (1), (2) is asymptotically stable if
there exist a symmetric positive definite matrix P > 0,
P ∈ IR n×n, matrices S1, S2 ∈ IR n×n, and a positive
scalar γ > 0, γ ∈ IR such that




PA+ATP PB P +S1+ATS2 CT

∗ −γ2Ir BTS2 DT

∗ ∗ S2+ST
2 0

∗ ∗ ∗ −Im


 < 0 (28)

Proof. Defining the congruence transform matrix

T 1 =




I
I

A B I
I


 (29)

and multiplying right-hand side of (13) by T 1 and left-

hand side of (13) by T T
1 then after tedious calculation

(28) is obtained. This concludes the proof.

Remark 2. Setting S1 =−P , S2 =−δP then (28) leads to



PA+ATP PB −δATP CT

∗ −γ2Ir −δBTP DT

∗ ∗ −2δP 0
∗ ∗ ∗ −Im


 < 0 (30)




PA+ATP PB −ATP CT

∗ −γ2Ir −BTP DT

∗ ∗ −2δ−1P 0
∗ ∗ ∗ −Im


 < 0 (31)

respectively, and using Schur complement property then
(31) can be rewritten as




PA+ATP PB CT

∗ −γ2Ir DT

∗ ∗ −Im


+

+
δ

2



−ATP
−BTP

0


P −1[−PA −PA 0] < 0

(32)




PA+ATP PB CT

∗ −γ2Ir DT

∗ ∗ −Im


+

+
δ

2




ATPA ATPB 0
BTPA BTPB 0

0 0 0


 < 0

(33)

respectively. Choosing δ satisfying (24), then with (25) and

λ2 = λmax








ATPA ATPB 0
BTPA BTPB 0

0 0 0






 (34)

(31) be negative definite for a feasible P of (4). This
concludes the proof.

Corollary 2. Considering (32), (33) it is evident that the
inequality



PA+ATP PB ATP CT

∗ −γ2Ir BTP DT

∗ ∗ −2δ−1P 0
∗ ∗ ∗ −Im


 < 0 (35)

and (31) are equivalent.

5. CONTROL LAW PARAMETER DESIGN

Theorem 3. Closed-loop system (1), (2), (3) is stable if
there exists a symmetric positive definite matrix X > 0,
X ∈ IR n×n, a regular square matrix Z ∈ IR n×n, a matrix
Y ∈ IR r×n, and a scalar γ > 0, γ ∈ IR such that

X = XT > 0, γ > 0 (36)


Π11 B XAT−Y TBT XCT−Y TDT

∗ −γ2Ir BT DT

∗ ∗ Z+ZT 0
∗ ∗ ∗ −Im


 < 0 (37)

Π11 = AX+XAT−BY −Y TBT (38)

The control law gain matrix is given as

K = Y X−1 (39)

Proof. Setting S1 = −P then (28) implies


PA+ATP PB ATS2 CT

∗ −γ2Ir BTS2 DT

∗ ∗ S2+ST
2 0

∗ ∗ ∗ −Im


 < 0 (40)

Supposing that det(S2) ̸= 0 then it can be defined the
congruence transform matrix

T 2 = diag
[
P −1 Ir S−1

2 Im

]
(41)

and pre-multiplying right-hand side of (40) by T 2, and

left-hand side of (40) by T T
2 leads to



AP −1+P −1AT B P −1AT P −1CT

∗ −γ2Ir BT DT

∗ ∗ S−1
2 +S−T

2 0
∗ ∗ ∗ −Im


 < 0 (42)

Thus, denoting

P −1 = X, S−1
2 = Z (43)
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(42) can be written as



AX+XAT B XAT XCT

∗ −γ2Ir BT DT

∗ ∗ Z+ZT 0
∗ ∗ ∗ −Im


 < 0 (44)

Inserting A← Ac = A−BK, and C ← Cc = C−DK it
yields



Π11 B X(AT−KTBT ) X(CT−KTDT )
∗ −γ2Ir BT DT

∗ ∗ Z+ZT 0
∗ ∗ ∗ −Im


< 0 (45)

where

Π11 = AX+XAT−BKX−XKTBT (46)

and with

Y = KX (47)

(45), (46) implies (37), (38), respectively. This concludes
the proof.

Remark 3. Setting Z = −δX then with D = 0 the control
law design condition (36)-(38) can be rewritten as

X = XT > 0, δ > 0 (48)



Π11 B XAT−Y TBT XCT

∗ −γ2Ir BT 0
∗ ∗ −2δIn 0
∗ ∗ ∗ −Im


 < 0 (49)

Π11 = AX+XAT−BY −Y TBT (50)

where feasible X, Y , δ implies gain matrix parameter (39).

Therefore, it is evident that the design standard form of
BRL is 


Π11 B X(CT−KTDT )
∗ −γ2Ir 0
∗ ∗ −Im


 < 0 (51)

Note, other nontrivial solutions can be obtained using
different setting of Sl, l = 1, 2.

6. ILLUSTRATIVE EXAMPLE

The approaches given above are illustrated by the numer-
ical example where the parameters of (1), (2) are

A =

[
0 1 0
0 0 1
−5 −9 −5

]
, B =

[
1 3
2 1
1 5

]
, CT =

[
1 1
2 1
1 0

]

Solving (48), (49) with respect to LMI matrix variables
X, Y , γ, and δ using SeDuMi (Self-Dual-Minimization)
package for Matlab (Peaucelle et al. (1994)) given task
was feasible with

X =

[
3.7160 −2.6784 1.2147
−2.6784 3.0184 −1.8970

1.2147 −1.8970 3.2896

]

Y =

[
0.8937 2.1673 −1.4078
−0.0801 −0.0207 0.5383

]

γ = 11.0242, δ = 6.7040

and results the control system parameters

K =

[
2.2731 3.0405 0.4860
0.0152 0.1662 0.2538

]

ρ(Ac) = {−0.9398, −3.1252, −11.2561}

It is evident, that the eigenvalues spectrum ρ(Ac) of the
closed control loop is stable.

Solving (48), (51) with respect to LMI matrix variables
X, Y , and γ given task was feasible, too. Obtained LMI
variables were

X =

[
2.7637 −1.7983 0.6386
−1.7983 2.2479 −1.2081

0.6386 −1.2081 3.0925

]

Y =

[
0.9127 1.6581 −0.8163
0.2802 0.1304 −0.2269

]

γ = 6.9412

and implies

K =

[
1.7557 2.2852 0.2662
0.2837 0.2709 −0.0261

]

ρ(Ac) = {−0.8968, −5.8435± 1.7282 i}

It is evident, that performance γ is less then one obtained
with respect to (49) but this fetches worst dynamic prop-
erties.

It also should be noted, the cost value γ will not be a
monotonously decreasing function with the decreasing of
δ, if δ is chosen.

7. CONCLUDING REMARKS

This paper describes a simple technique for equi-valent
BRL representation and its application to the H∞ control
of linear systems. Standard criterion is extended for a
system with constant coefficient matrices employing free
weighting matrices to take the relationship between the
terms of the system equation into account in the structure
of BRL. The method is further extended to the design of an
H∞ state-feedback controller. Numerical example demon-
strates that principles described in this paper are effective,
although some computational complexity is increases.

The advantage of this approach is that in Theorem 1
Lyapunov matrix P is separated from A, BT , C, and
DT , i.e. there are no terms containing the product of
P and any of them. This enables a new robust BRL to
be derived for a system with polytopic uncertainties by
using a parameter-dependent Lyapunov function, and to
deal with linear systems with parametric uncertainties. It
seems to be a useful extension to other control performance
synthesis problems, too.
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Abstract: This paper is dedicated to issue of approximation of nonlinear functions
and nonlinear dynamical systems by Piecewise Affine (PWA) linear model. The
article presents new identification Matlab toolbox for modelling and simulation of
nonlinear systems. Functions of the toolbox together with GUI application simplified
and accelerates identification of so called PWA OAF model. Identification of nonlinear
systems is based on novel method of PWA modelling by generalized Fourier series.
The approach provides identification of nonlinear functions of an arbitrary number of
variables and identification of nonlinear dynamical systems in ARX model structure
fashion from input-output data.

Keywords: PWA systems, Generalized Fourier series, Matlab toolbox, Chebyshev
polynomial, PWA identification.

1. INTRODUCTION

In the recent research many methods were devel-
oped for modelling of hybrid systems and gen-
eral nonlinear functions at all (Roll et al., 2004;
Ferrari-Trecate, 2005; Julian et al., 1999). Many
model structures were developed for hybrid sys-
tems and nonlinear systems. Much attention is
dedicated to system modeling in MLD (Mixed
Integer Dynamical) form (Bemporad and Morari,
1999) and PWA (Piecewise Affine). In (Bempo-
rad et al., 2000), the formal equivalence between
MLD systems and PWA systems is established
and also effective algorithms were developed for
transformation from one model structure to an-
other (Villa et al., 2004; Bemporad, 2002). In
(Heemels et al., 2001ab), the equivalence between
the following five classes of hybrid systems is, un-
der certain conditions, established: MLD systems,
Linear Complementarity (LC) systems, Extended
Linear Complementarity (ELC) systems, PWA

systems and Max-Min-Plus-Scaling (MMPS) sys-
tems. The important result of these equivalences
is that derived theoretical properties and tools can
easily be transferred from one class to another.
In this paper we present an effective tool for
modeling of nonlinear systems by PWA using
novel approach based on generalized Fourier series
(Kozak and Stevek, 2010). This approach belongs
to black-box identification methods of general
nonlinear models (Sjöberg et al., 1995).
We use methodology of generalized Fourier series
with orthogonal polynomials. In (Leondes, 1997),
orthogonal polynomials were used as activation
functions for special case of neural network with
one hidden layer - Orthogonal Activation Func-
tion based Neural Network (OAF NN). For this
type of neural network online and off-line training
algorithm has been defined with fast convergence
properties. After simple modification of OAF NN
it is possible to use this technique for PWA ap-
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proximation of a common nonlinear system.
The paper is divided in six sections. First, we for-
mulate the identification and linearization prob-
lem of nonlinear function. Next, we present mod-
eling of nonlinear process by OAF NN, topology
of the fourier series (PWA OAF NN) and net-
work transformation to state space PWA form.
In Section 3 PWA OAF identification toolbox is
presented on three case studies. In Section 3.3 is
identified nonlinear dynamical system from input-
output data and designed explicit mpc control
law.

2. PROBLEM FORMULATION

PWA linear approximation of hybrid systems de-
pends on defining guardlines of the PWA mapp-
ping. If guardlines are known, the problem of iden-
tifying PWA systems can easily be solved using
standard techniques for linear systems (Roll et al.,
2004). The method based on finding mapping
guardlines is suitable for linear system with non-
linear discrete parts like switches which changes
system behavior in step. Other methods a pri-
ori assume that the system dynamics is contin-
uous (Ferrari-Trecate, 2005). Both mentioned ap-
proaches use for identification clustering-based al-
gorithms.
As will be pointed out, nonlinear identification
techniques can be used under specific conditions
in order to obtain linear PWA model. Many neu-
ral network based identification techniques use
nonlinear neuron functions of one variable which
are easier linearizable than whole model of many
variables. The key idea is based on linearization
of nonlinear neural network functions of single
variable. Similarly as Taylor series, it is possi-
ble to define any nonlinear function as a series
of nonlinear functions. This approach leads to
generalized Fourier polynomial series. Generalized
Fourier series is based on a set of one-dimensional
orthonormal functions ϕ

(N)
i defined as

∫ x2

x1

ϕ
(N)
i (x)ϕ

(N)
j (x) = δij (1)

where δij is the Kronecker delta function and
[x1, x2] is the domain of interest. Several exam-
ples of orthonormal functions are the normalized
Fourier (harmonic) functions, Legendre polynomi-
als, Chebyshev polynomials and Laguerre polyno-
mials (Leondes, 1997). In this paper only Cheby-
shev polynomials will be discussed.
Orthogonal Activation Function based Neural
Network (OAF NN) is employed in the task of
nonlinear approximation. PWA approximation of
every used orthonormal polynomial creates Piece-
wise Affine Orthogonal Activation Function based
Neural Network (PWA OAF NN).

2x

π
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Π
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Fig. 1. Adjusted OAF NN structure

2.1 Chebyshev polynomial

The Chebyshev polynomials of the first kind can
be defined by the trigonometric identity

Tn(x) = cos(n arccos(x)) (2)

with norm defined as follows

∫ 1

−1

1√
1 − x2

(Tn(x))2dx =





π n = 0

π/2 n ̸= 1
(3)

Recursive generating formula for Chebyshev poly-
nomials:

T0(x) = 1, (4)

T1(x) = x, (5)

Tn+1(x) = 2xTn(x) − Tn−1(x), (6)

Tn(x) = Un+1(x) − Un−1(x). (7)

where Un is the Chebyshev polynomial of the
second kind generated by the recursive formula:

U0(x) = 1, (8)

U1(x) = 2x, (9)

Un+1(x) = 2xUn(x) − Un−1(x), (10)

The first few Chebyshev polynomials of the first
kind are
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Fig. 2. PWA approximation of T2, T3, T4, T5
Chebyshev polynomials

T0(x) = 1, (11)

T1(x) = x, (12)

T2(x) = 2x2 − 1 (13)

T3(x) = 4x3 − 3x (14)

T4(x) = 8x4 − 8x2 + 1. (15)

The first few Chebyshev polynomials of the second
kind are

U0(x) = 1, (16)

U1(x) = 2x, (17)

U2(x) = 4x2 − 1 (18)

U3(x) = 8x3 − 4x (19)

U4(x) = 16x4 − 12x2 + 1. (20)

2.2 OAF NN topology

It is possible to define Generalized Fourier series
with orthogonal polynomilas by neural network
with one hidden layer. In this work we use a
Matlab function framework for orthogonal activa-
tion function based neural networks which is part
of the toolbox. Aftr slight revision it is possible
to use this methodology for modeling the fourier
series. Example of the network for modeling func-
tion of two variables is depicted in Fig. 1.
If we consider general structure of the network in
ARX fashion with na, nb, and nk parameters we
get network output equation:

Fig. 3. OAF ARX model for na=2, nb=2, nk=0
or nk=1

y = w1
1

π

p

+ . . .

2

πp
(w2T1(y(k|1)) + · · · + wnTn−1(y(k|1)))+

...
2

πp
(wi1T1(y(k|na)) + · · · + wi2Tn−1(y(k|na)))+

2

πp
(wi3T1(u(k|nk)) + · · · + wi4Tn−1(u(k|nk)))+

...
2

πp
(wi5T1(u(k|i7)) + · · · + wi6Tn−1(u(k|i7))).

i1 = (na − 1)(n − 1) + 2
i2 = na(n − 1) + 1
i3 = nb(n − 1) + 2
i4 = (nb + 1)(n − 1) + 1
i5 = (nb + na − 1)(n − 1) + 2;
i6 = (nb + na)(n − 1) + 1;
i7 = nk + nb − 1
p = na + nb

(21)
where y(k|na) denotes y(k − na) and similarly
u(k|nk) ≡ u(k−nk). Every Chebyshev polynomial
is aproximated by set of lines (Fig. 2)

T (x) ≈ aix + bi for i = {1, 2, . . . , ndiv} (22)

Then output equation becomes difference equa-
tion.
A convenient feature of all Chebyshev polynomial
is their symmetry. All polynomials of even order
are symmetrical by vertical axis and all polyno-
mial of odd order are symmetrical by origin. These
properties allow decreasing number of lineariza-
tion points to half while keeping precision. To
get the lowest number of shift cases of generated
PWA model we linearized the polynomials in the
same points, Fig. 2. The term ’linearization point’
denotes the interval division point where the PWA
function breaks.

2.3 Transformation to state space PWA form

Accuracy of the approximation of nonlinear sys-
tem is significantly increased when the function
is linearized around multiple distinct linearization
points. State space PWA structure describes be-
havior of nonlinear dynamical systems in multiple
linearization points.
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Fig. 4. PWA OAF ID studio

x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) + Diu(k) + gi
(23a)

IF

[
x
u

]
∈ Di, i = 1, . . . , nL (23b)

Every dynamic i is active in polyhedral partition
(23b) which can be expressed by inequality

guardXix(k) + guardUiu(k) ≤ guardCi (24)

Difference equation (21) can be easily transformed
to state space form. In Matlab difference equation
can be expressed by discrete transfer function. It
is possible to use transformation function tf2ss.
But this policy doesn’t lead to desired state space
PWA form. Desired state space form has to keep
all outputs of difference equation (21) in state
vector. So we can correctly define guardline in-
equality (24).
Here we present transformation example for sys-
tem with parameters na=2, nb=2, nk=0 or
nk=1, Fig.3 . Difference equation:

y(k) = c(i) + c(i)
y1

y(k − 1) + c(i)
y2

y(k − 2)+

c(i)
u1

u(k − 1) + c
(i)
u−2u(k − 2)

(25)

In PWA form guidelines are defined for x1 = u(k−
2), x2 = y(k − 2), x3 = y(k − 1) and u = u(k − 1)
PWA state space model:

x(k + 1) = Aix(k) + Biu(k) + fi (26a)

y(k) = Cix(k) + Di(k) + gi (26b)

Ai =




0 0 0
0 0 1

c(i)
u2

c(i)
y2

c(i)
y1


 (26c)

Bi =




1
0

c(i)
u1


 (26d)

Ci =
[
0 0 1

]
(26e)

Di = 0 (26f)

fi =




0
0

c(i)


 (26g)

gi = 0; (26h)

x ∈ < 3 × 1 > (26i)

3. PWA OAF IDENTIFICATION TOOLBOX

PWA identification problem has garnered great
interest in the research community. In Matlab
enviroment several toolboxes were developed for
identification hybrid and nonlinear systems (Roll
et al., 2004; Ferrari-Trecate, 2005; Julian et al.,
1999). The main aim of the PWA OAF Identifica-
tion Toolbox (PWA OAF IT) is to provide efficient
tools for analysis, identification and simulation of
PWA OAF model. In following section we present
toolbox functionality on several identification ex-
amples.
In PWA OAF IT the model is represented by the
following fields of the model structure:

model.na - Number of past output terms
model.nb - Number of past input terms
model.nk - Delay from input to the output
model.npoly - Number of Chebys. polynomials
model.ndiv - Division of {0,1} interval
model.Fi - Connection matrix of network
model.w - Network parameters
model.type - Type of polynomials ’Chebys’
model.const - Constant in difference equation
model.yconst - Y-cons in difference equation
model.uconst - U-const in difference equation
model.sysStruct - PWA state space struct
model.ynorm - Normalized output data
model.unorm - Normalized input data
model.u - Input data
model.y - Output data
model.ypar - Normalization param. of output
model.upar - Normalization param. of input

So far PWA OAF ID supports only MISO sys-
tems. In order to obtain identified model, call

>>model = pwaoafid(y,u,modelstruct,param)

Input arguments are in standard notation well
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Fig. 5. 3D function

known from PWAID toolbox. For more informa-
tion type

>>help oafpwaid

For using gui application Fig. 4, call

>> oafpwaid studio

3.1 Identification of 2-D function

2-D function is defined by formula:

y = a1e
−((x−b1)/c1)

2

+ a2e
−((x−b2)/c2)

2

+

a3e
−((x−b3)/c3)

2

+ a4e
−((x−b4)/c4)

2

a1 = 53.4, b1 = 5.165, c1 = 8.815,
a2 = 31.25, b2 = 18.69, c2 = 5.109,
a3 = 20.2, b3 = 13.89, c3 = 2.381,
a4 = 4.316, b4 = 9.864, c4 = 0.992,

(27)

We have made sample data in interval {7, 22}
(Fig. 5). In our example we did approximation
in one point, by two lines. Before parameter es-
timation it was necessary to normalize data into

the interval {−1, 1} where Chebyshev polynomials
are orthogonal. We used the first four Chebyshev
polynomials T0 ÷ T3. Mean square error for this
approximation is mse = 5.1947. To choose a best
position of linearization points is a state of art of
many algorithms. Through fast network parame-
ters computation it is possible to use even genetic
approach to get better position of linearization
point and number of chebyshev polynomials.

3.2 Identification of 3-D function

Consider a 3-D nonlinear function defined as

f(x̄) = −.2(sin(x1 + 4x2)) − 2 cos(2x1 + 3x2)
−3 sin(2x1 − x2) + 4 cos(x1 − 2x2)
x1 ∈ {0, 1},
x2 ∈ {0, 1},

(28)

We used the first six Chebyshev polynomials, up
to the fifth order T0 ÷ T5, linearized in 1 point,
each polynomial by two lines. The total number
of shifting cases for the resulting PWA function is
nlp+1

u where nu is the number of neural network
inputs and lp is the number of linearization points.
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Fig. 6. Vehicle identification data

For the 3-D function example (28) we get 22 = 4
shifting cases. The result is plotted in Fig. 5b. For
this approximation mse=0.0144.

3.3 Modeling and control of nonlinear dynamic
system

In next example we will try to capture vehi-
cle nonlinear dynamic from input output data
for purpose of predictive control design of au-
tomatic cruise control. We used Simulink vehi-
cle model with automatic transmission controller
(Veh, 2006). Input for model is throttle and break
torque signal. Output is vehicle velocity. From the
character of input signals we can merge throttle
and break torque signal to one input signal (Fig.
6a). Positive part of the input signal is propor-
tional to accelerator pedal pressing and negative
part of the input signal is proportional to breaking
pedal pressing. Input-output data and identified
system output are captured in Fig. 6. We used
following identification parameters:

na = 1
nb = 1
nk = 1

npoly = 4 polynomials:T0, T1, T2, T3

ndiv = 1 approximation by two lines

(29)

These parameters leads to state space model with
one state variable and one input. Acquired PWA
state space model has four dynamics (four shifting
cases) and it is possible to design an automatic
cruise control for such system.
For control design we used MPT toolbox (Kvas-
nica et al., 2004). We designed explicit mpc con-
troller with time varying reference tracking prop-
erty. We choosed quadratic cost control problem:

min
u(0),...,u(N−1)

= x(N)T PNx(N)+

N−1∑

k=1

u(k)T Ru(k) + x(k)T Qx(k)

(30a)

s.t. :





x(k + 1|t) = fdyn(x(k), u(k))
umin ≤ u(k) ≤ umax

∆umin ≤ u(k) − u(k − 1) ≤ ∆umax

ymin ≤ gdyn(x(k), u(k)) ≤ ymax

x(N) ∈ Tset

(30b)

Parameters of control design:

norm: 2

subopt_lev: 0

N: 3

tracking: 1

Q: 100

R: 1

Qy: 700

Thanks to few PWA dynamics it is possible choose
higher prediction horizon to refine control perfor-
mance. Resulting control law is defined over 430
regions. It is possible to get satisfactory perfor-
mance with control law defined over fewer num-
ber of regions. Designed control law was used in
feedback control with nonlinear vehicle model Fig.
7b.

4. CONCLUSION

PWA OAF toolbox significantly improves identifi-
cation and modeling of nonlinear systems. Trans-
formation to PWA state space model allows to use
existing control design tools. So far PWA OAF ID
supports only MISO systems. Three studied cases
were presented. It was shown that the proposed
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Fig. 7. Automatic cruise control

approach was effective in model precision and
universal in various input configuration. Compu-
tation of network parameters is fast and it allows
to execute identification for various parameters
(order of used Chebyshev polynomials, number
of linearization points) to get better performance
or even to use genetic approach. Accuracy of the
PWA OAF NN approximation depends on the
number of linearization points, the highest order
of used Chebyshev polynomials and absolute value
of computed parameters of the neural network.
More linearization points give better precision of
the approximation but complexity of the PWA
model increases. It is necessary to find suitable
proportion between the number of linearization
points and required precision.
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MATLAB Toolbox for Automatic
Approximation of Nonlinear Functions
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Abstract: : Given a nonlinear dynamical system in analytic form, the paper proposes a novel
method for approximating the system by a suitable hybrid model such that the approximation
accuracy is maximized. Specifically, the problem of approximating generic nonlinear functions
by piecewise affine (PWA) models is considered. We show that under mild assumptions, the
task can be transformed into a series of one-dimensional approximations, for which we propose
an efficient solution method based on solving simple nonlinear programs. Moreover, the paper
discusses a software implementation of the proposed procedure in form of a MATLAB toolbox.

Keywords: hybrid systems, approximation, nonlinear optimization

1. INTRODUCTION

Mathematical models of physical plants play a vital role
in many areas, such as in rigorous simulations, analysis, or
control synthesis. Typically, high model accuracy is usually
desired while keeping the model complexity on an accept-
able level. Traditionally, nonlinear models were preferred
from simulations, while most of available control tech-
niques are based on a local approximation around a single
operating point. The concept of hybrid systems (Branicky,
1995) can be viewed as a compromise solution between
accuracy of the model and its complexity. Hybrid models
feature a collection of local models accompanied with logic
IF-THEN conditions which enforce switching of the local
dynamics. When all local models are linear (or affine),
such systems are referred to as linear hybrid systems.
Although still nonlinear due to the presence of switches,
the underlying piecewise linearity allows for somewhat
easier control synthesis and analysis compared to using
full nonlinear models. Several mathematical frameworks
capable of capturing the relation between logic rules and
linear dynamics can be used: Piecewise Affine (PWA) mod-
els (Sontag, 1981), Mixed Logical Dynamical (MLD) sys-
tems (Bemporad and Morari, 1999), Linear Complemen-
tarity systems (Heemels et al., 2000) and max-min-plus-
scaling models (De Schutter and Van den Boom, 2001).
Under mild assumptions, all these frameworks are equiva-
lent to each other and it is possible to transform e.g. the
MLD system into a PWA model and vice-versa (Heemels
et al., 2001). For the purpose of this work we consider PWA
models, which use the concept of multiple linearization
to approximate a given nonlinear system with arbitrary
accuracy.

The problem which we address in this paper is the follow-
ing: given a nonlinear dynamical model x+ = f(x, u) and

a fixed complexity of its PWA approximation f̃(x, u) ≈
f(x, u), how should one design f̃ which minimizes the

1 Corresponding author, e-mail: alexander.szucs@stuba.sk

approximation error
∫

(f(x, u) − f̃(x, u))2? The answer is
non-trivial even putting optimality of the approximation
aside. Traditionally, two distinct approaches for deriving
PWA approximations are used. When the mathematical
formulation of the original nonlinear system is known, one
can design the approximation by hand. This is usually
done by employing human knowledge and experience to
devise several linearization points around which the origi-
nal nonlinear model should be linearized. Needless to say,
placement of such points has a crucial impact on the accu-
racy of the approximation. The HYSDEL (Hybrid Systems
Description Language) tool (Torrisi and Bemporad, 2004;
Kvasnica and Herceg, 2010) can be used to accelerate
this line of development. Formally, HYSDEL transforms
a linguistic description of a hybrid system into the cor-
responding MLD model, which can then be converted
into the PWA form. The language allows to define IF-
THEN switching rules which, based on whether some logic
condition is satisfied or not, enforce certain continuous
dynamics. Another option is to use hybrid identification
techniques (Ferrari-Trecate et al., 2001; Roll et al., 2004;
Ferrari-Trecate, 2005) to construct the PWA approxima-
tion from the input-output measurements. The crucial
advantage is that the model of the original nonlinear
system is not required to be fully available. The downside,
however, is that the approximation is only accurate in the
interval captured by the identification data. Moreover, the
procedure is computationally expensive and suited mainly
to low-dimensional problems.

In this work we propose to use an optimization-based
approach to derive PWA approximations of nonlinear sys-
tems whose vector field is an a-priori known function of
multiple variables. After formally stating the problem in
Section 2, we show in Section 3 that an optimal PWA ap-
proximation of generic nonlinear functions in one variable
can be formulated and solved as a nonlinear programming
problem. Subsequently, the approach is extended to de-
riving PWA approximations of multivariable functions in
Section 4. We show that, under a certain assumption, the
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problem boils down to solving a series of one-dimensional
approximations.

The algorithmic and software implementation of the ap-
proximation procedure are then discussed in Section 5.
Specifically, we introduce a new software toolbox which
packs the proposed approximation strategy in an easily
accessible form. Specifically, the toolbox allows user to
perform the approximation either directly from MAT-
LAB’s command line, or by using a custom graphical user
interface. Short, yet illuminating examples are provided to
illustrate capabilities of the toolbox.

2. PROBLEM STATEMENT

We consider generic dynamic systems in discrete-time

x+ = f(x, u), (1)

where the vector field f(·, ·) is assumed to be continuous
in the state variables x ∈ Rnx and in the inputs u ∈ Rnu .
System states and inputs are assumed to be constrained
to connected and closed domains X ⊂ Rnx and U ⊂ Rnu ,
respectively.

The objective is to approximate (1) by a different dynamic

system x+ = f̃(x, u) whose vector field f̃(x, u) is a PWA
function which consists of a pre-specified number N of
local linear dynamics:

f̃(x, u) =





A1x + B1u + c1 if [ x
u ] ∈ R1

...
...

ANx + BNu + cN if [ x
u ] ∈ RN .

(2)

Here, Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , ci ∈ Rnx , are the state-
update matrices of the i-th local linear approximation,
and Ri ⊂ Rnx×nu is the region of validity of the i-th
local model satisfying Ri 6= ∅, Ri ∩ Rj = ∅, ∀i 6= j, and
∪iRi = X × U .

Formally, the problem which we aim at solving can be
stated as follows:

Problem 2.1. Given a nonlinear vector field f(x, u) of
system (1), find the PWA approximation (2) of pre-
specified complexity which minimizes the approximation
error

eaprx :=

∫
(f(x, u) − f̃(x, u))2 dxdu, (3)

where the integral is evaluated over the whole region of
validity of (1), i.e. over X × U .

In the sequel we show how to solve Problem 2.1 provided
that the vector field f(z), z = [x, u]T satisfies the following
assumption.

Assumption 2.2. The function f(z1, . . . , zn) can be writ-

ten as
∑n

i=1 αi

( ∏qi

j=pi
fj(zj)

)
.

As an example, the function z1e
z2 satisfies such an as-

sumption, while the function ez1z2 does not. Although
the assumption is somewhat restrictive, the gained ad-
vantage is that approximating any multivariable function
f(z1, . . . , zn) boils down to solving a series of 1D problems,
as evidenced in the following two sections.

Remark 2.3. Since the approximation procedure discussed
in the sequel considers only the vector field in the right-

hand-side of (1), continuous-time systems ẋ = f(x, u) can
be treated as well.

3. FUNCTIONS IN ONE VARIABLE

First, we consider the one-dimensional case, i.e. approxi-
mating a nonlinear function f(z) : R 7→ R, with domain

Z ⊂ R, by a PWA function f̃(z) = aiz + ci if z ∈ Ri.
Since Z is assumed to be connected and closed, it is a line
segment [z, z]. Regions Ri define the partition of such
a line into N non-overlapping parts, i.e. R1 = [z, r1],
R2 = [r1, r2], . . ., RN−1 = [rN−2, rN−1], RN = [rN−1, z]
with ∪iRi = [z, z]. Solving Problem 2.1 then becomes to
find the slopes ai, offsets ci and breakpoints ri such that
the approximation error is minimized, i.e.

min
ai,ci,ri

∫ z

z

(f(z) − f̃(z))2 dz (4a)

s.t. f̃(z) =





a1z + c1 if z ∈ [z, r1]
...

...

aNz + cN if z ∈ [rN−1, z]

(4b)

z ≤ r1 ≤ · · · ≤ rN−1 ≤ z, (4c)

airi + ci = ai+1ri + ci+1, i = 1, . . . , N − 1,(4d)

where (4d) enforces continuity of f̃(z) along the break-
points ri. The IF-THEN based nonlinear constraint (4b)
can be eliminated by observing that, by definition, regions
Ri are non-overlapping, and the integral in (4a) can hence
be written as
∫ z

z

(
f(z) − f̃(z)

)2
dz =

N∑

i=1

( ∫ ri

ri−1

(
f(z)−(aiz+ci)

)2
dz

)
,

(5)
with r0 = z and rN = z. The NLP (4) can therefore be
written as

min
ai,ci,ri

N∑

i=1

(∫ ri

ri−1

(
f(z) − (aiz + ci)

)2
dz

)
(6a)

s.t. z ≤ r1 ≤ · · · ≤ rN−1 ≤ z, (6b)

airi + ci = ai+1ri + ci+1, i = 1, . . . , N − 1.(6c)

Remark 3.1. The number of approximation segments can
be be reduced by normalizing the domain of f to an
interval [−1, 1].

For simple functions f(z), the integral in (6a) can be
expressed in an analytical form in unknowns ai, ci, ri,
along with the corresponding gradients. For more complex
expressions, the integrals can be evaluated numerically,
e.g. by using the trapezoidal rule. In either case, prob-
lem (6) can be solved to a local optimality e.g. by using
the fmincon solver of MATLAB. Alternatively, one can
use global optimization methods (Adjiman et al., 1996;
Papamichail and Adjiman, 2004; Chachuat et al., 2006)
that guarantee that an ǫ-neighborhood of the global opti-
mum can be found.

Example 3.2. Consider the function f(z) = z3 on domain
−1.5 ≤ z ≤ 1.5. The analytic form of the integral (6a) is
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Fig. 1. Graph of f(z) = z3 (blue line) and the PWA

approximations f̃(z) (red dashed lines).

N∑

i=1

(
c2
i (ri + ri−1) + aici(r

2
i − r2

i ) +
a2

i

3
(r3

i − r3
i−1) −

−ci

2
(r4

i − r4
i−1) − 2ai

5
(r5

i − r5
i−1) +

1

7
(r7

i − r7
i−1)

)
,

with r0 = −1.5 and rN = 1.5. The PWA approximation
of f(z) with N = 3 regions was found by solving the
NLP (6) using fmincon, which took 0.05 seconds on a 2.4
GHz CPU running MATLAB 2009b. The obtained PWA
approximation is then given by

f̃(z) =





4.1797z + 3.1621 if − 1.5 ≤ z ≤ −0.8423

0.4257z if − 0.8423 ≤ z ≤ 0.8423

4.1797z − 3.1621 if 0.8423 ≤ z ≤ 1.5

The approximation accuracy can be increased by roughly
a factor of 10 by approximating f(z) by N = 5 regions, as
can be seen from Figure 1.

4. MULTIVARIABLE FUNCTIONS

The task is to approximate a given multivariable function
f(z1, . . . , zn) : Rn 7→ R with domain Z ⊂ Rn by a PWA

function f̃(z1, . . . , zn), defined over the same domain, such
that the approximation error (3) is minimized.

Definition 4.1. (Williams (1993)). Function f(z1, . . . , zn)
is called separable if it can be expressed as the sum of
functions of a single variable, i.e. f(z1, . . . , zn) = f1(z1) +
· · · + fn(zn).

If f(z1, . . . , zn) is readily separable (e.g. when f(z1, z2) =
ez1 + sin (z2)), its optimal PWA approximation can be
obtained by applying the 1D scenario of Section 3 to the

individual components of the function, i.e. f̃(z1, . . . , zn) =

f̃1(z1) + · · · + f̃n(zn). The total number of regions over

which the PWA approximation f̃(·) is defined is hence
given by

∑n
j=1 Nj , where Nj is the pre-specified complex-

ity of the j-th approximation f̃j(zj).

A surprisingly large number of non-separable functions can
be converted into the separable form by applying a simple
trick, elaborated in more details e.g. in Williams (1993). To
introduce the procedure, consider a non-separable function
f(z1, z2) = z1z2 with domain Z := [z1, z1] × [z2, z2].
Define two new variables

y1 = (z1 + z2), y2 = (z1 − z2). (7)

Then it is easy to verify that 1/4(y2
1 − y2

2) = z1z2.
The coordinate transformation therefore transforms the

original function into a separable form, where both terms
(y2

1 and y2
2) are now functions of a single variable. The

procedure of Section 3 can thus be applied to compute
PWA approximations of fy1

(y1) := y2
1 and fy2

(y2) :=
y2
2 , where the function arguments relate to z1 and z2

via (7). Important to notice is that fy1
(·) and fy2

(·) have
different domains, therefore their PWA approximations

f̃y1
(y1) ≈ y2

1 and f̃y2
(y2) ≈ y2

2 will, in general, be
different. Specifically, the domain of fy1

(·) is [y
1
, y1] with

y
1

= min{z1 + z2 | z1 ≤ z1 ≤ z1, z2 ≤ z2 ≤ z2} and

y1 = max{z1 +z2 | z1 ≤ z1 ≤ z1, z2 ≤ z2 ≤ z2}. Similarly,
the domain of fy2

(·) is [y
2
, y2], whose boundaries can

be computed by respectively minimizing and maximizing
z1 −z2 subject to the constraint [z1, z2]

T ∈ Z. The overall

PWA approximation f̃(z1, z2) ≈ z1z2 then becomes

f̃(z1, z2) = 1/4(f̃y1
(z1 + z2) − f̃y2

(z1 − z2)). (8)

The value of f̃(z1, z2) for any points z1, z2 is obtained

by subtracting the value of the PWA function f̃y2
(·)

evaluated at the point z1 − z2 from the function value of

f̃y1
(·) evaluated at z1 + z2, followed by a linear scaling.

The procedure naturally extends to multivariable func-
tions represented by the product of two nonlinear functions
of a single variable, i.e. f(z1, z2) = f1(z1)f2(z2). Here, the
transformation (7) becomes

y1 = f1(z1) + f2(z2), y2 = f1(z1) − f2(z2). (9)

Therefore, 1/4(y2
1 − y2

2) = f(z1, z2) still holds. Let
fy1

(y1) := y2
1 and fy2

(y2) := y2
2 . The domain of fy1

(·)
is [y

1
, y1] and dom fy2

(·) = [y
2
, y2] with

y
1

= min{f1(z1) + f2(z2) | [z1, z2]
T ∈ Z}, (10a)

y1 = max{f1(z1) + f2(z2) | [z1, z2]
T ∈ Z}, (10b)

y
2

= min{f1(z1) − f2(z2) | [z1, z2]
T ∈ Z}, (10c)

y2 = max{f1(z1) − f2(z2) | [z1, z2]
T ∈ Z}, (10d)

which can be computed by solving four NLP problems.
Finally, since all expressions are now functions of a sin-

gle variable, the PWA approximations f̃1(z1) ≈ f1(z1),

f̃2(z2) ≈ f2(z2), f̃y1
(y1) ≈ fy1

(y1), and f̃y2
(y2) ≈ fy2

(y2)
can be computed by solving the NLP (6). The overall

optimal PWA approximation f̃(z1, z2) ≈ f(z1, z2) then
becomes

f̃(z1, z2) = 1/4

(
f̃y1

(
f̃1(z1)+f̃2(z2)

)
−f̃y2

(
f̃1(z1)−f̃2(z2)

))
.

(11)
The evaluation procedure is similar as above. I.e., given

the arguments z1 and z2, one first evaluates z̃1 = f̃1(z1)

and z̃2 = f̃2(z2). Subsequently, one evaluates ỹ1 = f̃y1
(·)

with the argument z̃1 + z̃2, then ỹ2 = f̃y2
(·) at the point

z̃1 − z̃2. Finally, f̃(z1, z2) = 1/4(ỹ1 − ỹ2).

Example 4.2. Consider a non-separable function given by
f(z1, z2) = f1(z1)f2(z2) with f1(z1) = z3

1 , f2(z2) =
|z2| + 0.5z2

2 − sin (z2)
3 on domain [−1.5, 1.5] × [−1, 2.5].

Graph of the function is shown in Figure 2(a). In order
to convert f(z1, z2) into a separable form, we introduce
variables y1 and y2 as per (9). The PWA approxima-

tion f̃(z1, z2) ≈ f(z1, z2) is then given by (11). Here,

f̃1(z1) was obtained by approximating f1(z1) by a PWA
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(a) Graph of f(z1, z2). (b) Approximation f̃(z1, z2)

Fig. 2. Graph of f(z1, z2) and its PWA approximation (11)
in Example 4.2.

function with 3 regions as shown in Figure 1(a), while

f̃2(z2) ≈ f2(z2) was approximated by 7 regions. Subse-
quently, the domains [y

1
, y1] and [y

2
, y2] were computed

via (10), which resulted into dom y1 = [−3.374, 9.095]
and dom y2 = [−9.095, 3.374]. Finally, the PWA approx-

imations f̃y1
(y1) ≈ y2

1 and f̃y2
(y2) ≈ y2

2 were obtained by
solving the NLP (6) with N = 2. Graphs of y2

1 , y2
2 and their

respective PWA approximations are presented in Figure 3.

The overall approximation f̃(z1, z2) therefore consists of
14 regions. Despite a rather crude approximation of the
square functions, the combined PWA function (11), shown
in Figure 2(b), features only a minor average approxi-
mation error of 3% and a worst-case error of 15%. By
increasing the number of linearizations for y2

1 and y2
2 from

N = 2 to N = 4 (hence increasing the complexity of

f̃(z1, z2) from 14 to 18 regions), the average and worst-case
errors can be further reduced to 1% and 8%, respectively.
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2

Fig. 3. Functions y2
i (blue) and their PWA approximation

f̃yi
(yi) (red dashed lines) in Example 4.2.

Separation of multivariable functions with more than two
terms can be performed in an inductive manner. Consider
f(z1, z2, z3) = f1(z1)f2(z2)f3(z3). First, approximate the
product f1(z1)f2(z2) by a PWA function of the form
of (11), which requires four PWA approximations

f̃1(·) ≈ f1(·), f̃2(·) ≈ f2(·), f̃y1
(·) ≈ y2

1 , f̃y2
(·) ≈ y2

2 ,

with y1 and y2 as in (9). Let fa(z1, z2) := f1(z1)f2(z2).
Then f(z1, z2, z3) = fa(z1, z2)f3(z3), which can again be
approximated as a product of two functions. Specifically,
define

y3 = fa(·) + f3(z3), y4 = fa(·) − f3(z3), (12)

and hence fa(z1, z2)f3(z3) = 1/4(y2
3 − y2

4). The domains
over which y2

3 and y2
4 need to be approximated are,

respectively, [y
3
, y3] and [y

4
, y4] with

y
3

= min{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (13a)

y3 = max{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (13b)

y
4

= min{f1(z1)f2(z2) − f3(z3) | z ∈ Z}, (13c)

y4 = max{f1(z1)f2(z2) − f3(z3) | z ∈ Z}, (13d)

and z = [z1, z2, z3]
T . Subsequently, three additional

PWA approximations

f̃y3
(y3) ≈ y2

3 , f̃y4
(y4) ≈ y2

4 , f̃3(z3) ≈ f3(z3)

need to be computed over the corresponding domains. The

aggregated optimal PWA approximation f̃(z1, z2, z3) ≈
f(z1)f(z2)f(z3) consists of 7 individual approximations
and is given by

f̃(·) = 1/4

(
f̃y3

(
f̂a + f̃3(z3)

)
︸ ︷︷ ︸

ŷ3

− f̃y4

(
f̂a − f̃4(z3)

)
︸ ︷︷ ︸

ŷ4

)
. (14)

Here, f̂a is the function value of f̃a(z1, z2) ≈ f1(z1)f2(z2)

at z1 and z2, where f̃a(·) is obtained from (11), i.e.:

f̂a = 1/4

(
f̃y1

(
f̃1(z1) + f̃2(z2)

)
︸ ︷︷ ︸

ŷ1

− f̃y2

(
f̃1(z1) − f̃2(z2)

)
︸ ︷︷ ︸

ŷ2

)
.

(15)

The overall PWA approximation f̃(z1, z2, z3) can then be
evaluated, for any z1, z2, z3 ∈ Z, by computing the
function values of the respective approximations in the
following order:

Step 1: ŷ1 = f̃y1
(f̃1(z1) + f̃2(z2)),

Step 2: ŷ2 = f̃y2
(f̃1(z1) − f̃2(z2),

Step 3: ŷ3 = f̃y3
(1/4(ŷ1 − ŷ2) + f̃3(z3)),

Step 4: ŷ4 = f̃y4
(1/4(ŷ1 − ŷ2) − f̃3(z3)),

Step 5: f̃(z1, z2, z3) = 1/4(ŷ3 − ŷ4).

Such an inductive procedure can be repeated ad-infinitum
to derive PWA approximations of any multivariable func-
tion which satisfies Assumption 2.2. In general, the
PWA approximation will consists of 2p + n individual
PWA functions, where n is the number of variables in
f(z1, . . . , zn) and p is the number of products between
individual subfunctions fj(zj). As an example, for f(·) :=
α1f1(z1)f2(z2)f4(z4) + α2f3(z3)f5(z5) we have p = 3. We
remark that inclusion of scalar multipliers αj into the
PWA description of the form (14)–(15) is straightforward
and only requires linear scaling of the corresponding terms.

Remark 4.3. Since approximation of multivariable func-
tions boils down to a series of 1D approximations which
are then aggregated by a linear relation in (8), the overall
approximation error is proportional to the sum of individ-
ual approximation errors.

Remark 4.4. Due to a linear nature of the aggregation
in (8) and due to the fact that each single 1D approxi-
mation is continuous due to (6c), the overall multivariable

approximation f̃ is continuous as well.

5. SOFTWARE IMPLEMENTATION

Next, we discuss software implementation of the ap-
proximation procedure described above. The implementa-
tion is provided in a form of an open-source MATLAB
toolbox, called AUTOPROX, which is freely available
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from http://www.kirp.chtf.stuba.sk/∼sw/. The tool-
box provides two types of user interfaces. Input data can
either be provided directly from the command line or,
alternatively, entered using a graphical interface.

5.1 Command-Line Interface

The command-line interface is illustrated first by revisiting
Example 3.2. To approximate the function f(z) = z3, one
proceeds as follows:

syms z

f = z^3

bounds = [-1.5, 1.5]

regions = 3

[aprx, data] = autoprox_1d(f, bounds, regions)

Here, AUTOPROX uses the Symbolic Toolbox to define
symbolic representation of the function to be approxi-
mated on a given domain (represented by the bounds
variable), with a given number of PWA segments (the
regions variable). The first output argument (denotes as
aprx here) is a function handle, which can be used e.g. to
plot the approximation:

x = -1.5:0.001:1.5

plot(x, x.^3, x, aprx(x), ’--’)

which will generate a plot as seen in Figure 1(a). The
second output (stored in the data variable) can be used
to export the PWA approximation into the HYSDEL
language:

hysdel_1d(data, ’filename.hys’)

The generated HYSDEL model can be subsequently com-
piled by the HYSDEL compiler, which will provide a
mathematical model suitable e.g. for control synthesis.

Approximation of 2D functions can be performed in a
similar manner. Let us again consider Example 4.2, i.e. the
task is to approximate the function f(z1, z2) = z3

1(|z2| +
0.5z2

2 −sin (z2)
3) on domain [−1.5, 1.5]× [−1, 2.5]. Again,

the first step is to define the function using symbolic
variables:

syms z1 z2

f1 = z1^3

f2 = abs(z2) + 0.5*z2^2 - sin(z2^3)

Next, the function domain and number of approximation
segments need to be provided:

f1_bounds = [-1.5, 1.5]

f2_bounds = [-1, 2.5]

f1_regions = 3

f2_regions = 7

y1_regions = 2

y2_regions = 2

Finally, the approximation f̃(z1, z2) can be obtained by
calling

[aprx,data] = autoprox_2d(f1,f2,f1_bounds,f2_bounds,...

f1_regions, f2_regions,y1_regions, y2_regions)

Similarly as in the previous example, the aprx output is
a function handle which can be used to directly evaluate
the approximation at some given values of z1 and z2, e.g.

z1 = 0.5

z2 = -1

true_value = z1^3*(abs(z2) + 0.5*z2^2 - sin(z2^3))

aprx_value = aprx(z1, z2)

The second output (called data) again serves to generate
the HYSDEL version of the approximation:

hysdel_2d(data, ’filename.hys’)

Approximation of n-dimensional functions can be obtained
by calling the autoprox nd function. A detailed descrip-
tion of its calling syntax is omitted due to brevity, but is
provided in the distribution package of AUTOPROX.

5.2 Graphical User Interface (GUI)

The GUI allows to perform the approximation in an
easily accessible manner where all data can be entered
conveniently without the need to remember the exact
calling syntax of individual approximation functions.

The main window of the GUI is shown in Figure 4. The
user starts by selecting the type of approximation using
radio buttons. Then, he provides the symbolic represen-
tation of the function to approximate in the FUNCTION
text box. The domain of the function, represented by its
minimal and maximal bounds, has to be filled out next.
After providing all necessary details, the user can select the

Fig. 4. Basic GUI window.

number of approximation regions by a drop-down menu,
as shown in Figure 5. Afterwards, the approximation is
computed by clicking the SPLIT button. A concise sta-
tistical evaluation of the approximation will then appear
in a corresponding section of the GUI. It informs the user
about the approximation quality, represented by average
and worst-case approximation errors. Finally, the approx-
imation can be exported to a HYSDEL source by clicking
the EXPORT button.

It should be noted that the GUI is still subject to active
development and substantial modifications are expected
within next following months.
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Fig. 5. GUI windows after performing approximation.

6. CONCLUSIONS

We have shown that a large class of dynamical sys-
tems with nonlinear vector fields can be approximated by
PWA systems of fixed complexity in an optimal manner.
The procedure boils down to solving a series of one-
dimensional problems for which efficient solution methods
exist. Derivation of the approximation can be easily au-
tomated and the HYSDEL variant of the hybrid approx-
imation can be generated, hence allowing for subsequent
control synthesis based on the hybrid model. A MATLAB
toolbox which implements the proposed approximation
strategy was described as well. The toolbox allows user to
enter data either via command line, or by using a graphical
user interface. An experimental version of the toolbox is
available for free download at http://www.kirp.chtf.stuba.
sk/∼sw/.
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Abstract: The main aim of this paper is to present a new version of software for PID controller
tuning called PIDTOOL 2.0. The software represents a user friendly tool for simple step–
response–based identification of a process model, fast PID controller tuning, and effective
checking the quality of control. It has been developed in the MATLAB–Simulink programming
environment using its graphic user interface and can be used as useful and visual software for
teaching purposes. In PIDTOOL 2.0, user can easily change a language of the graphic user
interface. Nowadays, there is a possibility to choose between English and Slovak.

Keywords: PID controller, controller tuning, identification, filtration, graphic user interface

1. INTRODUCTION

The aim of this paper is to present a new version of
software for PID controller tuning called PIDTOOL 2.0
(Oravec (2010), Bakošová and Oravec (2009)). It has
been developed at the Institute of Information Engineer-
ing, Automation, and Mathematics of the FCFT STU
in Bratislava (Čemanová (2007), Oravec (2010)) in the
MATLAB – Simulink programming environment and uses
its graphic user interface (GUI).

As PID controllers belong to the most used types of
controllers in industry (Åström and Hägglund (1995)),
PIDTOOL 2.0 is oriented mainly on PID controller tun-
ing. The software enables to tune PID controllers using
various analytical and experimental methods, and new
methods described in Xue and Chen (2008), Åström and
Hägglund (1995), Bakošová and Fikar (2008), Mikleš and
Fikar (2007), Ogunnaike and Ray (1994), Vı́tečková and
Vı́teček (2006), Lošonský (2006), Weng et al. (1995), Shaw
(2006), Bakošová et al. (2003), Kub́ık and Kotek (1983),
and Šulc and Vı́tečková (2004) were added. If a transfer
function of the controlled process is unknown, this software
enables to identify the controlled process from its step
response (Fikar and Mikleš (1999)). The identified step
response can be either damped periodic or aperiodic. The
step–response data can be set directly or loaded from the
data file. If noisy step–response data have been loaded, de-
signed software enables to run filtration. Properties of the
tuned controller can be judged visually and analytically, as
PIDTOOL 2.0 displays simulated control response, time
behavior of the manipulated variable and values of various
integral performance indexes. So, it is easy to compare
several closed–loop step responses generated using various
PID controllers with different values of set-points, distur-
bances and constraints on manipulated variables.

The software PIDTOOL 2.0 can be used especially for
teaching purposes in laboratory exercises oriented on pro-
cess control. It can be also useful for those who need to
identify controlled process from its step–response data, to
filter noisy data, to tune PID controllers or to compare
various types of control algorithms with simple PID con-
trol.

2. PIDTOOL 2.0

PIDTOOL 2.0 solves two basic problems, identification
and controller tuning (Fig. 1).

PIDTOOL 2.0 enables to identify a controlled process
from its step response. The software distinguishes iden-
tification from an aperiodic or a damped periodic step
response.

Fig. 1. Basic window of PIDTOOL 2.0

The Strejc method (Bakošová and Fikar (2008), Mikleš
and Fikar (2007), Lošonský (2006)) is applied for identi-
fication from the aperiodic step response and the method
described in Mikleš and Fikar (2007) is used for identifica-
tion from the damped periodic step response. The result
of identification is a controlled process model described by
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the transfer function (1) for aperiodic or (2) for damped
periodic step response

G(s) =
K

(Ts + 1)
n e−Ds (1)

G(s) =
K

T 2s2 + 2ξT s + 1
e−Ds (2)

where n is the order of the system, K is the gain, T is the
time constant, ξ is the damping coefficient and D is the
time delay.

The identification can be simply started using button Iden-
tification located in the basic window (Fig. 1). The next
window (Fig. 2) offers three identification possibilities.

Fig. 2. Basic window of identification

The first button Step Response Data enables to identify
the controlled process directly from data obtained from the
measured and recorded step response. The second button
Load the Data File (Fig. 2) opens the new window (Fig. 3),
where user can comfortably find out a required data file
containing recorded step–response data. The considered
structure of the data file is as follows, the first column
vector represents a time and the second column vector
represents associated measured values of output variable.
PIDTOOL 2.0 enables to load the data file which includes
also the third column vector of values of manipulated
variable (Fig. 4). If several step responses are included
in the loaded data file, they are automatically recognized
and the nominal step response is evaluated (Fig. 5). It
enables to reach the nominal transfer function of identified
non-linear controlled process. This possibility makes the
identification from step response using this software even
user–friendlier.

Fig. 3. Window for loading the datafile

In the next window, there is a choice of data processing
(Fig. 6). To obtain the aperiodic model of controlled
process, user can directly use the button Identification.

When the damped periodic model is required, user can
simply activate the checkbox Periodic process and then

Fig. 4. Loaded data of step response

Fig. 5. Nominal and normalized step responses

Fig. 6. Choice of processing of loaded data

use the button Identification. If the controlled process has
been identified using the Strejc method, the tangent to
the step response is also depicted and its equation is given
(Fig. 7). In the new window, the parameters of model (1)
or (2) of identified process are shown (Fig. 8, Fig. 9).

PIDTOOL 2.0 enables to use button Identification Tuning
(Fig. 10) to receive the transfer function, which generates
the step response, that covers the original one more
precisely. In the new window (Fig. 11) the step response
of identified transfer function can be simply modified by
changing the slope of its tangent (Lošonský (2006)). The
new parameters of identified transfer function are directly
shown. It helps to check whether the identified transfer
function has still required properties, e.g. the order n. If
the loaded data are noisy, the user can use the filtration
before identification, simply using the button Filtration
(Fig. 6). Then the new window for filtration is opened
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Fig. 7. Step response of identified process

Fig. 8. Identified parameters of aperiodic system

Fig. 9. Identified parameters of damped periodic system

(Fig. 12). By using the button Save (Fig. 12), user can
simply store reached filtered data into the new data file for
later usage. After filtration, identification can be started.

The third button Process Model Data (Fig. 2) enables to
identify process model with required properties of transfer
function. Using this button, the new window shown in
Fig. 13 will be opened. In this window, the parameters
of the model described by the transfer function (3) can be
simply set.

G(s) =
Num(s)

Den(s)
e−Ds (3)

Fig. 10. Additional options of identification

Fig. 11. Window for identification tuning

Fig. 12. Window of filtration

If the checkbox Periodic process has been activated
(Fig. 13), given model (3) will be approximated by the
transfer function (2), otherwise by the transfer function
(1). The approximation is started using the button Identi-
fication (Fig. 13). This approximation of the given model
can be useful in the case when chosen PID controller
tuning method requires controlled model described by the
transfer function (1) or (2).

The software PIDTOOL 2.0 is oriented mainly on PID
controller tuning. PID controllers can be designed for
controlled process models with either damped periodic
or aperiodic step responses described by the transfer
functions (1) or (2). To run direct controller tuning, user
can use the button Controller Tuning located in the basic
window (Fig. 1), or use this button after identification
(Fig. 9, Fig. 8). Then, a window is opened where the user
can choose a required type of PID controller and a type of
a tuning method (Fig. 14).
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Fig. 13. Process model data

Fig. 14. Window for PID controller tuning

Fig. 15. List of experimental methods used for PI controller
tuning

Fig. 16. List of analytical methods used for PID controller
tuning

It is possible to choose a P, PI, PID or PD controller.
For simpler handling, the methods for controller tuning
are divided into two main groups: analytical and experi-
mental methods. Various types of analytical (Fig. 16) and
experimental methods (Fig. 15) can be used for controller
tuning. Calculated parameters of the tuned controller are
shown in the new window (Fig. 17), where Z R is the gain,
T I is the reset time and T D is the derivative time of the
controller.

Fig. 17. Window for evaluating the quality of control

In the top right part of the opened window (Fig. 17),
the parameters of the transfer function of the controlled
process are also shown. These parameters can be modified
and the tuned controller can be so tested in the presence
of model uncertainty. The properties of the closed loop
with the tuned controller can be judged by simulation
of control. The standard control law (4) is supposed as
a default control law. Setting the parameters b W , T R
and T F enables to use improved form of control law.
The proportional part of control law is then modified by
the value of the parameter b W . Setting this parameter
enables to change the weight of set–point in the control
error evaluation (5). The non zero value of the parameter
T R modifies the integral part of control law (6). Setting
this parameter enables to prevent integral windup. The
parameter T F modifies the derivative part of control law
(7). The non zero value of this parameter represens a
filter of derivative part of control law to obtain the proper
transfer function of the derivative part of the controller.

u(t) = ZRe(t) +
ZR

TI

t∫

0

e(t)dt + ZRTD
de(t)

dt
(4)

uP (t) = ZR (bW w(t) − y(t)) (5)

uI(t) =
ZR

TI

t∫

0

(
e(t) − TI

ZR
TR (u(t) − uSAT (t))

)
dt (6)

uD(t) =
ZRTDs

1 + TD

TF
s

(7)
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Using the button Step Response (Fig. 17) runs quality
evaluation of control. The set–point tracking and the dis-
turbance rejection can be simulated in the presence of
boundaries on the control input. For simpler handling,
the parameters have preset default values. In the case, the
manipulated variable is constrained, user can compare the
closed-loop step responses and the time behaviors of the
manipulated variable before and after the saturation. After
simulation, the closed–loop step responses (Fig. 18) and
the time behaviors of the manipulated variable (Fig. 19)
are shown. In the case the legend overlaps the displayed
graph (Fig. 18), it is possible to deactivate the checkbox
Legend and to hide the shown legend. Using the checkbox
Grid leads to displaying the grid of the shown graph. Both
of these possibilities are included in all displayed graphs,
generated by this software. The quality of control (Fig. 20)
can by also judged by calculating several integral perfor-
mance indexes (Mikleš and Fikar (2007), Bakošová et al.
(2003), Xue and Chen (2008), Oravec (2010), Čemanová
(2007)).

Fig. 18. Closed–loop step response

Fig. 19. Control input

Using the possibilities of window shown in Fig. 17, it
is easy to compare several step responses and values of

Fig. 20. Values of performance indexes

performance indexes reached with different values of set–
points, disturbances and constraints on the manipulated
variables. The values of all the parameters, which are nec-
essary for simulations are stored by PIDTOOL 2.0. Calcu-
lated values of performance indexes are also stored. These
stored data can be simply shown by using Setup/Show
results located in basic window (Fig. 21). The stored
data are transformed into html -file. The stored data are
shown in simple summary table with date and time of
simulation. This new ability can be helpful in the case,
when many simulations at different conditions have been
evaluated and user wants to compare obtained results to
make decision, which controller is the most suitable for
control.

Fig. 21. Setup menu of PIDTOOL 2.0

It is easy to change a language of graphic user interface.
Actually, there is a possibility to choose between English
and Slovak language (Fig. 21). Also other languages can
be simply added into the software PIDTOOL 2.0.

3. CONCLUSION

The software PIDTOOL 2.0 has been developed in the
MATLAB – Simulink programming environment using its
Graphical User Interface and offers to the user a comfort-
able and visual environment for fast identification, simple
PID controller tuning and effective evaluating the quality
of control in various conditions. The values necessary for
evaluating the quality of control and calculated quality
criteria are stored and can be displayed in a simply sum-
mary table. Using this new ability helps to decide, which
controller is the most suitable for control. This software
has been tested by students at the FCFT in two courses; in
the course Process Dynamics and Control that is taught in
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the first year of the Master study and the course Integrated
Control in the Process Industry that is taught in the third
year of the Bachelor study. Using the software is limited
only for a teaching purposes. To obtain the software con-
tact the authors.

There exist various software applications, which enables
to design the PID controller, for example see (Lošonský
(2006)) or (Schlegel and Čech (2004)). The comparison of
the available applications will be subject of our next work.
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Abstract: The print characteristics of optical density, dot area and ink trapping are suitable to control of printing 
process. To evaluate the print characteristics on the basis of scanned micro-samples of printing sheets, it is 
necessary to carry out the segmentation of colour regions, printed with process inks. The accuracy of the 
evaluation of these print characteristics strongly depends on the sufficient accurate segmentation of colour 
regions involved in the print sample. This paper describes the thresholding method of segmentation, combined 
with edge detection between colour regions. 

Keywords: Colour print, control of print, print characteristics, region segmentation 
 

1. Introduction 
The control of optimal colouring of printing sheets in the 
inking unit is the standard function, which is implemented in 
the printing press. Utilization of this function in the printing 
process needs the measuring of printing parameters optical 
density, dot area, ink trapping and colour differences. The 
method described in this paper enables measuring of theses 
parameters from segmented colour regions in halftone areas 
of printing sheets. The application of this method in printing 
process control increases the quality of the print. 

Colour publications are printed with using four process inks – 
yellow (Y), magenta (M), cyan (C) and black (K) by various 
technologies of industrial press, such as digital screening - 
Green (1995). The results of such printing method are 
halftone dots of various sizes printed with these four process 
inks (fig. 1).  

We can measure and evaluate the basic printing 
characteristics, which determine quality of the print, with 
various methods. How to obtain them from the halftone 
colour samples is described in this work. 

  

    
   

Fig. 1 Three-colour print sample with digital screening 
(scanned with zoom about 100) 

  
The basic print characteristics used to examine of print 
quality, measured in the solid and halftoned areas by 
densitometry are - Mortimer (1991): 

Optical density of the ink layer (determines quality of ink 
printing on the paper) 

  
R

W

L
L

D log=                       (1) 

where LW is the intensity of light reflected from the white 
region of the paper, and where LR is the intensity of light 
reflected from the process ink region printed on the paper. 

Geometrical Dot Area in percents 

  
T

PD
G S

S
=Φ                                         (2) 

where SPD is the surface of the printed dot, and where ST is 
total surface of the halftone cell. 

Ink trapping (determines quality of ink printing to ink layer 
printed first) 

  
2

112

D
DD

T
−

=                                      (3) 

where D12 is the density of the overprint, where D1 is the 
density of the first printed colour, and where D2 is the density 
of the second printed colour. 

These parameters can be evaluated also from the regions of 
halftone dots of colour samples scanned with a CCD camera. 
The usual practice is to perform the segmentation of an 
individual process colour and their overprint regions from the 
colour sample, and then evaluate the print characteristics by 
the method of the image analysis. In this case the print 
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characteristics are: optical density inside the segmented 
regions, ink trapping evaluated from these densities and area 
of segmented region – Fribert (2002). 

Optical densities inside halftone dots of cyan, magenta and 
yellow, evaluated by image analyses method are: 

)4(logloglog
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=  is light intensity reflected 

from the white reference sample, Np is number of pixels 
inside segmented colour region, Nw is number of pixels inside 
white reference sample and where ri,j, gi,j, bi,j are colour 
components of light reflected from the segmented colour 
region or from white reference sample. 

The crucial point of successful evaluation of print 
characteristics is the accurate segmentation of the colour 
regions in the print sample. There are many methods, how to 
improve accuracy results of segmentation – Sonka et al. 
(1993), Russ (1999). The combination of thresholding grey 
level image, gained from separation process, and edge 
detection applied on original colour image, can be used for 
this purpose. 

2. Separation of colour regions 
This proposed segmentation method is based in the first step 
on the process of colour separation of the print sample image 
into grey level image. After separation has the region of 
separated colour minimal brightness. The separation process 
is based on the evaluation of colour differences between 
colours included in the print sample. 

)5()()()( 2
,

2
,

2
,, rjirjirjiji BBGGRRD −+−+−=  

where Dij is colour difference in the pixel i,j, Ri,j , Gi,j , Bi,j 
are components of the pixel i, j involved in the sample, and 
Rr, Gr, Br  are the reference values of the colour, that is to be 
separated from the sample. 

There was proposed equation for the gray level brightness BR 
of the separated colour – Fribert (2005). The function MAX is 
applied for all possible values i, j in the image: 
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On the fig. 2 are presented images of blue and yellow 
separations created by application of eq. 6. The motives of 
this colours has the minimal brightness in comparison with 
other colours. 

 
 

Fig. 2 Separations of blue and yellow regions 

The segmentation of specific colour regions is based on using 
the monochromatic images obtained after described 
separation process. 

The simplest segmentation method in the image of the grey-
level separation is the thresholding. As was proven by many 
acts of measuring and evaluating, the optimal threshold 
always exists for images gained by the described method of 
the separation - Böhm (2001), Fribert (2002). The usual 
determination of threshold value from the brightness 
histogram of the separation is impossible in most cases, 
because of the inexpressive maximum or not-sharp valley in 
this histogram (fig. 3). Then the proposed method of the 
combination of the thresholding and edge detection is 
suitable for this purpose. 

  
Fig. 3 Histogram of yellow separation and optimal threshold, 

the value 76 was gained by proposed method. 

This method is based on the assumption that the border of the 
particular colour region lies in the middle of the edge of the 
colour changeover from the first to the second colour. This 
border can be obtained by the edge detection process. We can 
calculate significant edges of the specific colour from the 
original colour image by using of any standard edge 
detectors. The coordinates of the edge pixels determine the 
various threshold values in the image of separation. The 
average of these threshold values is the optimal threshold for 
the segmentation of the specific colour region.  

3. Edge detection of colour regions 
The edge detection method used in this work is based on the 
colour differences between the specific colour region and its 
neighbourhood. The statistical parameter variance of the 
colour value Hue in this neighbourhood indicates the location 
and size of the edge. For the correct segmentation it is 
necessary to determine edges only on the borders of colour 
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Fig. 4 Original image, its yellow separation, yellow edges 
and yellow regions segmented with optimal threshhold 

regions, that are to be segmented. On the fig. 4 are presented 
the original colour image, the image of its yellow separation, 
original image with significant edges of yellow regions and 
the resulting image of the yellow region segmentation. 

The pixel coordinates gained from the image of yellow edges 
were used as the pointers to the image of yellow separation to 
evaluate optimal threshold. As a result of segmentation 
process is the segmentation mask and after masking of the 
original image with this mask we get the resulting 
segmentation of yellow regions.    

On the fig. 5 are presented images of cyan-magenta sample 
and the separations of cyan, magenta and blue regions. The 
corresponding optimal threshold values for cyan, magenta 
and blue separations, calculated with help of the edge 
detection process, were 78, 88 and 74. 

 
Fig. 5 Separations of colour regions included in the cyan-

magenta sample 

4. Accuracy of segmentation 
The effect of the segmentation error can be demonstrated on 
evaluation of colour regions areas from the two-colour 
samples. In these two-colour samples were segmented all 
colours including white background. The sum of the colour 
regions areas would have to be 100 %. The difference from 
the 100 % determines the segmentation error. 

On the fig. 6 are presented the images of segmentations 
gained from previous cyan-magenta sample. These 
segmentation images were processed by thresholding of 
separation images with optimal threshholds and with 
subsequent masking of the original image. The sum of all 
segmented colour region areas, including white, was 97.11% 
segmentation error is then in this case 2.89 %.  

The proposed method was check on three tested sheets with  
two-colour halftone motives Cyan-Magenta, Cyan-Yellow 
and Magenta-Yellow with various values of the parameter 
dot area. There were scanned and processed by the proposed 
method 5 image samples from each sheet. The sheets were 
printed on the press Heidelberg Quickmaster QM-42 in the 
department of graphics arts of the University of Pardubice. 

 
By verifying of the proposed method the achieved maximal 
error was less then 5% in the case of  the offset print samples. 
In the offset print, in comparison e.g. with flexography print, 
the edges of halftone dots are blurred.  

               
Fig. 6 Segmentations of cyan, magenta blue and white 

regions 

 

4. Conclusions 
There were processed many image halftone samples from 
printing sheets in the department of graphic arts. The 
segmentation has been performed usually with the standard 
thresholding. The accuracy of segmentation was always 
under 10% in the case of the offset print. The proposed 
method is approximately twice more accurately. 
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The improving the segmentation accuracy has the positive 
effect on the successful evaluation of all important print 
characteristics, especially of the dot area parameter. The dot 
area parameter enables the measuring of the dot gain value 
(spreading of halftone dots), which causes the main distortion 
in the colour reproduction - colour shift.  

The contemporary production printing needs measure, 
evaluate and control the print characteristics with sufficient 
accuracy. The method described in this work can benefit to 
this purpose, but it can be used also in the other areas of 
image processing. 
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Abstract: This paper addresses the disturbance decoupling problem (DDP) for nonlinear
systems extending the results for continuous-time systems into the discrete-time case. Sufficient
conditions are given for the solvability of the problem. The notion of the rank of a one-form is
used to find the static measurement feedback, that solves the DDP whenever possible. Moreover,
necessary and sufficient conditions are given for single-input single-output systems as well as for
multi-input single-output systems under the additional assumption.

Keywords: Nonlinear systems, discrete-time systems, disturbance decoupling, static
measurement feedback.

1. INTRODUCTION

The disturbance decoupling problem (DDP) for discrete-
time nonlinear control system by state feedback has
been addressed in many papers; see Aranda-Bricaire and
Kotta (2004 2001); Fliegner and Nijmeijer (1994); Griz-
zle (1985); Kotta and Nijmeijer (1991); Monaco and
Normand-Cyrot (1984). Most papers extend the known
results for continuous-time systems (see for example Ni-
jmeijer and van der Schaft (1990); Conte et al. (2007);
Isidori (1995)) into the discrete-time domain and in all
these papers the control system is described by smooth
or analytic difference equations. However, there are no
papers that address the DDP for discrete-time nonlinear
control systems using the output feedback except that
of by Shumsky and Zhirabok (2010) (see also Kotta and
Mullari (2010)) and Kotta et al. (2011). In Shumsky and
Zhirabok (2010) the controlled output is a vector function
of the measured output, having possibly less components
than the measured output itself. Therefore, the above
solution may be considered only as a partial solution. The
paper by Kotta et al. (2011) provides a full algorithmic
solution for the problem using the dynamic feedback. In
both papers the novel algebraic approach, called the al-
gebra of functions, is applied, see Zhirabok and Shumsky
(2008).

As for continuous-time nonlinear control systems there
exist also only a few papers addressing the problem, see
Pothin et al. (2002); Isidori et al. (1981); Xia and Moog
(1999); Andiarti and Moog (1996). The paper by Pothin
et al. (2002) studies the problem using a static measure-
ment feedback, and in Isidori et al. (1981) the feedback
considered is restricted to pure dynamic measurement
feedback, whereas the other two papers focus on the dy-
namic measurement feedback.

The goal of this paper is to extend the results of Pothin
et al. (2002) for discrete-time nonlinear control systems.

2. PROBLEM STATEMENT

Consider a discrete-time nonlinear control system

x(t+ 1) = f(x(t), u(t), w(t))

y(t) = h(x(t)) (1)

z(t) = k(x(t)),

where the state x(t) ∈ Rn, the control input u(t) ∈ Rm, the
disturbance input w(t) ∈ Rν , the output to be controlled
y(t) ∈ R and the measured output z(t) ∈ Rµ. Assume that
f , h and k are meromorphic functions of their arguments.

Let K∗ denote the inversive field of meromorphic functions
in variables x(t), u(t), w(t) and a finite number of their (in-
dependent) forward- and backward shifts. Note that not all
the variables are independent because of the relationships
defined by (1) and in the computations the dependent vari-
ables have to be expressed via the independent ones. For
example, x(t+ 1) has to be replaced by f(x(t), u(t), w(t)).
See Aranda-Bricaire et al. (1996) for the details how to
construct K∗.
Define the vector spaces X = spanK∗{dx(t)}, Z =
spanK∗{dz(t)}, U = spanK∗{du(t + k), k ≥ 0}, W =

spanK∗{dw(t+ k), k ≥ 0} and E = X + U +W.

Definition 1. (Aranda-Bricaire et al. (1996)) The relative
degree r of the output y(t) is defined by

r := min{k ∈ N|dy(t+ k) /∈ X}.
If such an integer does not exist, then define r :=∞.

The static measurement feedback of the form u(t) =
F (z(t), v(t)) is called regular if F is invertible with respect
to v(t), i.e. if there exists an inverse function α := F−1

such that v(t) = α(z(t), u(t)).

Problem Statement. Given a nonlinear system of the
form (1), the goal is to find, if possible, a regular static
measurement feedback of the form
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u(t) = α−1(z(t), v(t)),

such that controlled output y(t) of the closed loop system
satisfies the following conditions:

(i) dy(t + k) ∈ spanK∗{dx(t),dv(t), . . . ,dv(t + k −
r)},∀k ≥ r

(ii) dy(t+ r) /∈ X .

Condition (i) represents the independence of the output of
the closed-loop system from the disturbance whereas the
condition (ii) represents the output controllability of the
closed-loop system.

Analogously to the continuous-time case, see Pothin et al.
(2002), define the subspace Ω ⊂ X by

Ω := {ω(t) ∈ X |∀k ∈ N : ω(t+ k)

∈ spanK∗{dx(t),dy(t+ r), . . . ,dy(t+ r + k − 1)}}.
Lemma 1. The subspace Ω may be computed as the limit
of the following algorithm:

Ω0 = spanK∗{dx(t)}
Ωk+1 = {ω(t) ∈ Ωk|ω(t+ 1) ∈ Ωk (2)

+ spanK∗{dy(t+ r)}}, k ≥ 0.

Proof : We show below, that sequence Ωk converges and
in the limit we get Ω. Consider a subspace Ωk. By (2),
Ωk+1 ⊂ Ωk or Ωk+1 = Ωk. Since the subspace Ωk is finite-
dimensional vector space, at certain step k∗ + 1, Ωk

∗
=

Ωk
∗+1. Thus the sequence (2) converges and the limit is

Ωk
∗
. We show now that Ω = Ωk

∗
. Suppose ω(t) ∈ Ωk

∗
.

Then, by (2)

ω(t+ 1) ∈ Ωk
∗−1 + spanK∗{dy(t+ r)}

and so ω(t+ 1) = ω̃(t) + ξdy(t+ r) for some ω̃(t) ∈ Ωk
∗−1

and function ξ ∈ K∗. Since ω̃(t) ∈ Ωk
∗−1, by (2)

ω̃(t+ 1) ∈ Ωk
∗−2 + spanK∗{dy(t+ r)}

and so forward shift of ω(t+ 1) is

ω(t+ 2) ∈ Ωk
∗−2 + spanK∗{dy(t+ r),dy(t+ r + 1)}.

Continuing in the same way, we get

ω(t+k∗) ∈ Ω0 + spanK∗{dy(t+ r), . . . ,dy(t+ r+k∗− 1)},
which means that ω(t) ∈ Ω. We showed that if ω(t) ∈ Ωk

∗
,

then ω(t) ∈ Ω, i.e. Ωk
∗ ⊂ Ω.

Now suppose that ω(t) ∈ Ω. Then by definition of Ω,

ω(t+ k∗) ∈ X + spanK∗{dy(t+ r), . . . ,dy(t+ r+ k∗− 1)}.
Because Ω0 = X ,

ω(t+k∗) = ω̃(t) + ξ1dy(t+ r) + . . .+ ξk∗dy(t+ r+k∗− 1),

where ω̃(t) ∈ Ω0 and ξ1, . . . , ξk∗ ∈ K∗. Backward shift
ω̃(t − 1) ∈ Ω1, because ω̃(t − 1) ∈ Ω0 and ω̃(t) ∈ Ω0 +
spanK∗{dy(t+ r)}. Note that dy(t+ r− 1) ∈ Ωk

∗
, because

dy(t + r) ∈ Ωl + spanK∗{dy(t + r)} for every l ≥ 0. Thus
backward shift of ω(t+ k∗) is

ω(t+k∗−1) ∈ Ω1 + spanK∗{dy(t+ r), . . . ,dy(t+k∗−2)}.
Continuing in the same way, we get

ω(t+ 1) ∈ Ωk
∗−1 + spanK∗{dy(t+ r)}.

Thus ω(t) ∈ Ωk
∗

and we are shown that Ω ⊂ Ωk
∗
. Above

we showed that Ωk
∗ ⊂ Ω, so Ω = Ωk

∗
. 2

We will show next how Ω changes under the regular
static measurement feedback u(t) = α(z(t), v(t)). Denote
by K∗ the field of meromorphic functions in variables
x(t), v(t), w(t) and a finite number of their independent
forward- and backward shifts and define the vector spaces
X = spanK∗{dx(t)}, U = spanK∗{du(t + k), k ≥ 0},
W = spanK∗{dw(t + k), k ≥ 0}, E = X + U + W.
Analogously to Xia and Moog (1999) one can prove that
there exists an isomorphism Φ : E → E such that if Ωcl is
the subspace for the closed loop system, then Ωcl = Φ(Ω).

Let ω(t) ∈ Θ be a one-form. In general, ω(t) is a linear
combination of all n basis elements of Θ, i.e. {θ1, . . . , θn}.
However, it is often possible to find a linearly independent
subset of the set {θ1, . . . , θn} with less than n elements in
terms of which ω(t) can be expressed.

Definition 2. (Choquet-Bruhat et al. (1996)) Let γ be
the minimal number of linearly independent one-forms
necessary to express a one-form ω(t). Then ω(t) is said
to be of rank γ.

Note that 1 ≤ γ ≤ n. For example, if the rank γ of
a one-form ω(t) is 1, then ω(t) = ξdα and thus ω(t) ∧
dω(t) = 0. In the general case, if the rank γ is k, then
ω(t)∧(dω(t))(k) = 0, where (dω(t))(k) = dω(t)∧. . .∧dω(t)
is k-fold wedge product.

We prove the following lemma for MISO systems, provid-
ing the alternative formulation of the disturbance decou-
pling.

Lemma 2. Under the assumption that the relative degree
r of the output y(t) is finite, the system (1) is disturbance
decoupled iff

dy(t+ r) ∈ Ω + spanK∗{du(t)}. (3)

Proof : Necessity. Assume, that system (1) is disturbance
decoupled, i.e.

dy(t+ k) ∈ spanK∗{dx(t),du(t), . . . ,du(t+ k − r)} (4)

for k ≥ r and

dy(t+ r) /∈ spanK∗{dx(t)}. (5)

In particular, dy(t + r) ∈ spanK∗{dx(t),du(t)}. Rewrite
the latter as

dy(t+ r) ∈ X + spanK∗{du(t)}. (6)

Thus there exists a one-form ω0(t) ∈ X and a function
ξ ∈ K∗ such that dy(t+r) = ω0(t)+ξdu(t). We are going to
show, that ω0(t) ∈ Ω. Assume contrarily, that ω0(t) /∈ Ω.
The forward shift of dy(t+ r) ∈ spanK∗{dx(t),du(t)} is

dy(t+ r + 1) ∈ spanK∗{dx(t),dw(t),du(t),du(t+ 1)},
which yields a contradiction with (4). Thus, ω0 ∈ Ω and
we can rewrite (6) as dy(t+ r) ∈ Ω + spanK∗{du(t)}.
Sufficiency. Assume that for system (1) the condition (3) is
fulfilled. We must show that system (1) satisfies conditions
(4) and (5). Because r is the relative degree of y(t), (5) is
satisfied. Because of (3),

dy(t+ r) = ω0(t) + ξdu(t),

where ω0(t) ∈ Ω and ξ ∈ K∗. Since ω0(t) ∈ Ω

ω0(t+ l) ∈ spanK∗{dx(t),dy(t+ r), . . . ,dy(t+ r + l − 1)}
for all l ≥ 0. Thus
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dy(t+ r + l) ∈ spanK∗{dx(t),dy(t+ r), . . .

. . . , dy(t+ r + l − 1),du(t+ l)}
for all l ≥ 0. Hence

dy(t+r+l−1) ∈ spanK∗{dx(t),dy(t+r), . . . ,dy(t+r+l−2)}
and

dy(t+ r + l) ∈ spanK∗{dx(t),dy(t+ r), . . .

. . . , dy(t+ r + l − 2),du(t+ l − 1),du(t+ l)}.
Continuing the same way, we get

dy(t+ r + l) ∈ spanK∗{dx(t),du(t), . . . ,du(t+ l)}.
Changing l by l = k− r, we get (4) and thus sufficiency is
fulfilled. 2

We are going to use the subspace Ω and the concept of the
rank of a one-form to give a sufficient condition for the
disturbance decoupling problem.

3. MAIN RESULTS

Theorem 3. The disturbance decoupling problem for sys-
tem (1) is solvable by static measurement feedback if:

(i) dy(t+ r) ∈ Ω + Z + U ,
(ii) there exists a one-form ω(t) ∈ Z+U such that dy(t+

r)− ω(t) ∈ Ω and rank ω(t) = γ ≤ m,
(iii) for any basis {dα1(z(t), u(t)), . . . ,dαγ(z(t), u(t))} of

ω(t),

rank
[∂α(z(t), u(t))

∂u(t)

]
= γ, (7)

where α := [α1, . . . , αγ ]T .

Proof : Assume that condition (i) is fulfilled. Under the
condition (ii) there exists a one-form ω(t) such that dy(t+
r)− ω(t) ∈ Ω where

ω(t) = β1dα1(z(t), u(t)) + . . .+ βγdαγ(z(t), u(t)).

When condition (iii) is satisfied, then γ one-forms
dαi(z(t), u(t)), i = 1, . . . , γ, are independent with respect
to the variable u(t). Define for i = 1, . . . , γ

vi(t) = αi(z(t), u(t)). (8)

If γ < m, then by renumbering the inputs u(t), if
necessary, complete (8) with

vi(t) = ui(t), i = γ + 1, . . . ,m (9)

to get an invertible map. Define a static measurement
feedback u(t) = α(z(t), u(t)) as the solution of (8) and
(9). Note that this yields

dy(t+ r) ∈ Ω⊕ spanK∗{dv(t)}
and thus by Lemma 2, system (1) is disturbance decou-
pled. 2

In case of SISO systems when m = 1, (7) and (ii) of
Theorem 3 yield

rank
[∂α(z(t), u(t))

∂u(t)

]
= γ = 1.

Thus, condition (iii) of Theorem 3 is satisfied if and only if
γ = 1. For SISO systems one can conclude from Theorem
3 a necessary and sufficient condition.

Corollary 4. For SISO nonlinear control systems the DDP
is solvable by a regular static measurement feedback iff:

(i) dy(t+ r) ∈ Ω + Z + U
(ii) There exists a one-form ω(t) ∈ Z + U such that

dy(t+ r)− ω(t) ∈ Ω and rank ω(t) = 1.

Proof : Necessity. Assume that system (1) is decoupled by
the regular static measurement feedback

u(t) = α(z(t), v(t)), v(t) = α−1(z(t), u(t)). (10)

Then by Lemma 2

dy(t+ r) ∈ Ω + spanK∗{dv(t)}. (11)

Combining (11) with (10) implies condition (i). Since
ω(t) = ξd(F−1(z(t), u(t))), ω(t) ∧ dω(t) = 0 and rank
ω(t) = 1. Thus condition (ii) is also fulfilled.

Sufficiency. Assume that (i) holds. Then

dy(t+ r) ∈ Ω⊕ spanK∗{dz(t),du(t)}.
Since by (ii) the rank of the one-form ω(t) is 1, define
ω(t) := λdv(t) and so

dy(t+ r) ∈ Ω⊕ spanK∗{dv(t)}
meaning that the system is decoupled. 2

In general there is no necessary and sufficient condition
for MISO systems, but under an additional assumptions
Ω ∩ Z = Ø and dy(t + r) ∈ Ω ⊕ Z + U one can find a
necessary and sufficient condition for MISO systems.

Theorem 5. Assume that Ω ∩ Z = Ø and dy(t+ r) ∈ Ω⊕
Z+U . The DDP is solvable by regular static measurement
feedback iff

(i) There exists a one-form ω(t) ∈ Z + U such that
dy(t+ r)− ω(t) ∈ Ω and γ := rank ω(t) ≤ m.

(ii) For any basis {dα1(z(t), u(t)), . . . ,dαγ(z(t), u(t))} of
ω(t),

rank
[∂α(z(t), u(t))

∂u(t)

]
= γ.

Proof : Necessity. Assume that system (1) is disturbance
decoupled by the regular static measurement feedback
v(t) = α(z(t), u(t)). By Lemma 2, dycl(t + r) ∈ Ωcl + V,
where V = spanK∗{dv1(t), . . . ,dvm(t)} and ycl(t) is the
output of the closed-loop system. Because of isomorphism
Φ : E → E described above and feedback α(z(t), u(t)), one
can write

dy(t+ r) ∈ Ω + spanK∗{dα(z(t), u(t))}.
Thus, there exist a one-form ω̃(t) ∈ Ω and ξ ∈ K∗ such
that

dy(t+ r) = ω̃(t) + ξdα(z(t), u(t)).
Assumption dy(t+r) ∈ Ω⊕Z+U implies that ω̃(t) ∈ Ω+Z.
Rewrite ω̃(t) = ω̃0(t) + ω̃z(t) for some ω̃0(t) ∈ Ω and
ω̃z(t) ∈ Z. As in the proof of Lemma 2, one can show
that ω̃z(t) ∈ Ω. Due to the assumption Ω ∩ Z = 0, we
have ω̃z(t) = 0. Then define ω(t) = ξdα(z(t), u(t)) and
the necessity of condition (i) is fulfilled.

Because the rank of a one-form ω(t) is γ,

ω(t) = β1dα1(z(t), u(t)) + . . .+ βγdαγ(z(t), u(t))

where βi ∈ K∗, i = 1, . . . , γ. Suppose, contrarily to the
claim of Theorem 5 that (ii) is not fulfilled. Then there
exist a one-form

ξ1dα1(z(t), u(t)) + . . .+ ξγdαγ(z(t), u(t)) ∈ Z.
Assume without loss of generality that ξ1 6= 0, then ω(t)
can be decomposed into

ω(t) = ω̃z(t) + η2dα2(z(t), u(t)) + . . .+ ηγdαγ(z(t), u(t))
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in which

ω̃z(t) =
β1
ξ1

(ξ1dα1(z(t), u(t))+ . . .+ξγdαγ(z(t), u(t))) ∈ Z

and

ηi = βi −
β1
ξ1
ξi,

for i = 2, . . . , γ. As shown before, if ω̃z(t) ∈ Z then
necessarily ω̃z(t) ∈ Ω and since Ω ∩ Z = 0, this yields
a contradiction. Thus condition (ii) has to be fulfilled.

Sufficiency. Because all of the conditions of Theorem 3 are
satisfied, then sufficiency is fulfilled. 2

4. EXAMPLES

The first example illustrates Theorem 3.

Example 1. Consider the system

x1(t+ 1) = x2(t) + x3(t)u1(t)x4(t) + u2(t)x4(t)

x2(t+ 1) = x2(t) + x3(t)u1(t)x4(t) + u2(t)x4(t) + x23(t)

x3(t+ 1) = cosx1(t) (12)

x4(t+ 1) =w(t)

y(t) = x1(t)

z(t) = x4(t).

Note that the relative degree of the output y(t) is 1,
because

dy(t+ 1) = dx2(t) + u1(t)x3(t)dx4(t) + x3(t)x4(t)du1(t)

+ u1(t)x4(t)dx3(t) + u2(t)dx4(t) + x4(t)du2(t).

Next we find the vector space Ω using the algorithm,
defined by (2). First,

Ω0 = spanK∗{dx1(t),dx2(t),dx3(t),dx4(t)}.
Because dy(t+ 1) = dx1(t+ 1),

dx1(t+ 1) = dy(t+ 1) ∈ Ω0 + spanK∗{dy(t+ 1)}
dx2(t+ 1) = dy(t+ 1) + 2x3(t)dx3(t)

∈ Ω0 + spanK∗{dy(t+ 1)}
dx3(t+ 1) =− sinx1(t)dx1(t) ∈ Ω0 + spanK∗{dy(t+ 1)}
dx4(t+ 1) = dw(t) /∈ Ω0 + spanK∗{dy(t+ 1)}.

Thus, Ω1 = spanK∗{dx1(t),dx2(t),dx3(t)}. In the next
step we get Ω1 = Ω2 = Ω. Since dz(t) = dx4(t),
the condition (i) of Theorem 3 is satisfied, i.e. dy(t +
1) ∈ Ω + Z + U . Next step is to choose ω(t) such that
ω(t) ∈ Z + U and dy(t + 1) − ω(t) ∈ Ω. One can take
ω(t) := u2(t)dx4(t) + x4(t)du2(t) + u1(t)x3(t)dx4(t) +
x3(t)x4(t)du1(t) which can be rewritten as

ω(t) = d(u2(t)z(t)) + x3(t)d(u1(t)z(t)).

From above, the rank of ω(t) is 2 = m. Thus condition (ii)
of Theorem 3 is satisfied. Condition (iii) is easily verified
and the disturbance decoupling feedback may be found as
the solution of the system of equations v1(t) = u2(t)z(t)
and v2(t) = u1(t)z(t) with respect to u1(t) and u2(t).

In the second example the rank of a one-form ω(t) is
strictly less than the number of inputs, γ < m.

Example 2. Consider the system

x1(t+ 1) = x2(t) + x4(t)u1(t)u2(t)

x2(t+ 1) = x2(t) + x4(t)u1(t)u2(t) + x23(t)

x3(t+ 1) = cosx1(t) (13)

x4(t+ 1) =w(t)

y(t) = x1(t)

z(t) = x4(t).

The relative degree of output y(t) is 1 and

dy(t+ 1) = dx2(t) + u1(t)u2(t)dx4(t)

+ u2(t)x4(t)du1(t) + u1(t)x4(t)du2(t).

Like in Example 1, one can find the subspace Ω =
spanK∗{dx1(t),dx2(t),dx3(t)} and thus the condition (i)
of Theorem 3 is satisfied. Since now one can choose ω(t) as
ω(t) = d(u1(t)u2(t)z(t)), γ :=rank ω(t) = 1 and condition
(ii) of Theorem 3 is fulfilled. Note that (iii) is satisfied and
the regular static measurement feedback can be found from
v1(t) = u1(t)u2(t)z(t) and v2(t) = u2(t).

The following example shows that for the MISO case the
condition (i) of Theorem 3 is not necessary.

Example 3. Consider the system

x1(t+ 1) = x2(t) + u1(t)x3(t)x4(t) + u2(t)x4(t)

x2(t+ 1) = x2(t) + u1(t)x3(t)x4(t) + u2(t)x4(t) + x23(t)

x3(t+ 1) = u1(t)x4(t) (14)

x4(t+ 1) =w(t)

y(t) = x1(t)

z(t) = x4(t)

Condition (i) of Theorem 3 is not satisfied, because Ω =
spanK∗{dx1(t)}, but

dy(t+ 1) = dx2(t) + u1(t)x4(t)dx3(t) + u1(t)x3(t)dx4(t)

+ x3(t)x4(t)du1(t) + u2(t)dx4(t) + x4(t)du2(t).

Still, one can choose ω(t) = x3(t)d(u1(t)z(t))+d(u2(t)z(t))
and find the static measurement feedback from v1(t) =
u1(t)z(t) and v2(t) = u2(t)z(t), which solves the DDP.

Example 4. Consider the system

x1(t+ 1) = ex2(t)x
2
3(t)

x2(t+ 1) = cosx2(t)

x3(t+ 1) = u1(t) sinx4(t) (15)

x4(t+ 1) = u2(t)w(t)

y(t) = x1(t)

z(t) = x4(t).

Note that the relative degree of the output y(t) is 2.
Sequence (2) for this system converges and the subspace
Ω = Ω2 = spanK∗{dx2(t)}. Because

dy(t+ 2) = d(eu
2
1(t) cos x2(t) sin

2 x4(t)),

the first condition of Theorem 3 is satisfied. One can choose
ω(t) to be
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ω(t) = 2eu
2
1(t) cos x2(t) sin

2 z(t)(cosx2(t) sin2 z(t)u1(t)du1(t)

+ cosx2(t) cos z(t) sin z(t)u21(t)dz(t)).

Because ω(t) ∧ dω(t) = 0, the rank of ω(t) is 1 and
thus the second condition is satisfied. Next, one can find

α(z(t), u(t)) = ln(u1(t) sin z(t)); so rank
[
∂α(z(t),u(t))

∂u(t)

]
= 1

and condition (iii) is also satisfied. The feedback that
solves the DDP is

u1(t) = ev1(t) csc z(t)

u2(t) = v2(t).

and the closed-loop system

x1(t+ 1) = ex2(t)x3(t)
2

x2(t+ 1) = cos(x2(t))

x3(t+ 1) = ev1(t)

x4(t+ 1) = v2(t)w(t)

y(t) = x1(t)

z(t) = x4(t)

is disturbance decoupled.

Example 5. Consider the system

x1(t+ 1) = x4(t)w(t) ln(x2(t)u2(t))

x2(t+ 1) = x1(t)x2(t)

x3(t+ 1) = eu1(t)x4(t) (16)

x4(t+ 1) = u2(t)w(t)

y(t) = x1(t)

z(t) = x4(t).

The relative degree of output y(t) is 1 and the subspace
Ω = spanK∗{dx1(t),dx2(t)}. Since

dy(t+ 1) =
w(t)z(t)

x2(t)
dx2(t) +

w(t)z(t)

u2(t)
du2(t)

+w(t) ln(u2(t)x2(t))dz(t)

+ z(t) ln(u2(t)x2(t))dw(t),

there does not exist a one-form ω(t) ∈ Z + U such that
dy(t+1)−ω(t) ∈ Ω. Thus the second condition of Theorem
3 is not satisfied and the DDP is not solvable by the static
measurement feedback.

5. CONCLUSION

In this paper the notion of the rank of a one-form and the
subspace Ω of differential one-forms was used to solve the
DDP for nonlinear discrete-time control systems by static
measurement feedback. Sufficient conditions for solvability
of the DDP were found. Necessary and sufficient conditions
were derived from the above conditions for SISO systems
and for MISO systems under the additional assumption.
The sufficient condition also provided a procedure to find
the static measurement feedback to solve the DDP. Be-
cause these conditions are very restrictive, further research
is necessary. Next step is to extend the results by Xia
and Moog (1999) addressing the dynamic measurement

feedback in the framework of differential forms for discrete-
time systems. Those results can then be compared with
those by Kotta et al. (2011), that are obtained using
the tools of algebra of functions. Additionally to above
theoretical problems the functions in Mathematica will be
developed for solving the DDP and integrated into the
symbolic software package NLControl, developed in the
Institute of Cybernetics at Tallinn University of Technol-
ogy.
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1. INTRODUCTION

In the Institute of Cybernetics at Tallinn University of Tech-
nology symbolic software package NLControl has been devel-
oped over the years within Mathematica environment, for the
detailed information see Kotta and Tõnso (2003), Tõnso et al.
(2009). The package is based on different algebraic methods,
in particular on the approach based on the differential one-
forms, see Conte et al. (2007), and on the theory of skew
polynomial ring. It allows to solve various modelling, analysis
and synthesis problems not only for continuous and discrete-
time nonlinear control systems, but also for those defined on
homogeneous time scales, see Casagrande et al. (2010). Note
that the key idea of a time scale calculus is unification of the
theories of differential and difference equations, see Bohner
and Peterson (2001). Both continuous and discrete-time (in
terms of the difference operator) cases are merged in time scale
formalism into a general framework which provides not only
unification but also an extension. The main concept of the time
scale calculus is the so-called delta-derivative that is a general-
ization of both time-derivative and the difference operator (but
accommodates more possibilities, e.g. q-difference operator).

In the linear control theory the transfer matrix (TM) approach
has been very popular. Recently the concept of the TM has
been extended for the continuous-time nonlinear control sys-
tems Halás (2008) and later in Halás and Kotta (2007a) for
discrete-time systems and for control system defined in terms
of the pseudo-linear operator, see Halás and Kotta (2007b).
Note that the latter includes also the systems, defined on ho-
mogeneous time scales, since in that case the delta-derivative
may be understood as the special case of the pseudo-linear
operator. However, the pseudo-linear approach cannot handle
the systems defined on non-homogeneous time scales, since the
time scale formalism unifies both continuous- and discrete-time
cases, it would be interesting to study whether TM-based trans-
parent control methods can be extended to nonlinear systems
defined on time scale. In TM-based control design, a special

form of the matrix, the Jacobson-Teichmüller 1 form, plays a
key role. The first step in transformation of the TM into the
required form is to transform the polynomial matrix, associated
with it, into the Jacobson form.

Note that in the case of nonlinear control systems, the poly-
nomials belong into the non-commutative polynomial ring that
is the principal ideal domain (p.i.d.). The basic algorithm to
transform a polynomial matrix into this form was given in
Cohn (1985) for an arbitrary ring being the p.i.d. There exist
a number of implementations of this algorithm such as Blinkov
et al. (2003), Chyzak et al. (2007) and its fraction-free version
Levandovskyy and Schindelar (2010). However, except Insua
and Ladra (2006), not available for public use, all of them have
been implemented either in Maple, e.g. Blinkov et al. (2003),
Chyzak et al. (2007) or in Singular:Plural Levandovskyy and
Schindelar (2010). Moreover, it is not documented whether
and how these packages are applicable for nonlinear control
systems, in particular for those defined on homogeneous time
scale.

The main contribution of the paper is the specification the algo-
rithm given in Cohn (1985) into the form necessary to handle
the nonlinear control system defined on homogeneous time
scale and description of the experience from its implementation
in Mathematica, within the package NLControl. All the steps of
the algorithm are clear, strictly defined and easily convertible
into any programming code. It should be mentioned that some
preliminary results for the discrete-time case were presented in
Belikov et al. (2010).

2. CALCULUS ON TIME SCALE

For a general introduction to the calculus on time scales, see
Bohner and Peterson (2001). Here we give only those notions
and facts that we need in our paper.
1 Note that in the linear control theory this form is called the Smith-McMillan
form, see Ito et al. (2003).
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A time scale T is an arbitrary nonempty closed subset of the set
R of real numbers. The standard cases include T = R, T = Z,
T = hZ for h > 0, but also T = qZ := {qk : k ∈ Z} ∪
{0}, q > 1 is a time scale.

The following operators on T are often used:

• the forward jump operator σ : T→T, defined by σ(t) :=
inf {τ ∈ T : τ > t} and σ(sup T) = sup T, if sup T ∈ T,

• the backward jump operator ρ : T→T, defined by ρ(t) :=
inf {τ ∈ T : τ < t} and ρ(inf T) = inf T, if inf T ∈ T,

• the graininess function µ : T→[0, ∞), defined by µ(t) :=
σ(t) − t.

If µ ≡ const then a time scale T is called homogeneous. In this
paper we assume that the time scale T is homogeneous.

Example 1:

• If T = R, then for any t ∈ R, σ(t) = t = ρ(t), and the
graininess function µ(t) ≡ 0.

• If T = hZ, for h > 0, then for every t ∈ hZ, σ(t) = t+h,
ρ(t) = t − h, and µ(t) = h.

• If T = qZ, for q > 1, then for every t ∈ T, σ(t) = qt,
ρ(t) = t

q , and µ(t) = (q − 1)t.

So, the first two cases are homogeneous time scales whereas the
third is not.
Definition 1. The delta derivative of a function f : T→R at
t is the number f∆(t) such that for each ε > 0 there exists a
neighborhood U(ε) of t, U(ε) ⊂ T such that for all τ ∈ U(ε),
|f(σ(t)) − f(τ) − f∆(t)(σ(t) − τ)| ≤ ε|σ(t) − τ |.

The typical special cases of the delta operator are summarized
in the following remark.
Remark 1. (i) If T = R, then f : R→R is delta differentiable

at t ∈ R if and only if f∆(t) = lim
s→t

f(t)−f(s)
t−s = f ′(t),

i.e. iff f is differentiable in the ordinary sense at t.
(ii) If T = TZ, where T > 0, then f : TZ→R is always

delta differentiable at every t ∈ TZ with f∆(t) =
f(σ(t))−f(t)

µ(t) = f(t+T )−f(t)
T meaning the usual forward

difference operator.
Proposition 1. Let f : T → R, g : T → R be two delta
differentiable functions defined on T and let t ∈ T. Then the
delta derivative satisfies the following properties

(i) fσ = f + µf∆,
(ii) (αf + βg)∆ = αf∆ + βg∆, for any constants α and β,

(iii) (fg)∆ = fσg∆ + f∆g,
(iv) if ggσ ̸= 0, then (f/g)∆ = (f∆g − fg∆)/(ggσ).

For a function f : T→R we define second delta derivative
f [2] := f∆∆ provided that f∆ is delta differentiable on T.
Similarly we define higher order derivatives f [n].

Denote σn := σ ◦ · · · ◦ σ︸ ︷︷ ︸
n−times

and fσn

:= f ◦ σn

Proposition 2. (Kotta et al. (2009)). Let f and f∆ be delta dif-
ferentiable functions on homogeneous time scale T. Then

(i) f∆σ = fσ∆,
(ii) fσn

=
∑n

k=0 Ck
nµkf [k].

At the end of this section we introduce some notation that
will be useful in the following sections. Let f be a function
admitting the delta-derivatives up to the c-th order. Let a and

b be integers such that 0 ≤ a < b ≤ c. We set f [0] = f . Let
f [a...b] denote the set {f [a], . . . , f [b]}.

3. PRELIMINARIES

Consider a multi-input multi-output nonlinear control system
described by a set of higher order input-output delta-differential
equations on the homogeneous time scale T relating the inputs
uj , j = 1 . . . , m, the outputs yi, i = 1, . . . , p and the finite
number of their delta derivatives:

y
[ni]
i = Φi

(
y
[0...ni1−1]
1 , . . . , y[0...nip−1]

p ,

u
[0...si1]
1 , . . . , u[0...spm]

m

)
, (1)

where the functions Φi are real analytic functions of their
arguments, and functions yi : T→R, i = 1, . . . , p and uj :
T→R, j = 1, . . . , m are delta differentiable at least up to order
ni and sj := max1≤i≤p(sij), respectively.

3.1 Algebraic framework

Below we briefly recall the algebraic formalism for nonlinear
control systems defined on homogeneous time scales, described
in Bartosiewicz et al. (2007), Kotta et al. (2009), Kotta et al.
(2011). Let K denote the field of meromorphic functions in a
finite number of (independent) variables

C = {y
[0...n1−1]
1 , . . . , y[0...np−1]

p , u
[k]
j , j = 1, . . . , m, k ≥ 0}.

Note that under the mild assumption on submersivity of system
(1) (see below) the jump operator σ : K →K and the delta
derivative ∆ : K →K may be extended to the field K as
follows, see Kotta et al. (2011)

σ(F )
(
y
[0...n1−1]
1 , . . . , y[0...np−1]

p , u
[0...s1+1]
1 , . . . , u[0...sm+1]

m

)

:= F
(
y
[0...n1−1]σ
1 , . . . , y[0...np−1]σ

p , u
[0...s1]σ
1 , . . . , u[0...sm]σ

m

)
,

where

y
[0...ni−1]σ
i = y

[0...ni−1]
i + µ ·

[
y
[1...ni−1]
i , Φi

(
y
[0...ni1]
1 , . . . ,

y
[0...ni−1]
i , . . . , y[0...nip]

p , u
[0...sp1]
1 , . . . , u[0...spm]

m

)]
,

i = 1, . . . , p, u
[0...sj ]σ
j = u

[0...sj ]
j + µu

[1...sj+1]
j , j = 1, . . . , m

and 2

∆(F )
(
yi, . . . , y

[ni−1]
p , uj , . . . , u

[k+1]
j

)
:=

∫ 1

0

{grad F
(
yi + hµy∆

i , . . . , y
[ni−1]
i +

hµΦi

(
y
[0...ni1−1]
1 , . . . , y[0..nip−1]

p , u
[0...si1]
1 , . . . , u[0...sim]

m

)
,

uj + hµu∆
j , . . . , u

[k]
j + hµu

[k+1]
j

)
·




(
y
[1...n1−1]
1 , . . . , y[1...np−1]

p

)T

,

Φi

(
y
[0...ni1−1]
1 , . . . , y[0...nip−1]

p ,

u
[0...si1]
1 , . . . , u[0...sim]

m

)
,

(
u

[1...s1+1]
1 , . . . , u[1...sm+1]

m

)T




}dh.

Notice that we will use σ(F ) and Fσ to denote the action of σ
on F . Similarly, both ∆(F ) and F∆ will be used interchange-
ably.
2 Proposition 3.3 from Bartosiewicz et al. (2007) shows how ∆(F ) may be
calculated not using integral explicitly.
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In case σ is not injective, there may exist non-zero functions ϕ
such that σ(ϕ) = 0 meaning that the operator σ is not well-
defined on the field K . For σ to be an injective endomorphism
on K , the system (1) has to be submersive which can be
guaranteed by the condition of the following theorem.
Theorem 1. (Kotta et al. (2011)). The nonlinear control sys-
tem, defined on homogeneous time scale via the higher order
i/o equations (1), is submersive if and only if the following
condition

rankK

(
1 + α11 . . . α1p β11 . . . β1m

αp1 . . . 1 + αpp βp1 . . . βpm

)
= p (2)

holds, where

αij :=

nj−1∑

k=0

(−1)nj−k−1µnj−k ∂Φi

∂y
[k]
j

,

i, j = 1, . . . , p and

βlk :=

s∑

j=0

(−1)s−j+1µs−j+2 ∂Φl

∂u
[j]
k

,

l = 1, . . . , p, k = 1, . . . ,m.

The operator ∆ satisfies a generalization of Leibnitz rule
(FG)∆ = FσG∆ + F∆G, (3)

for F, G ∈ K . The derivation satisfying rule (3) is called a ”σ-
derivation”, see Cohn (1985). Therefore, K is a differential
field equipped with a σ-derivation ∆. In general, the field
K is not inversive, i.e. not every element of K has a pre-
image. Nevertheless, since ∆ is injective, up to an isomorphism
there exists an inversive σ-differential overfield K ∗, called the
inversive closure of K , such that ∆ can be extended to K ∗

and this extension is automorphism of K ∗, see Cohn (1985). In
Bartosiewicz et al. (2007) the details of construction of K ∗ for
nonlinear control systems defined on time scales can be found.
Below assume that K ∗ is given and use the same symbol K
to denote the σ-differential field and its inversive closure.

Over the σ-differential field K one can define the vector space

E := spanK {dyi, dy∆
i , . . . ,dy

[ni−1]
i , i = 1, . . . , p,

du
[k]
j , j = 1, . . . ,m, k ≥ 0}.

The elements of E are called one-forms. For F ∈ K we define
the operator d : K →E as follows

dF :=

p∑

i=1

ni−1∑

l=0

∂F

∂y
[l]
i

dy
[l]
i +

m∑

j=1

k∑

ℓ=0

∂F

∂u
[ℓ]
j

du
[ℓ]
j .

dF is said to be the (total) differential of the function F and is
a one-form.

Let ω =
∑

j αjdφj be a one-form with αj ∈ K and φj ∈ C .
Then, the operators σ : K →K and ∆ : K →K induce the
operators σ : E →E and ∆ : E →E by

σ(ω) :=
∑

i

σ(αi)d [σ(ζi)] , (4)

∆(ω) :=
∑

i

{∆(αi)dφi + σ(αi)d [∆(φi)]} , (5)

Since σ(αi) = αi + µ∆(αi), (5) may be alternatively written
as

∆(ω) =
∑

i

{∆(αi)dφi + (αi + µ∆(αi)) d [∆(φi)]} .

It has been proved that ∆(dF ) = d[F∆], σ(dF ) = d[Fσ] and
∆σ = σ∆, see Bartosiewicz et al. (2007).

3.2 Polynomial framework

Next, we recall the polynomial formalism which allows to rep-
resent the nonlinear i/o equations (1) via two polynomial matri-
ces. Consider the differential field K with the σ-derivation ∆
with σ being an automorphism of K . A left differential poly-
nomial is an element which can be uniquely written in the form
a(∂) =

∑n
i=0 ai∂

n−i, ai ∈ K , where ∂ is a formal variable
and a(∂) ̸= 0 if and only if at least one of the coefficients ai,
i = 0, . . . , n is nonzero. If a0 ̸≡ 0, then the positive integer
n is called the degree of the left polynomial a(∂), denoted by
deg a(∂). Besides that we set deg 0 = −∞. The addition of
the left differential polynomials is defined in the standard way.
However, for a ∈ K the multiplication is defined by

∂ · a := aσ∂ + a∆. (6)

The ring of differential polynomials will be denoted by
K [∂; σ, ∆]. Since σ is an automorphism, the ring of the left dif-
ferential polynomials is a skew polynomial ring, that is proved
to satisfy the left Ore condition, see Farb and Dennis (1993). By
left Ore condition for all nonzero a, b ∈ K [∂; σ,∆] there exist
nonzero a1, b1 ∈ K [∂; σ, ∆] such that a1b = b1a, that is, a and
b have a common left multiple (clm). The ring K [∂; σ, ∆] can,
therefore, be embedded into its quotient field (field of fractions)
by defining its left quotients as a

b = b−1 · a, see Ore (1933).
Denote the resulting quotient field by K (∂; σ, ∆). Moreover,
we write K (∂; σ,∆)p×m for the set of p×m rational matrices
with entries in K (∂; σ, ∆), and K [∂; σ,∆]p×m for the set of
p × m polynomial matrices with entries in K [∂; σ,∆].

Let σn := σ ◦ · · · ◦ σ︸ ︷︷ ︸
n−times

and denote σn(a) by aσn

for a ∈ K .

Lemma 1. (Kotta et al. (2009)). Let a ∈ K . Then ∂n · a ∈
K [∂; σ, ∆], for n ≥ 0, and ∂n · a =

∑n
i=0 Ci

n

(
a[n−i]

)σi

∂i.

In order to describe the i/o equation (1) via two polynomial
matrices, we define

∂kdyν := dy(k)
ν , ∂lduυ := du(l)

υ (7)
for ν = 1, . . . , p, υ = 1, . . . , m and k, l ≥ 0 in the vector
space E . Since an arbitrary one-form ω ∈ E has the form
ω =

∑p
ν=1

∑n−1
i=0 aνidy

(i)
ν +

∑m
υ=1

∑k
j=0 bυjdu

(j)
υ , where

aνi, bυj ∈ K , so ω can be expressed in terms of the left

differential polynomials as ω =
∑p

ν=1

(∑n−1
i=0 aνi∂

i
)

dyν +
∑m

υ=1

(∑k
j=0 bυj∂

j
)

duυ. A left differential polynomial can

be considered as an operator acting on vectors y = [y1, . . . , yp]
T

and u = [u1, . . . , um]T from E :
(∑k

i=0 ai∂
i
)

(αdζ) :=
∑k

i=0 ai(∂
i · α)dζ, with ai, α ∈ K and dζ ∈ {dy, du}, where

by Lemma 1, ∂i · α =
∑i

k=0 Ck
i

(
a[n−i]

)σi

∂k. It is easy to
note that ∂(ω) = ∆(ω), for ω ∈ E .

Now, by differentiating equation (1) and using (7) we get
P (∂)dy = Q(∂)du, (8)

where P (∂) ∈ K [∂; σ,∆]p×p and Q(∂) ∈ K [∂; σ,∆]p×m.

We assume that the Dieudonné determinant of the matrix P (∂)
in (8) is nonzero, see Artin (1957) for details. The latter means
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that the following definition of the transfer matrix is well-
defined.
Definition 2. An element of the form H(∂) := P−1(∂)Q(∂) ∈
K (∂; σ,∆)p×m, such that dy = H(∂)du, is said to be a
transfer matrix of nonlinear system 3 (1).

Note that though every control system can be described by the
transfer matrix, the converse is not always true. The reason is
that the one-form corresponding to the transfer function may
not be integrable, see Halás and Kotta (2007a) for details.

3.3 Polynomial matrices

Here we recall some basic properties of matrices with skew-
polynomial entries. Suppose the matrix P (∂) ∈ K [∂;σ, ∆]p×m.
Definition 3. An elementary column (row) operation on a poly-
nomial matrix P (∂) is one of the following four operations

(i) interchanging two columns (rows);
(ii) multiplying any column (row) by invertible element k ∈

K [∂; σ, ∆] from the right (left);
(iii) adding a right (left) multiple of one column (row) to

another;
(iv) replacement of the first elements of any two columns

(rows) by their greatest common left (right) divisor
(gcl(r)d) and zero, respectively.

All these operations correspond to multiplication of the matrix
P (∂) by an elementary matrix Es

R(∂) or Es
L(∂) from the right

or left, respectively Cohn (1985), where s ∈ {(i) − (iv)}.
Operations (i)-(iii) may be represented by the product of the
matrices of the form Eij(∂) = Iν + 1ijk with Iν identity
matrix and 1ij the matrix made of a single 1 at the intersection
of row i and column j, 1 ≤ i, j ≤ ν, and zeros elsewhere, with
k ∈ K [∂; σ,∆], and with ν = m for actions with columns and
ν = p for actions with rows, see Lévine (2009). The elementary
matrices corresponding to the operations from Definition 3 can
be obtained

(i) by swapping columns (rows) i and j of the identity matrix;
(ii) by multiplying all elements of the corresponding column

(row) of identity matrix by k ∈ K [∂; σ, ∆];
(iii) from identity matrix with element k ∈ K [∂; σ, ∆] in

entry (i, j).
(iv) The procedure for constructing this matrix is described in

the algorithm presented in Section 4.
Definition 4. A matrix U(∂) ∈ K [∂; σ, ∆]q×q is called uni-
modular if it has an inverse U−1(∂) ∈ K [∂; σ,∆]q×q.

Every right or left unimodular matrix UR(∂) or UL(∂) may be
obtained as a product of the corresponding elementary matrices
from Definition 3.

In order to find the gcld, one may use the left Euclidean division
algorithm, see Bronstein and Petkovšek (1996). For given two
polynomials p1(∂) and p2(∂) with deg(p1(∂)) > deg(p2(∂))
there exist unique polynomials γ1(∂) and p3(∂) such that
p1(∂) = p2(∂)γ1(∂) + p3(∂), deg(p3(∂)) < deg(p2(∂)).

Using the left Euclidean division algorithm, after k − 1 steps,
one obtains pi(∂) = pi+1(∂)γi(∂) + pi+2(∂) for i =

3 Notice that there exists an algorithm which allows to obtain the transfer ma-
trix from a nonlinear system described by state-space equations, for additional
information see Halás (2008).

2, . . . , k − 2 and pk−1(∂) = pk(∂)γk−1(∂). Hence the gcld of
p1(∂) and p2(∂) is pk(∂). Moreover, eliminating polynomials
pk−1(∂), . . . , p3(∂) we get the Bézout identity, i.e. there exist
polynomials u(∂), v(∂) ∈ K [∂; σ,∆] such that p1(∂)u(∂) +
p2(∂)v(∂) = pk(∂). Note that the right Euclidean division
algorithm can be defined in a similar manner.

4. JACOBSON FORM

For P (∂) ∈ K [∂; σ,∆]p×m one can find elementary row and
column operations corresponding to multiplication by unimod-
ular matrices Up×p

L (∂) and Um×m
R (∂), respectively, such that

UL(∂)P (∂)UR(∂) = Λ(∂), (9)
where Λ(∂) = diag {λ1(∂), . . . , λr(∂), 0, . . . , 0} and λi(∂) ∈
K [∂; σ, ∆] are unique monic polynomials obeying a property
that λi+1(∂) is divisible by λi(∂), λi(∂) ∥ λi+1(∂), i.e. there
exist αi(∂) ∈ K [∂;σ, ∆] such that λi+1(∂) = λi(∂) · αi(∂)
for all i = 1, . . . , r −1. The matrix Λ(∂) is called the Jacobson
form of P (∂), and λi(∂) are called the invariant polynomials of
P (∂), see Nakayama (1938).

Suppose H(∂) ∈ K (∂; σ,∆)p×m is a transfer matrix whose
entries are assumed to be in the irreducible form, i.e. without
common left factors in the corresponding numerators and de-
nominators, and write it in a standard form

H(∂) = [q(∂)]−1P (∂), (10)
where the matrix P (∂) ∈ K [∂; σ, ∆]p×m is a polynomial
matrix and q(∂) is the monic least common left multiple (lclm)
of the denominators of all entries of H(∂). Then, P (∂) =
q(∂)H(∂) is a polynomial matrix, that can be transformed into
the Jacobson form as above.

4.1 The main Algorithm

The algorithm, presented below, allows to transform the matrix
P (∂) into the Jacobson form. Consider the matrix

P (∂) =




p11(∂) · · · p1m(∂)
...

. . .
...

pp1(∂) · · · ppm(∂)




in the ring K [∂; σ,∆]p×m.

Step 1. k := 1.

Step 2. Find pij(∂) ̸= 0 for i = k, . . . , p and j = k, . . . , m
with the lowest degree and, using operation (i) from Definition
3, put it on the position (k, k).

Step 3. Using elementary column (item (a)) and row (item (b))
operation (iv) from Definition 3,

(a) replace the elements pkk(∂) and pkj(∂) for j = k +
1, . . . , m with their gcld and zero, respectively. This oper-
ation can be implemented by solving the following equa-
tions

pkk(∂)akk(∂) + pkj(∂)cjk(∂) = ekk(∂), (11)
pkk(∂)bkj(∂) + pkj(∂)djj(∂) = 0 (12)

with respect to akk(∂), bkj(∂), cjk(∂) and djj(∂), and
multiplying P (∂) from the right by the elementary matrix
E4

Rkj(∂), which can be constructed as follows. Create m×
m identity matrix and put the elements akk(∂), bkj(∂),
cjk(∂) and djj(∂) on the positions (k, k), (k, j), (j, k)
and (j, j), respectively. Making (m − k) replacements
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specified above, we transform the matrix P (∂) into the
new matrix with pkk(∂) = ekk(∂), pk,k+1(∂) = · · · =
pkm(∂) = 0 and some new elements pil(∂) for i = k +
1, . . . , p and l = k, . . . , m obtained after multiplication
P (∂) by the respective matrix URk(∂) = E4

Rk,k+1(∂) ·
. . . · E4

Rkm(∂).
(b) replace the elements pkk(∂) and pik(∂) for i = k +

1, . . . , p with their gcrd and zero, respectively. The pre-
vious operation can be implemented by solving the fol-
lowing equations

akk(∂)pkk(∂) + bki(∂)pik(∂) = ekk(∂), (13)
cik(∂)pkk(∂) + dii(∂)pik(∂) = 0 (14)

with respect to akk(∂), bki(∂), cik(∂) and dii(∂), and
multiplying P (∂) from the left by the elementary matrix
E4

Lik(∂), which can be constructed as follows. Create
p × p identity matrix and put elements akk(∂), bki(∂),
cik(∂) and dii(∂) on the positions (k, k), (k, i), (i, k) and
(i, i), respectively. Making (p−k) replacements specified
above, we transform the matrix P (∂) into the new matrix
with pkk(∂) = ekk(∂), pk+1,k(∂) = · · · = ppk(∂) = 0
and some new elements plj(∂) for j = k + 1, . . . , m and
l = k, . . . , p obtained after multiplication P (∂) by the
respective matrix ULk(∂) = E4

Lk+1,k(∂) · . . . · E4
Lpk(∂).

However, in the course of doing this, nonzero entries may
reappear in the k-th row of the matrix P (∂), and one has then to
repeat Step 3. Note that at each iteration the number of divisors
of the element pkk(∂) reduces, and therefore, in a finite number
of steps the k-th row and column become zero. The latter means
that after a finite number of consecutive steps one will obtain
the matrix with pkk(∂) = ekk(∂) and other entries in the k-th
row and column equal to zero.

Step 4. If k ̸= min(p, m) − 1, then k := k + 1 and go to Step
2, otherwise go to Step 5.

Step 5. If p = m, then go to Step 6, otherwise depending
whether m > p or m < p, one has to execute additional (m−k)
or (p−k) operations over the last column(s) or row(s) described
in Steps 3(a) or 3(b), respectively.

Step 6. Consider the elements of the main diagonal pii(∂), . . . ,
pkk(∂). Here, the following two cases are possible:

(a) If the divisibility property holds for all pairs pii(∂) ∥
pjj(∂) for 1 ≤ i < j ≤ k, then go to Step 7.

(b) If the divisibility property does not hold for some pair
of elements pii(∂) and pjj(∂) with 1 ≤ i < j ≤ k,
i.e. pii(∂) ∦ pjj(∂), then, using row operation (iii) from
Definition 3, the matrix P (∂) has to be transformed into
a new matrix with element pjj(∂) on the position (i, j)
by adding the j-th row to the i-th row. After that, execute
again all Steps 2-5 with modified matrix P (∂) and k = i.
The main idea of this transformation and the subsequent
executing of the steps 2-5 consists in replacing the element
pii(∂) by gcld(pii(∂), pjj(∂)) or gcrd(pii(∂), pjj(∂)), re-
spectively, obeying a division property pii(∂) ∥ pjj(∂).

Step 7. End of the Algorithm.
Remark 2. Equations (11) and (13) are Bézout identities and
can be solved using the left and right Euclidean division al-
gorithm, respectively. Besides, equations (12) and (14) are the
right and left Ore conditions, respectively. For example, for (14)
it means that there exist cik(∂), dii(∂) ∈ K [∂; σ, ∆] such that
cik(∂)pkk(∂) = −dii(∂)pik(∂) holds.

We have implemented the algorithm for computing Jacobson
form in Mathematica package NLControl. However, it should
be mentioned that even for the very simple examples calcu-
lations become extremely complex. Note that in our calcula-
tions, we have to simplify the obtained expressions using the
relations, defined by the system equations (1) as well as those,
obtained from (1) by taking the delta derivatives. If not done,
the computations may lead to erroneous result.

Example. Consider the system described by the input-output
equations

y
[2]
1 = u1(1 + y∆

1 ) + u∆
1 (y1 + µy∆

1 ) − u2

y∆
2 = u1y2 − u2

(15)

First, we compute, according to Definition 2 and using the
property (i) from Proposition 1, the transfer matrix of the
system (15)

H(∂) =




yσ
1 ∂ + y∆

1 + 1

∂2 − uσ
1∂ − u∆

1

1

−∂2 + uσ
1∂ + u∆

1

y2

∂ − u1

1

−∂ + u1


 .

Since the lclm of all the denominators in H(∂) equals to
∂2 − uσ

1∂ − u∆
1 , multiplying numerators of the elements

h21(∂), h22(∂) by ∂ from the left, decomposition (10) for this
example takes the form

H(∂) =
(
∂2 − uσ

1∂ − u∆
1 )

)−1 ·
(

yσ
1 ∂ + y∆

1 + 1 −1
yσ
2 ∂ + y∆

2 −∂

)
.

Obviously, the element p12 = −1 is that of the lowest possible
degree of P (∂) and, after permuting the rows and columns, i.e.
multiplying P (∂) by the corresponding elementary matrix 4

E1
R12 =

(
0 1
1 0

)

from the right, we obtain

P (∂) =

(
−1 yσ

1 ∂ + y∆
1 + 1

−∂ yσ
2 ∂ + y∆

2

)
. (16)

Next, one can easily check that e11 := gcrd(p11, p12) = 1.
After solving equations (11) and (12), corresponding to this
example, i.e. the equations

(−1) · a11(∂) + (yσ
1 ∂ + y∆

1 + 1) · c21(∂) = 1
(−1) · b12(∂) + (yσ

1 ∂ + y∆
1 + 1) · d22(∂) = 0,

we obtain a11(∂) = −1, b12(∂) = yσ
1 ∂ + y∆

1 + 1, c21(∂) = 0,
d22(∂) = 1. According to Step 3(a), we construct the matrix

E4
R12(∂) =

(
−1 yσ

1 ∂ + y∆
1 + 1

0 1

)

and multiply (16) by it from the right to get(
1 0

∂ −yσ2

1 ∂2 − (2y∆σ
1 − yσ

2 + 1)∂ − y
[2]
1 + y∆

2

)
. (17)

Again, one can check that e11 := gcld(p11, p21) = 1. There-
fore, solving equations (13) and (14), i.e. the equations

a11(∂) · 1 + b12(∂) · ∂ = 1
c21(∂) · 1 + d22(∂) · ∂ = 0,

4 In order not to mislead the reader, note that not all the operations listed in
Definition 3 have been used in this example, but only those that correspond to
the cases s = 1 and s = 4.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

145



we obtain a11(∂) = 1, b12(∂) = 0, c21(∂) = −∂, d22(∂) = 1.
According to Step 3(b), we construct the matrix

E4
L21(∂) =

(
1 0

−∂ 1

)
.

and multiply (17) by it from the left to obtain

Λ(∂) =

(
1 0

0 −yσ2

1 ∂2 − (2y∆σ
1 − yσ

2 + 1)∂ − y
[2]
1 + y∆

2

)
.

Due to the fact that the number of rows of P (∂) equals to
the number of its columns, one can directly go to Step 6.
Obviously, the division property λ1(∂) ∥ λ2(∂) holds. Finally,
decomposition (9) of P (∂) is

Λ(∂) = E4
L21(∂)P (∂)E1

R12E
4
R12(∂).

5. CONCLUSION

In this paper we have suggested a detailed algorithm for compu-
tation of the Jacobson form of the polynomial matrix associated
with the transfer matrix describing the multi-input multi-output
nonlinear control system, defined on homogeneous time scale,
using the theory of skew polynomials. In addition, we adapted
the algorithm given in Cohn (1985) for the case of the nonlinear
control systems defined on homogeneous time scale. Notice
that, using previous experience with Mathematica program, we
implemented our results in NLControl package. However, the
algorithm is presented in a form that can be easily implemented
by any programming language.
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Abstract: The aim of the paper is to show that two different polynomial realization methods,
one of them based on adjoint polynomials and the other on the polynomial quotients, are
equivalent. It is proved that both methods provide exactly the same set of basis vectors of the
subspace determining the differentials for the state coordinates.

Keywords: nonlinear control system, state space realization, non-commutative polynomials,
adjoint polynomials

1. INTRODUCTION

Identification of a nonlinear system provides a mathe-
matical model of the system in the form of input-output
(i/o) differential equation. At the same time, most of
the control system theory is developed for the systems
represented by the state equations. Thus, it is necessary
to bring the obtained i/o equation into the state-space
form. This task is called realization of the system. For
nonlinear systems realization is a sophisticated problem;
note that every input-output equation does not necessar-
ily admit a state-space representation. There are several
(equivalent) necessary and sufficient realizability condi-
tions available in the literature. Among them the most
known are algebraic conditions formulated in terms of
integrability of the subspaces of differential one-forms, see
Conte et al. (2007) and those in terms of Lie brackets
by Delaleau and Respondek (1995). Recently, the theory
of the noncommutative polynomial rings was applied to
the realization problem. The polynomial approach is built
upon the approach of differential one-forms and is most
efficient from the computational point of view. The aim
of the present paper is to find relations between the basis
one-forms of the subspaces used to find differentials of the
state coordinates in Halás and Kotta (2009) and Tõnso
and Kotta (2009).

2. PROBLEM STATEMENT AND ALGEBRAIC
FRAMEWORK

Consider a single-output nonlinear system, described by
a higher order i/o differential equation, relating the input
u = [u1, . . . , um]T , the output y and a finite number of
their time derivatives

y(n) = φ(y, ẏ, . . . , y(n−1), u, u̇, . . . , u(n−1)). (1)

In (1) u ∈ U ⊂ Rm, y ∈ Y ⊂ R, t > 0 and φ is a real
analytic function.

The realization problem is defined as follows. Given a
nonlinear system, described by the i/o equation of the
form (1), find, if possible, the state coordinates x ∈ Rn,

x = ψ(y, . . . , y(n−1), u, . . . , u(n−1)) such that in these
coordinates the system takes the classical state space form

ẋ = f(x, u)
y = h(x),

(2)

and the sequences {u, y, t > 0}, generated by (2) (for dif-
ferent initial states), coincide with the sequences {u, y, t >
0}, satisfying equations (1). Then (2) is called a realization
of (1). A system (1) is said to be realizable if for it exists
a realization of the form (2).

Below we briefly recall the algebraic formalism, described
in Conte et al. (2007). Let K denote the field of meromorp-
hic functions in a finite number of the independent system
variables {y, . . . , y(n−1), u(k), k ≥ 0} and s : K → K
denote the time derivative operator d/dt. Then the pair
(K, s) is a differential field Kolchin (1973). Over the field K
one can define a differential vector space, E := spanK{dϕ |
ϕ ∈ K} spanned by the differentials of the elements of K.
Consider a one-form ω ∈ E : ω =

∑
i αidϕi, αi, ϕi ∈ K. Its

derivative ω̇ is defined by ω̇ =
∑
i α̇idϕi + αidϕ̇i.

3. POLYNOMIAL FRAMEWORK

Polynomial framework is built upon the linear algebraic
framework. The differential field (K, s) induces a ring of
left polynomials K[Z, s]. The elements of K[Z, s] can be
uniquely written in the form

a(Z) =
n∑

i=0

aiZ
n−i, ai ∈ K

where Z is a polynomial indeterminate and a(Z) 6= 0 if
and only if at least one of the functions ai, i = 0, . . . , n is
nonzero. If a0 6≡ 0, then the positive integer n is called the
degree of the polynomial a(Z) and denoted by deg a(Z).
In addition, we set deg 0 = −∞. For a ∈ K let us define
the multiplication

Z · a = a · Z + s(a). (3)

If the multiplication is defined by (3), the ring K[Z, s] is
proved to satisfy left Ore condition McConnel and Robson
(1987), and Zn · a ∈ K[Z, s], for n ≥ 1, and
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Zn · a =

n∑

i=0

Cins
n−i(a)Zi.

A ring D is called an integral domain, if it does not contain
any zero divisors. This means that if a and b are two
elements of D such that ab = 0, then a = 0 or b = 0.

Lemma 1. McConnel and Robson (1987)

(i) The ring K[Z, s] is an integral domain.
(ii) If a and b are nonzero left polynomials, then

deg(a b) = deg a+ deg b.

Definition 2. Abramov et al. (2005) The adjoint of a Ore
polynomial ring K[Z, s] is defined as the Ore polynomial
ring K[Z∗, s∗], where s∗ = −s.

From the definition it follows that in the adjoint polyno-
mial ring multiplication is defined by the commutation rule
Z∗ · a = a · Z∗ − ȧ, where a ∈ K. If

p(Z) = pnZ
n + . . .+ p1Z + p0 (4)

is a polynomial in K[Z, s] then the adjoint polynomial
p∗(Z∗) is defined by the formula

p∗(Z∗) = Z∗npn + . . .+ Z∗p1 + p0 ∈ K[Z∗, s∗], (5)

where the products Z∗ipi must be computed in K[Z∗, s∗].

For Φ ∈ K we define d : K → E as follows:

dΦ :=

n−1∑

i=0

∂Φ

∂y(i)
dy(i) +

m∑

j=1

k∑

l=0

∂Φ

∂u
(l)
j

du
(l)
j .

dΦ is said to be the total differential (or simply the
differential) of the function Φ and it is a differential one-
form. It is proved in Conte et al. (2007) that s(dΦ) =
d(sΦ). Let us define Zkdy := d(sky) and Zldu := d(slu),
for k, l ≥ 0 in the vector space E . Since every one-form
ω ∈ E has the form

ω =
n−1∑

i=0

aidy
(i) +

m∑

j=1

k∑

l=0

bj,ldu
(l)
j ,

where ai, bj ∈ K, so ω can be expressed in terms of the left
polynomials

ω =

(
n−1∑

i=0

aiZ
i

)
dy +

m∑

j=1

(
k∑

l=0

bj,lZ
l

)
duj .

A polynomial can be considered as an operator acting on
the elements of E :(

k∑

i=0

aiZ
i

)
(αdν) :=

k∑

i=0

ai
(
Zi · α

)
dν,

with ai, α ∈ K and dν ∈ {dy,du1, . . . ,dum}. It is easy to
notice that Z(ω) = s(ω), for ω ∈ E . Additionally, using the
induction principle, one can show that Zn(dΦ) = d(snΦ).

Instead of working with equation (1), describing the con-
trol system, we can work with its differential

dy(n) −
n−1∑

i=0

∂φ

∂y(i)
dy(i)=

m∑

j=1

n−1∑

i=0

∂φ

∂u
(i)
j

du
(i)
j (6)

that can be rewritten as

a(Z)dy =
m∑

j=1

bj(Z)duj , (7)

with

a(Z) = Zn −
n−1∑

i=0

∂φ

∂y(i)
Zi, bj(Z) =

n−1∑

i=0

∂φ

∂u
(i)
j

Zi (8)

and a(Z), bj(Z) ∈ K[Z, s] for j = 1, . . . ,m.

4. REALIZABILITY CONDITIONS

Realizability conditions in terms of adjoint polynomials
can be found in Halás and Kotta (2009) for single-input
single-output (SISO) systems and in Halás and Kotta
(2011) for multi-input single-output systems:

Theorem 3. Given a nonlinear control system defined by
i/o equation (1), or equivalently by (6), let

ωi :=
m∑

j=1

b∗j,i−1duj − a∗i−1dy, i = 1, . . . , n. (9)

Then there exists a state space realization of the form (2)
if and only if

spanK{dy,dẏ − ωn,dÿ − ω̇n − ωn−1, . . . ,
dy(n−1) − ω(n−2)

n − ω(n−3)
n−1 − . . .− ω2, } (10)

is integrable.

Realizability conditions based on division of non-commuta-
tive polynomials are given in Tõnso and Kotta (2009) for
SISO systems and in Belikov et al. (2011) for multi-input
multi-output systems:

Theorem 4. Given a nonlinear control system defined by
i/o equation (1), or equivalently by (6), let

ω̄l :=
[
āl(Z),−b̄·,l(Z)

] [dy
du

]
, l = 1, . . . , n (11)

where āl(Z) and b̄·,l(Z) can be computed recursively from

āl−1(Z) = Z āl(Z) + rl
b̄·,l−1(Z) = Z b̄·,l(Z) + ρ·,l,

(12)

with the initial polynomials

ā0(Z) = a(Z), b̄·,0(Z) = [b1(Z), . . . , bm(Z)].

Then there exists a state space realization of the form (2)
if and only if

spanK{ω̄l, l = 1, . . . , n} (13)

is integrable.

State coordinates necessary for realization can be found
by integrating the basis vectors of the subspaces (10)
or (13). Of course, one cannot find the integrable one-
forms dx1(t), . . . , dxn(t) for an arbitrary i/o equation. No
matter which way the the subspace is calculated, either
by Theorem 3 or by Theorem 4, its integrability can be
checked by the Frobenius theorem.

Theorem 5. Choquet-Bruhat et al. (1989)(Frobenius) Let
V = spanK{ω1, . . . , ωr} be a subspace of E . V is closed iff
dωk ∧ ω1 ∧ . . . ∧ ωr = 0, for all k = 1, . . . , r.

5. MAIN RESULT

Since Theorems 3 and 4 both present necessary and suf-
ficient realizability conditions, these conditions are obvi-
ously equivalent. The goal of this section is to show the
precise relationship between the codistribution (10) and
(13).
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Proposition 6. The basis one-forms (10) in Theorem 3
coincide with the one-forms ω̄l, l = 1, . . . , n in Theorem 4.

Proof. First note that basis one-forms of the codistribution
(10) can be written in a form

dy(i−1) − ω(i−2)
n − . . .− ω̇n−i+3 − ωn−i+2,

where i = 1, . . . , n. Definition (9) allows us to rewrite the
basis vectors in the form:

(Zi−1 + Zi−2a∗n−1 + . . .+ Za∗n−i+2 + a∗n−i+1)dy

−
m∑

j=1

(Zi−2b∗j,n−1 + . . .+ Zb∗j,n−i+2 + b∗j,n−i+1)duj (14)

Next, observe that the (polynomial) coefficient of dy,
denoted by ãn−i+1(Z), is similar to the polynomial

a(Z) = Zn + Zn−1a∗n−1 + . . .+ Za∗1 + a∗0.

We only need to multiply ãn−i+1(Z) from left by Zn−i+1

and add a missing part zn−ia∗n−i + . . . + Za∗1 + a∗0. The
latter means

Zn−i+1ãn−i+1(Z) + Zn−ia∗n−i + . . .+ Za∗1 + a∗0 = a(Z).

For the sake of simplicity we can replace in previous
equality the index i by l = n − i + 1, l = 1, . . . n, keeping
in mind that it just means reversing the order of the
coefficients:

Zlãl(Z) + Zl−ia∗l−1 + . . .+ Za∗1 + a∗0 = a(Z).

Thus, we have represented a coefficient ãl(Z) of dy as a
left quotient of a(Z) and Zl, l = 1, . . . , n. Note that such
quotients can be computed using the recursive formula

Zãl(Z) + a∗l−1 = ãl−1(Z).

Since the quotient of two polynomials is unique, the
polynomial ãl(Z) has to be equal to āl(Z) in (12), while
rl = a∗l−1. Analogously, it is possible to prove that the

coefficients of duj for j = 1, . . . ,m in (14) equal to b̄·,l(Z)
in (12). Thus, we have shown that the basis one-forms (10)
and (11) coincide, except that the order is reversed. �
Remark about the discrete-time case

Realizability conditions for discrete-time systems are
largely analogous to their continuous-time counterparts.
The analogue of Theorem 3 for discrete-time SISO systems
can be found in Halás and Kotta (2010); the only difference
is that in basis (10) instead of the derivative operator there
is the forward shift operator δ. The forward shift operator
is defined by shifting the arguments of the function ac-
cording to the rules δy(t) = y(t + 1), δuj(t) = uj(t + 1),
j = 1, . . . ,m. The inverse operator of δ is denoted by
δ−1 and called backward-shift operator. We should also
keep in mind that in discrete-time case multiplication of
polynomials and adjoint polynomials is defined by different
commutation rules, Z ·a = δ(a) ·Z and Z∗ ·a = δ−1(a) ·Z∗,
respectively. Due to the latter commutation rule, for an
adjoint polynomial p∗(Z∗) = p∗nZ

∗n + . . .+ p∗1Z
∗+ p∗0, the

equalities p∗i = δ−i(pi), i = 0, . . . , n hold. Therefore, for
the discrete-time systems, the equality (14) takes the form

(Zi−1 + δi−n−1(an−1)Zi−2 + . . .+ δi−n−1(an−i+1))dy

−
m∑

j=1

(δi−n−1(bj,n−1)Zi−2 + . . .+ δi−n−1(b∗j,n−i+1))duj

(15)

for i = 1, . . . , n. The coefficients of dy and duj , j =
1, . . . ,m can be computed by polynomial division as in
Theorem 4; however, the shorter way is to use the cut-
and-shift operator defined by

δ−1c (p(Z)) = δ−1(p(Z)− p0), (16)

see also Kotta and Tõnso (2008). In terms of the cut-and-
shift operator the equality (15) may expressed as

δ−lc a(Z)dy −
m∑

j=1

δ−lc (bj,l)duj = δ−lc [a(Z),−b(Z)]

[
dy
du

]

(17)
for l = 1, . . . , n. The latter formula agrees with the result
in Kotta and Tõnso (2008).

6. EXAMPLES

Example 1. Consider the control system ÿ = u+ yu̇2. Let
us compute the differentials of state coordinates necessary
for realization by two different methods, by Theorem 3
and Theorem 4. As a common step of both methods, one
has to find the polynomial representation of the system,
i.e polynomials a(Z) and b1(Z) = b(Z):

a(Z) = Z2 − u̇2
b(Z) = 2yu̇Z + 1.

Following Theorem 3, one has to compute adjoint polyno-
mials a∗(Z∗) and b∗(Z∗). By (5),

a∗(Z∗) = Z∗2 + u̇2

b∗(Z∗) = 2yu̇Z∗ + (1− 2ẏu̇− 2yü).

After computing ω1 and ω2 defined by (9)

ω1 = (1− 2ẏu̇− 2yü)du− u̇2dy
ω2 = 2yu̇du

it is easy to write down the basis one-forms (14)

spanK{dy, dẏ − ω2} = spanK{dy, dẏ − 2yu̇du}. (18)

According to Frobenius condition the latter subspace is
not integrable and thus the system does not admit the
classic state space representation.

Alternatively, one may follow Theorem 4 and find āl(Z),
b̄l(Z), l = 1, . . . , n by dividing a(Z) and b(Z) from the left
by the polynomial Z repeatedly:

ā0(Z) = Z2 − u̇2 b̄0(Z) = 2yu̇Z + 1
ā1(Z) = Z b̄1(Z) = 2yu̇
ā2(Z) = 1 b̄2(Z) = 0

By (11),

ω̄1 = Zdy − 2yu̇du = dẏ − 2yu̇du

ω̄2 = dy,

which coincide with the basis one-forms of (18).

Example 2. Consider the control system

y(3) = u1ẏ + yu̇1 + u̇22 + u2ü2 (19)

that can be described as in (8) as follows:

a(Z) = Z3 − u1Z
b1(Z) = Z + ẏ
b2(Z) = u2Z

2 + 2u̇2Z + ü2.
(20)

Obeying Theorem 3, the adjoint polynomials a∗(Z∗),
b∗1(Z∗) and b∗2(Z∗) are as follows:

a∗(Z∗) = Z∗3 − u1Z∗ + u̇1
b∗1(Z∗) = Z∗ + ẏ
b∗2(Z∗) = u2Z

∗2.
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Computation of ωi’s, defined by (9), yields

ω1 = ẏdu1 − u̇1dy
ω2 = du1 + u1dy
ω3 = u2du2,

(21)

which allow to find the basis one-forms defined by (10):

spanK{dy, dẏ − ω3,dÿ − ω̇3 − ω2} =

spanK{dy, dẏ−u2du2,dÿ−u̇2du2−u2du̇2−du1−u1dy}.
(22)

Alternative solution starts by computing quotients by (12)

ā0(Z) = Z3 − u1Z b̄·,0 = [Z + ẏ, u2Z
2 + 2u̇2Z + ü ]

ā1(Z) = Z2 − u1 b̄·,1 = [ 1, u2Z + u̇2 ]
ā2(Z) = Z b̄·,2 = [ 0, u2 ]
ā3(Z) = 1 b̄·,3 = [ 0, 0 ],

(23)
that allow to find the basis one-forms ω̄1, ω̄2 and ω̄3

according to (11):

ω̄1 = (Z2 − u1)dy − du1 − (u2Z − u̇2)du2
= dÿ − u1dy − du1 − u2du̇2 − u̇2du2

ω̄2 = Zdy − 0 · du1 − u2du2
= dẏ − u2du2

ω̄3 = dy.

As expected, the above one-forms coincide with (22). Ac-
cording to Frobenius condition, the subspace spanK{ω̄1, ω̄2,
ω̄3} is integrable and the differentials of the state coordi-
nates

dx1 = ω̄3 = dy

dx2 = ω̄2 = d(ẏ − 1

2
u22)

dx3 = ω̄1 + u1ω̄3 = d(ÿ − u1 − u2u̇2)

yield the classical state equations

ẋ1 =
1

2
u22 + x2

ẋ2 = u1 + x3

ẋ3 = u1(
1

2
u22 + x2).

7. MATHEMATICA IMPLEMENTATION

We have implemented both realization methods in com-
puter algebra system Mathematica. On that purpose we
use the functions from the package NLControl, allowing to
solve various modelling, analysis and synthesis problems
for nonlinear control systems, see Tõnso et al. (2009);
Tõnso (2010). NLControl package also includes the basic
tools for polynomials from Ore rings. If compared with
the Maple OreTools package, the polynomial functions in
NLControl have one essential benefit. Namely, NLControl
allows take into account that the derivative (or shift) oper-
ator is defined by the control systems equations, see Halás
et al. (2009). The OreTools package lacks such possibility,
therefore it may sometimes provide a wrong result when
applied to nonlinear control problems.

The given Mathematica code below has two advantages
worth to mention. First, it is constructed in a way it
can handle both continuous- and discrete-time systems;

in case of discrete-time systems one has just to replace
the word TimeDerivative by the word Shift. Second,
though the scope of this paper is limited to single-output
systems, the above code allows to find state coordinates for
multi-output systems, too. Therefore an additional pair of
curly braces may appear around Mathematica expressions
below. Consider the system (19). After loading the package
by the command

<<NLControl‘Master‘

let us create the object IO[], representing the i/o equa-
tions for this system.

eqs = {y’’’[t]->u1[t]y’[t]+u1’[t]+u2’[t]2+
u2[t]u2’’[t]};
Ut = {u1[t],u2[t]};
Yt = {y[t]};
ioeq = IO[eqs,Ut,Yt,t,TimeDerivative]

First, let us compute the state coordinates by Theorem 3.
For that we need to construct the Ore ring and adjoint
Ore ring associated with the system ioeq.

R = DefineOreRing[Z, ioeq];
adR = DefineAdjointOreRing[Z, ioeq];

The function FromIOToOreP finds the polynomials a(Z)
and bj(Z), j = 1, . . . ,m for the system ioeq. Note that
the polynomials bj(Z) are chosen with the opposite sign
to (7) and (20).

AB = MapThread[Join, FromIOToOreP[ioeq]]

{{OreP[1,0,-u1[t],0],
OreP[-1,-y’[t]],
OreP[-u2[t],-2 u2’[t],-u2’’[t]]}}

The function OreP[pn, . . .,p1, p0] represents the Ore
polynomial in the form (4). The function Adjoint allows
to compute adjoints of the polynomials being elements of
the matrix AB.

adAB = Map[Adjoint[#, adR]&, AB, 2]

{{OreP[1,0,-u1[t],u1’[t]], OreP[-1,-y’[t]],
OreP[-u2[t],0,0]}}

By the next code row the coefficients of the polynomials
are represented as the individual 0-degree polynomials.
The constant terms (the last argument of OreP[]) are
removed, since they correspond to ω1, which is not neces-
sary in further computations.

adAB = Map[ If[ Head[#]===OreP,
Drop[ List @@ OreP /@ #, -1], ]&, adAB, 2]

{{{1, 0, OreP[-u1[t]]}, {OreP[-y[t]]},
{OreP[-u2[t]], 0}}}

To obtain the the polynomials, respective to the one-forms
ωi, defined by (9), we need to equalize the length of the
rows by adding the missing zeros to the beginning of each
row and the transpose the obtained matrix.

omega = Transpose/@ PadLeft/@ adAB

{{{1,0,0}, {0,0,OreP[-u2[t]]},
{OreP[-u1[t]],-1,0}}}
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In above output the vector {1,0,0} corresponds to
dy, which can be considered as ωn+1 = ω4, the vec-
tor {0,0,OreP[-u2[t]]} corresponds to −ω3 and
{OreP[-u1[t]], OreP[-y[t]],0} to −ω2, given by
(21). Our next task is to compute the basis one-forms (10).
Denoting the basis elements by θ1, . . . , θn (and recalling
that our ωi, i = 2, . . . , n are of opposite signs, to (9)),
allows to compute the basis by the time-saving recursive
formula θ1 = dy, θi+1 = θ̇i + ωn−i+1 for i = 1, . . . , n − 1.
Instead of computing the derivatives of θi, i = 1, . . . , n−1
we have chosen to multiply the respective polynomials by s
from right. The reason for such choice is that the routines
available in NLControl are more suitable for this method
and it allows to avoid several clumsy data transformation.

statedifpoly = Rest @ FoldList[
OreMultiply[ OreP[1,0],#1,K]+#2&, 0, #]&
/@ omega

{{{1,0,0}, {OreP[1,0],0,OreP[-u2[t]]},
{OreP[1,0,-u1[t]], -1,
OreP[-u2[t],-u2’[t]]}}}

The function FromOrePToSpanK converts the list of Ore
polynomials into the set of one-forms.

statedif = FromOrePToSpanK[
Join @@ statedifpoly, ioeq]

SpanK[{{1,0,0,0,0,0}, {0,1,0,0,-u2[t],0},
{-u1[t],0,1,-1,-u2’[t],-u2[t]}},
{y[t],y’[t],y’’[t],u1[t],u2[t],u2’[t]},
-1, t]

We have computed the basis of the subspace (10). The
function BookForm allows to print the result in a user-
friendly form:

BookForm[statedif]

SpanK{dy, dy’ - u2 du2,
-u1 dy + dy’’- du1 - u2’du2 - u2 du2’}

Integrating the one-forms

states = IntegrateOneForms[statedif]

{y[t], 1/2 (u2[t]ˆ2 - 2y’[t]),
u1[t] + u2[t]u2’[t] - y’’[t]}

yields the state coordinates, which allow to find the state
equations:

BookForm[Realization[ioeq,
{x1[t],x2[t],x3[t]}, states]]

x1’ = (u2ˆ2 - 2*x2)/2
x2’ = -u1 + x3
x3’ = -((u2ˆ2 - 2*x2)*u1)/2
y = x1

x1 = y
x2 = (u2ˆ2 - 2*y’)/2
x3 = u1 + u2 u2’ - y’’)

The basis (10) can be also found by the single func-
tion StateDifferentialsAdjoint[ioeq] (the name
of the function may be confusing, because in fact,
it gives the linear combination of the differentials of
the state coordinates.) The realization procedure can

be performed by the function Realization[ioeq,
{x1[t],x2[t],. . .}, Method->Adjoint].

Second, let us find the state coordinates by Theorem
4. We can employ the Ore ring R and the matrix AB
already computed above. The order of the system can be
determined by the function MaxPLMOrder, which allows
to find the maximal order of time-derivative, shift or any
other pseudo-linear map.

ni = MaxPLMOrder[eqs, #, TimeDerivative
]& /@ Yt

{3}

According to (12) we have to divide the elements of the
matrix AB repeatedly by the polynomial s from left. By
abuse of function name, we have defined the function
CutAndShift[p(Z),R] as a left quotient of p(Z) and
s for the Ore rings, associated with the continuous-time
systems. The reason is that in case of discrete-time systems
the quotients can be found by applying cut-and-shift
operator as in (17). This extension allows to compute the
polynomials āl and b̄·,l, l = 1, . . . , n in (12) for both,
continuous- and discrete time systems, by the following
compact row:

ABquot = MapThread[ NestList[
CutAndShift[#, K]&, #1, #2]&, AB, ni]

{{{OreP[1,0,-u1[t],0],
OreP[-1,-y’[t]],
OreP[-u2[t],-2 u2’[t],-u2’’[t]]},

{OreP[1,0,-u1[t]], -1,
OreP[-u2[t],-u2’[t]]},

{OreP[1,0],0,OreP[-u2[t]]},
{1,0,0}}}

The obtained list corresponds to {{{ā0(Z), b̄·,0(Z)}, . . . ,
{ā3(Z), b̄·,3(Z)}}}, where the polynomials are given by
(23). Removing the first row {ā0(Z), b̄·,0(Z)} and reversing
the order of the remaining rows yields

ABquot = Reverse /@ Rest /@ ABquot

{{{1, 0, 0}, {OreP[1, 0], 0, OreP[-u2[t]]},
{OreP[1, 0, -u1[t]], -1,

OreP[-u2[t], -u2’[t]]}}}

The funtion FromOrePToSpanK converts Ore polynomi-
als into the set of one-forms.

FromOrePToSpanK[ Join @@ ABquot, ioeq]

SpanK[{{1,0,0,0,0,0}, {0,1,0,0,-u2[t],0},
{-u1[t],0,1,-1,-u2’[t],-u2[t]}},
{y[t],y’[t],y’’[t],u1[t],u2[t],u2’[t]},
-1, t]

By that the basis of the subspace (13) has been computed.
The one-forms (13) can be also found by the function
StateDifferentialsLeftQuoteint[ioeq] and the
realization can be performed by Realization[ioeq,
{x1[t],x2[t]. . .}, Method->LeftQuotient].

Preliminary comparison of two realization methods, based
on relatively small examples, suggests that the program
employing adjoint polynomials works faster than the one
based on the polynomial quotients. The reason is obvious
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– adjoint polynomial method utilizes only polynomial mul-
tiplication, which is a primary function (it is immaterial
whether we work with polynomials or with adjoint polyno-
mials) and is therefore performed faster than polynomial
division.

However, in discrete-time case the situation is different.
Polynomial quotient operator can be replaced by cut-and-
shift operator, which means that the program can compute
the basis one-forms without calling neither multiplication
nor division functions and therefore, it can produce the
results faster than the program involving adjoint polyno-
mials.

8. CONCLUSION

In this paper the realizability problem of nonlinear control
system has been addressed. The paper focuses on estab-
lishing the explicit relationship between the two necessary
and sufficient realizability conditions. Both conditions are
formulated in terms of integrability of a certain subspace.
While in the first condition the basis one-forms of the
subspace are achieved from the adjoints of the polynomials
describing the system; in the second condition the basis
one-forms are found using polynomial quotients. As both
conditions are necessary and sufficient it is obvious that
they are equivalent; however, in this paper it is proved that
the basis one-forms used in both conditions are equal.
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M. Halás and Ü. Kotta. Realization problem of SISO non-
linear systems: a transfer function approach. In IEEE
International Conference on Control and Automation,
pages 546–551. Christchurch, New Zealand, 2009.
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Abstract: The tools of the algebra of functions are applied to readdress the accessibility and
static state feedback linearization problems for discrete-time nonlinear control systems. These
tools are also applicable for nonsmooth systems. Moreover, the close connections are established
between the new results and those based on differential one-forms.
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1. INTRODUCTION

The approach based on the vector spaces of differential
one-forms over suitable differential/difference fields of non-
linear functions offers the complementary (dual) tools to
the differential geometric methods for studying the non-
linear control systems, either continuous- or discrete-time,
see Conte et al. [2007]. These tools are characterized by
their inherent simplicity, universality and strong similarity
to their linear counterparts.

However, there exists another mathematical approach that
relies on a certain algebraic structure, called the algebra
of functions, see Zhirabok and Shumsky [2008]. The main
idea for developing the algebra of functions traces back to
the book by Hartmanis and Stearns [1966], who introduced
the algebra of partitions for finite automata defined via the
transition tables or graphs. In the algebra of functions the
partitions were replaced by functions generating them and
the analogous operations and operators for functions were
introduced. The four key elements of the algebra of func-
tions are partial preorder relation, binary operations (sum
and product, defined in a specific manner), binary relation
and certain operators m and M. The first two elements are
defined on the arbitrary set of vector functions whereas
the other two are defined for functions with the domain
being the state space of the control system. Like the tools
based on the differential forms, the algebra of functions
provides a unified viewpoint to study the discrete-time as
well as the continuous-time control systems; additionally
it allows to address also the discrete-event systems like

? This work was supported by the Estonian governmental funding
project no. SF0140018s08, ESF grant no. 8365 and Russian Founda-
tion of Basic Researchers Grants 10-08-00133 and 10-08-91220-CT.

those in Shumsky and Zhirabok [2010a,b]. An important
point to stress is that these tools (unlike most previous
methods) do not require the system to be described in
terms of smooth functions.

The goal of this paper is to compare the tools of the algebra
of functions with those based on the differential forms.
Our purpose is to compare the assumptions made on the
control system, the basic algorithms and the solutions of
few chosen control problems, like accessibility and static
state feedback linearization. In order to focus on the
key aspects and keep the presentation simple, we restrict
ourselves in this paper to the discrete-time single-input
systems.

Whereas the number of publications on the topic of static
state feedback linearization is huge, the situation is differ-
ent for the discrete-time case, see Jayaraman and Chizek
[1993], Nam [1989], Grizzle [1986], Nijmeijer and van der
Schaft [1990], Aranda-Bricaire et al. [1996], Jakubczyk
[1987], Simões and Nijmeijer [1996]. Except Simões and
Nijmeijer [1996], all papers focus on smooth feedback.

The interest in recasting these old problems is that the
new solution is not based on the ’tangent linearized sys-
tem’ description of the system but is found directly by
manipulating the functions on the system equation level.
Therefore, for finding the solution one is not required to
solve a partial differential equation or to integrate the
differential one-forms. The new approach is based on the
algebra of functions. Then we compare the new results
with the one described in terms of the differential forms in
Aranda-Bricaire et al. [1996].
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2. TOOLS BASED ON DIFFERENTIAL FORMS

Consider a discrete-time nonlinear control system Σ of the
form

σ(x) = f(x, u), (1)

where by σ(x) is denoted the forward shift of x, alter-
natively written as x+, f : Rn × R → Rn, the variables
x = [x1, ..., xn]T 1 and u are the coordinates of the state
space Rn and the input space R, respectively. In the ap-
proach based of differential one-forms, one assumes that f
in (1) is analytic function. However, in the approach based
on the algebra of functions there is no need to assume that
f is analytic. Actually, f is allowed even to be nonsmooth.

In the study of discrete-time nonlinear control systems
the following assumption is usually made, that guarantees
the forward shift operator, defined by equation (1), to be
injective. Note that this assumption is not restrictive since
it is always satisfied for accessible systems, see Grizzle
[1993].

Assumption 1. The system (1) is submersive, i. e. generi-
cally, rank[∂f(x, u)/∂(x, u)] = n.

Note that this assumption is not restrictive, especially
for problems studied in this paper, since by the results
of Grizzle [1993], submersivity is a necessary condition
for a system to be accessible. Moreover, accessibility is a
necessary condition for static state feedback linearizability.

In the approach of differential one-forms one associates
with system (1) an inversive difference field (K, σ) of
meromorphic functions in a finite number of independent
system variables, see Aranda-Bricaire et al. [1996]. The
forward shift operator σ : K → K is defined by

σϕ(x, u) = ϕ(σ(x), σ(u)) = ϕ(f(x, u), σ(u)).

However, not every element in K has necessarily a preim-
age with respect to σ. To guarantee that σ is an automor-
phism, one has to extend equations (1) by

x̃ = g(x, u) (2)

such that

rank
∂(fT , gT )T

∂(x, u)
= n+ 1.

Though the choice of the function g(x, u) is not unique,
all choices lead to isomorphic differential fields. In what
follows we use sometimes the abridged notation ϕ+ = σ(ϕ)
and ϕ− = σ−1(ϕ) for ϕ ∈ K.

Over the field K one can define a vector space E :=
spanK{dϕ | ϕ ∈ C} spanned by the differentials of the
elements of C = {x, σk(u), k ≥ 0}. The elements of E are
called differential one-forms. The forward shift operator
σ : K → K induces a forward shift operator σ : E → E by

Σiaidϕi → Σia
+
i d(σ(ϕi)).

A 1-form ω ∈ E is called exact if dω = 0 and closed if
dω ∧ ω = 0, where ∧ denotes the wedge product. The
subspace of 1-forms in E is called completely integrable if
1 Note that we often omit the symbol of transposition T in [ , ]T

for simplicity of presentation.

it admits a basis which consists only of closed one-forms.
The relative degree r of a 1-form ω in X := spanK{dx} is
defined by r = min{k ∈ N | ω(k) 6∈ X}.
Define a sequence of codistributions Hk as follows

H1 = spanK{dx}
Hk+1 = {ω ∈ Hk | ω+ ∈ Hk}, k ≥ 1.

Each Hk contains the one-forms with relative degree
equal to k or greater than k. The sequence Hk is non-
increasing. There exists an integer k∗ ≤ n such that
for 1 ≤ k ≤ k∗, Hk+1 ⊂ Hk, Hk∗+1 6= Hk∗ but
Hk∗+1 = Hk∗+2 := H∞. Obviously, k∗ is the minimal
integer satisfying Hk∗+1 = Hk∗+2 and H∞ is the maximal
codistribution, invariant with respect to the forward shift.
Finally, note that the subspaces are invariant with respect
to the regular static state feedback and state coordinate
transformation Aranda-Bricaire et al. [1996].

3. THE ALGEBRA OF FUNCTIONS

To readdress accessibility and feedback linearization prob-
lems, the mathematical technique called the algebra of
functions and developed in Zhirabok and Shumsky [2008]
will be used. We recall below briefly the definitions and
concepts to be used in this paper, see also Shumsky [2009].
Since these tools are not widely known, we provide many
illustrative examples to illustrate the definitions.

The elements of algebra of functions are vector functions
and its main ingredients are:

(1) relation of partial preorder, denoted by ≤,
(2) binary operations, denoted by × and ⊕,
(3) binary relation, denoted by ∆,
(4) operators m and M.

The first two elements are defined on the arbitrary set S
of vector functions whereas the last two are defined for the
set SX of vector functions with the domain being the state
space X.

Definition 1. (Relation of partial preorder) Given α, β ∈
S, one says that α ≤ β iff there exists a function γ such
that

β(s) = γ(α(s))

for ∀s ∈ S.

The definition means that every component of the function
β can be expressed as a function of α. Clearly, α ≤ β iff

rank[∂α/∂s] = rank

[
∂α/∂s
∂β/∂s

]
.

Example 2. Let α(s) = [s1, s2]T , β(s) = [s1, s1s2]T . Then
α ≤ β since there exists γ(α) = [α1, α1α2]T such that
β1 = α1, β2 = α1α2. The inequality β ≤ α does not hold
in general, since α2 = β2/β1 is not valid for s1 = β1(s) = 0,
i.e. on the set of measure zero.

If α 6≤ β and β 6≤ α, then α and β are said to be
incomparable.

Example 3. Let α(s) = [s1s3, s2]T and β(s) = [s1, s2s3]T ;
α(s) and β(s) are incomparable. Note that α(s) 6≤ β(s),
since
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rank

(
∂α

∂s

)
=

(
s3 0 s1
0 1 0

)
6= rank

(
∂α/∂s
∂β/∂s

)

=



s3 0 s1
0 1 0
1 0 0
0 s3 s2


.

In the similar manner one can show that β(s) ≤ α(s).

Definition 4. (Strict equivalence) If α ≤ β and β ≤ α,
then α and β are called strictly equivalent, denoted by
α ∼= β.

Note that the relation ∼= is reflexive, symmetric and
transitive. The equivalence relation divides the set S into
the equivalence classes containing the equivalent functions.

Example 5. The functions α(s) = [s1, s2]T and β(s) =
[s1, s1 + s2]T are strictly equivalent since β1 = α1, β2 =
α1 + α2, and α1 = β1, α2 = β2 − β1.

Besides the strict equivalence, we use the notion of equiv-
alence, corresponding to the situation when one of the
inequalities α ≤ β or β ≤ α may be violated on a set
of measure zero.

Example 6. (Continuation of Example 2) The functions α
and β are equivalent though not strictly equivalent.

Definition 7. Given α, β ∈ S,

α× β = max(γ ∈ S | γ ≤ α, γ ≤ β),

and

α⊕ β = min(γ ∈ S | α ≤ γ, β ≤ γ).

It follows from these definitions that the function α× β is
a maximal bottom of the functions α and β while α ⊕ β
is their minimal top. In the simple cases the definition
may be used to compute α ⊕ β. For the general case, see
Zhirabok and Shumsky [2008].

The rule for operation × is simple

(α× β)(s) =

[
α(s)
β(s)

]
.

However, the product may contain redundant (function-
ally dependent) components that have to be found and
removed. Moreover, to simplify the computations, one is
advised to replace the remaining components by equivalent
but more simple functions. At moment, no algorithm exists
for these two steps.

Example 8. (Computation of the functions α× β and α⊕
β). Let S = R3,

α(s) =

[
s1 + s2
s3

]
, β(s) =

[
s1s3
s2s3

]
.

Then (α×β)(s) ∼= [s1 +s2, s3, s1s3]T , (α⊕β)(s) ∼= s3(s1 +
s2).

Definition 9. (Binary relation ∆) Given α, β ∈ SX , α and
β are said to form an (ordered) pair, denoted as (α, β) ∈ ∆
if there exists a function f∗ such that

β(f(x, u)) = f∗(α(x), u) (3)

for all (x, u) ∈ X × U .

The example below shows that the binary relation is not
symmetric.

Example 10. Let α(x) = x2, β(x) = x1, and the state
transition map in (1)

f(x, u) =

[
ϕ1(x2, u)

ϕ2(x1, x2, u)

]
.

Then

β(f(x, u)) = ϕ1(α(x), u)

but

α(f(x, u)) = ϕ(x1, x2, u) 6= f∗(β(x), u).

The binary relation ∆ may be given the following interpre-
tation. From (3), if for states x̃(t) and x̂(t) at time instant
t the equality

α(x̃(t)) = α(x̂(t))

holds, then at time instant t+ 1 we have

β(x̃(t+ 1)) = β(x̂(t+ 1))

independent of the control u(t) applied.

Another interpretation is also possible. One may ask
the question. What do we have to know about x(t) to
compute β(x(t + 1)) for arbitrary but known u(t)? Of
course, in the case when all the components of x(t) are
known, this is possible. However, in many cases, some
of this information is unnecessary and the amount of
the necessary information is displayed in function α(x),
forming a pair with the function β(x).

Obviously, given β(x), there exist many functions α(x),
forming a pair with β(x), i.e. (α, β) ∈ ∆. The most
important among them is the maximal function with
respect to the relation ≤, denoted by M(β). In a similar
manner, for a given function α(x), there exist many
functions β(x), forming a pair with α(x), i.e. (α, β) ∈ ∆.
We will denote by m(α) the minimal function among those
functions (with respect to relation ≤).

Binary relation ∆ is used for definition of the operators
m and M. These operators define the functions m(α)
and M(β) respectively that are supposed to satisfy the
conditions formulated below in Definitions 11 and 12.

Definition 11. The function M(β) ∈ SX is defined by the
following two conditions

(i) (M(β), β) ∈ ∆
(ii) if (α, β) ∈ ∆, then α ≤M(β).

Definition 12. The function m(α) ∈ SX is defined by the
following two conditions

(i) (α,m(α)) ∈ ∆
(ii) if (α, β) ∈ ∆, then m(α) ≤ β.

The properties of the operators M and m are as follows
(see Zhirabok and Shumsky [2008]):

(1) α ≤ β ⇒M(α) ≤M(β);
(2) α ≤ β ⇒m(α) ≤m(β);
(3) m(α⊕ β) ∼= m(α)⊕m(β);
(4) m(M(β)) ≤ β;
(5) M(m(α)) ≥ α;
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(6) α is f -invariant function ⇔m(α) ≤ α⇔ α ≤M(α)

Computation of the operator m. It has proven that the
function γ exists that satisfies the condition (α × u) ⊕
f ∼= γ(f); if f is surjection 2 define m(α) ∼= γ, see Shumsky
[1988]. In this paper we assume that f is surjection.

Note that the latter assumption and the submersivity
assumption made in Section 2 are related as follows. The
map f is a submersion at a point (x, u) if its differential
df : Rn ×R→ Rn at this point is a surjective linear map.

Because the composition γ(f) may be written as γ+

and m(α) ∼= γ, one may alternatively write the rule for
computation of the operator m using a backward shift as
follows: m(α) ∼= ((α× u)⊕ f)−.

Computation of the operator M. In the special case when
the composite function β(f(x, u)) can be represented in
the form

β(f(x, u)) =

d∑

i=1

ai(x)bi(u)

where a1(x), a2(x), . . ., ad(x) are arbitrary functions and
b1(u), b2(u), . . ., bd(u) are linearly independent, then

M(β) := a1 × a2 × · · · × ad.

For the general case, see Zhirabok and Shumsky [2008].

4. MINIMAL f -INVARIANT FUNCTION

The goal of this section is to find a minimal (containing
the maximal number of functionally independent compo-
nents) vector function α0(x) such that its forward shift
α0(f(x, u)) does not depend on control u. Note that if f
is smooth, α0(x) satisfies the condition

∂

∂u
α0(f(x, u)) ≡ 0.

Though α0(x) is not unique, all possible choices are
equivalent functions.

Note that since the relative degrees of the components of
α0 are two or more, the differentials of α0(x) span the
integrable part of the codistribution H2 of the one-forms,
denoted by Ĥ2, i.e. Ĥ2 = spanK{dα0(x)}.
Algorithm 1. (Computation of the minimal f -invariant
function α satisfying the condition α0 ≤ α). Given α0,
compute recursively, using the formula below

αi+1 = αi ⊕m(αi) (4)

the sequence of nondecreasing functions αi, i ≥ 1. By
Theorem 1 in Shumsky and Zhirabok [2010c] there exists
a finite k such that αk+1 is equivalent to αk, denoted by
αk+1 ∼= αk. Note that the sequence αk converges at most in
n steps. Define α∗ := αk, and δi := αi−1, for i = 1, . . . , n.

The proposition below demonstrates that δk corresponds
to the integrable subspace of Hk+1, denoted by Ĥk+1.

Proposition 13. Ĥk+1 = spanK{dδk(x)}.

Proof. We give the proof for δ2 and H3. The justification
for the following steps is completely similar. As shown
2 For non-surjective f the formula is more complicated.

above Ĥ2 = spanK{dα0(x)} = spanK{dδ1(x)}. Next, note
that H3 may be alternatively defined as H3 = H2 ∩H−2 3 .

Note that the integrable subspace of H3, denoted by Ĥ3

may be computed alternatively as ̂Ĥ2 ∩ Ĥ−2 . Indeed, if the

exact one-form dζ ∈ Ĥ3, one necessarily has dζ ∈ H2,
dζ ∈ H−2 , and so, also into their intersection. Since dζ is

exact, dζ ∈ Ĥ2 and dζ ∈ Ĥ−2 , and therefore, also into
their intersection as well as into the integrable subspace
of the intersection. To show the converse, note that H3 =
H2 ∩ H−2 necessarily yields Ĥ2 ∩ Ĥ−2 ⊂ H3. Next, though

spanK{dm(δ1)} 6= Ĥ−2 completely, these two distributions
differ by a single basis element. Since this basis element
is missing in Ĥ2, it does not affect the intersection. In
particular, by definition of the operator m, δ1 × u ≤
m(δ1) ◦ f = m(δ1)+, and therefore (δ1)− × u− ≤ m(δ1).
By definition, the function (δ1)− contains the variable
x̃ whereas m(δ1) is free from this variable. Therefore,
because m(δ1) is the minimal function, satisfying this
inequality,

spanK{dm(δ1)} = spanK{d(δ1)−} − spanK{dx̃}
+ spanK{du−}
= Ĥ−2 − spanK{dx̃}+ spanK{du−}.

Then
spanK{d(δ2)} = spanK{d(δ1 ⊕m(δ1))}

= spanK{dδ1} ∩ spanK{dm(δ1)}
= Ĥ2 ∩ (Ĥ−2 + spanK{du−})

that corresponds to Ĥ3 = Ĥ2 ∩ Ĥ−2 . �
Examples 14 and 15 below illustrate the Proposition 13.
Namely, note that in the span of Ĥ−2 the differential

of the control variable du− is missing but Ĥ−2 contains
instead the element of dx̃− whereas x̃− is missing in m(δ1).

Moreover, δ1 ⊕m(δ1) corresponds to Ĥ2 ∩ Ĥ−2 .

Example 14. Consider the system

x+1 = x1 + x3
x+2 = x2 + x5
x+3 = u
x+4 = x3x4
x+5 = x1

Note that for this example (if we take x̃ = x5)

x−1 = x5
x−2 = x2 − x̃−
x−3 = x1 − x5
x−4 = x4/(x1 − x5)
x−5 = x̃−

and u− = x3.

Compute

δ1 = [x1, x2, x4, x5]T

and

m(δ1) = [[x1, x2, x4, x5, u]⊕ [x1 + x3, x2 + x5, u, x3x4, x1]]
−

= [x2 + x5, u, x1, x4]− = [x2, x3, x5,
x4

x1 − x5
]

3 Note that the application of the backward shift to the codistribu-
tion has to be understood componentwise.
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Note that δ1 corresponds toH2 = spanK{dx1,dx2,dx4,dx5},
which is integrable and m(δ1) corresponds to the H−2 ,
where

H−2 = spanK{dx−1 ,dx−2 ,dx−4 ,dx−5 }
= spanK{dx−1 ,dx−2 + dx−5 ,dx

−
4 ,dx

−
5 }

= spanK{dx5,dx2,d
(

x4
x1 − x5

)
,dx̃−}

.

The only difference between m(δ1) andH−2 is that whereas
m(δ1) contains x3 = u−, H−2 contains dx̃− = dx5. All the
other components coincide.

Furthermore, compute

δ2 = δ1 ⊕m(δ1) =

[
x2, x5,

x4
x1 − x5

]
,

and

m(δ2) =

[ [
x2, x5,

x4
x1 − x5

, u

]

⊕ [x1 + x3, x2 + x5, u, x3x4, x1]

]−

= [x2 + x5, u]− = [x2, x3].

Note that δ2 corresponds to (integrable)

H3 = spanK

{
dx2,dx5,d

(
x4

x1 − x5

)}

In a similar manner, compute

δ3 = δ2 ⊕m(δ2) = x2

and

m(δ3) = [[x2, u]⊕ [x1 + x3, x2 + x5, u, x3x4, x1]]
−

= u− = x3

Note that δ3 corresponds to the integrable subspace of H4.

Therefore

δ4 = δ3 ⊕m(δ3) ∼= const.

Finally, note that δ4 ∼= const corresponds to H∞ being
trivial, H∞ = {0}.

Example 15. Consider the system

x+1 = x1 + x3
x+2 = x2
x+3 = u
x+4 = x3x4
x+5 = x1

Compute

δ1 = [x1, x2, x4, x5]T

and

m(δ1) = [[x1, x2, x4, x5, u]⊕ [x1 + x3, x2, u, x3x4, x1]]
−

= [x2 + x5, u, x1, x4]− = [x2, x3, x5,
x4

x1 − x5
]

Note that δ1 corresponds toH2 = spanK{dx1,dx2,dx4,dx5}.

Furthermore,

δ2 = δ1 ⊕m(δ1) =

[
x2, x5,

x4
x1 − x5

]
,

and

m(δ2) =

[ [
x2, x5,

x4
x1 − x5

, u

]
⊕ [x1 + x3, x2, u, x3x4, x1]

]−

= [x2, u]− = [x2, x3].

Note that δ2 corresponds to

H3 = spanK

{
dx2,dx5,d

[
x4

x1 − x5

]}
.

In a similar manner, compute

δ3 = δ2 ⊕m(δ2) = x2

and

m(δ3) = [[x2, u]⊕ [x1 + x3, x2, u, x3x4, x1]]
−

= u− = [x2, u]− = [x2, x3].

Note that δ3 corresponds to the integrable subspace of H4,
i.e. Ĥ4 = spanK{dx2}.
Therefore

δ4 = δ3 ⊕m(δ3) = x2 = δ3

Finally, note that δ4 ∼= δ3 = x2 corresponds to the fact
that H∞ = H5 = spanK{dx2}.

5. ACCESSIBILITY

Note that accessibility is a necessary condition for static
state feedback linearizability. Therefore, we recall below
the accessibility definition and condition formulated in
terms of codistribution.

Following the notation in Jakubczyk and Sontag [1990] we
denote by Ak(x) the set of points reachable from x in k
forward time steps using arbitrary sequences of controls
u = (u(0), . . . , u(k − 1)) ∈ (Rm)k, and by A(x) the set of
points reachable from x in any number of forward steps
using arbitrary sequences of controls. That is,

A(x) =
⋃

k≥0
Ak(x).

The system is said to be forward accessible from x if
its reachable set A(x) has non-empty interior. A generic
notion of accessibility has been derived from this pointwise
definition in Albertini and Sontag [1993].

Definition 16. The system (1) is said to be (forward)
accessible if its reachable set A(x) has a non-empty interior
in Rn for almost all x ∈ Rn.

Proposition 17. Aranda-Bricaire et al. [1996] The system
(1) is accessible iff H∞ = {0}.
Proposition 18. The following statements for system (1)
are equivalent

(i) H∞ 6= {0}
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(ii) For some k, δk−1 ∼= δk 6= const.

Proof. Suppose H∞ 6= 0. This means that f -invariant
function β∗ exists such that α0 ≤ β∗. Due to the 6th
property of the operators m and M, m(β∗) ≤ β∗. The
inequality α0 ≤ β∗ implies m(α0) ≤m(β∗) which together
with the above inequality gives m(α0) ≤ β∗. By analogy
one may prove that for all i, mi(α0) ≤ β∗. It follows from
(4) that δi ≤ β∗ for all i. Due to (4) δ1 ≤ δ2 ≤ . . . and
since this sequence is bounded, then δk−1 ∼= δk 6= const
for some k.

Suppose that δk−1 ∼= δk 6= const for some k. This means
that the function α∗ ∼= δk is f -invariant such that α0 ≤ α∗,
i.e. the system (1) may be decomposed into the form
containing an autonomous subsystem. The latter means
that that the system (1) is nonaccessible since it admits
an autonomous variable, see Aranda-Bricaire et al. [1996]
and therefore H∞ 6= {0}. �

6. FEEDBACK LINEARIZATION

Definition 19. A regular static state feedback u = α(x, v)
is a mapping α : Rn × R → R such that generically
[∂α(·)/∂v] 6= 0.

System (1) is said to be static state feedback linearizable
if, generically, there exist

(i) a state coordinate transformation ϕ : Rn → Rn and
(ii) a regular static state feedback of the form u = α(x, v),

such that, in the new coordinates z = ϕ(x), the
compensated system reads z+ = Az +Bv, where the
pair (A,B) is in Brunovsky canonical form.

Theorem 20. Aranda-Bricaire et al. [1996] System (1) is
static state feedback linearizable if and only if

(i) Hk is completely integrable for all k = 1, . . . , n,
(ii) H∞ := Hn+1 = {0}.

Theorem 21 below suggests an alternative solution to the
static state feedback linearization problem. Consider a
special form of the system (1), the so-called controller
canonical form, see Kotta [2005]:

z+1 = z2,
z+2 = z3,

...
z+n−1 = zn
z+n = ψ(z, u).

(5)

The goal of Theorem 21 below is to find out under which
conditions formulated in terms of the algebra of functions
the system (1) can be transformed into the form (5) using
the state coordinate transformation z = ϕ(x). From this
form a regular static state feedback may be easily found
by defining v = ψ(z, u), in order to solve the feedback
linearization problem.

Note that by the results of Kotta [2005] the conditions to
transform the system (1) into the form (5) coincide with
those of Theorem 20.

Theorem 21. The system (1) can be transformed into the
form (5) iff δi 6= const, for i = 1, . . . , n− 1, but δn = const
where δi = αi−1 for i = 1, 2, . . . , n.

Proof. Sufficiency. Define ϕ1 := δn−1, ϕi+1 = M(ϕi),
i = 1, 2, . . . , n − 1 and zi = ϕi(x), i = 1, 2, . . . , n.
According to the definition of the operator M, one has
(M(ϕi), ϕi) ∈ ∆ that together with ϕi+1 = M(ϕi) gives
(ϕi+1, ϕi) ∈ ∆. By definition of the binary relation ∆,
there exists a function f∗i such that

ϕi(f(x, u)) = f∗i(ϕi+1(x), u),

for all (x, u) ∈ X×U and i = 1, 2, . . . , n−1. It follows from
(4) that α0 = δ1 ≤ δ2 ≤ . . . ≤ δn−1. Since δn−1 = δn−2 ⊕
m(δn−2), we have δn−1 ≥m(δn−2), and therefore, by the
1st and 5th properties of the operators m and M the
following holds

ϕ2 := M(ϕ1) = M(δn−1) ≥M(m(δn−2))
≥ δn−2 ≥ α0.

In a similar manner, one may obtain the inequalities

ϕ3 = M(ϕ2) ≥ δn−3 ≥ α0,
...

ϕn−1 = M(ϕn−2) ≥ δ1 ≥ α0.

The definition of the function α0 and the inequalities
ϕi ≥ α0, i = 1, 2, . . . , n− 1, yield

∂

∂u
ϕi(f(x, u)) =

∂

∂u
f∗i(ϕi+1(x), u) = 0,

therefore the function f∗i does not depend on u and

ϕi(f(x, u)) = f∗i(ϕi+1(x)).

The last equality and the rule for computation of the
operator M yield M(ϕi) = f∗i(ϕi+1). Since ϕi+1 =
M(ϕi), one may take f∗i(ϕi+1) = ϕi+1, i = 1, 2, . . . , n−1.
Then

z+i = ϕi(f(x, u)) = ϕi+1(x) = zi+1

for i = 1, 2, . . . , n−1. Since the function ϕn does not satisfy
the condition ϕn ≥ α0, the equation for the variable zn has
the general form:

z+n = ϕn(f(x, u)) = ψ(z, u).

Necessity. Suppose the system (1) can be transformed
into the canonical form (5), i.e. there exists the state
transformation ϕ : X → Z such that for i = 1, . . . , n− 1

z+i = ϕi(x
+) = ϕi(f(x, u)) = ϕi+1(x) = zi+1, (6)

and

z+n = ϕn(x+) = ψ(z, u). (7)

The equality ϕi(f(x, u)) = ϕi+1(x) in (6) and a definition
of the binary relation ∆ yields the inclusion (ϕi+1, ϕi) ∈
∆, for i = 1, 2, . . . , n− 1. It is obvious that

∂

∂u
ϕi(f(x, u)) =

∂

∂u
ϕi+1(x) = 0,

therefore, by the definition of the function α0, α0 ≤ ϕi for
i = 1, 2, . . . , n−1. By the 2nd property of the operator m,
this inequality implies mj(α0) ≤mj(ϕi) for all j ≥ 1, and
i = 1, 2, . . . , n− 1.

Consider the inclusion (ϕ2, ϕ1) ∈ ∆ which is by Definition
12 equivalent to the inequality m(ϕ2) ≤ ϕ1 that together
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with m(α0) ≤ m(ϕ2) gives m(α0) ≤ ϕ1. In the similar
manner the inclusion (ϕ3, ϕ2) ∈ ∆ is equivalent to the
inequality m(ϕ3) ≤ ϕ2 which implies m2(ϕ3) ≤ m(ϕ2).
Since m2(α0) ≤ m2(ϕ3) and m(ϕ2) ≤ ϕ1, one obtains
from these three inequalities m2(α0) ≤ ϕ1. Analogously,
it can be proved that mi(α0) ≤ ϕ1, i = 1, 2, . . . , n − 2.
By definition of the operation ⊕, these inequalities are
equivalent to the single inequality

α0 ⊕m(α0)⊕ . . .⊕mi(α0) ≤ ϕ1, i = 1, 2, . . . n− 2. (8)

It follows from the definition of the functions δi, i =
1, 2, . . . , n − 1, and the 3rd property of the operator m
that

δ3 = δ2 ⊕m(δ2)
= (δ1 ⊕m(δ1))⊕m(δ1 ⊕m(δ1))
∼= α0 ⊕m(α0)⊕m2(α0).

In general, it can be proved that

δi ∼= α0 ⊕m(α0)⊕ . . .⊕mi−1(α0), i = 1, 2, . . . , n− 1.

Since ϕ1 6= const, then due to (8), δi 6= const, for
i = 1, 2, . . . , n− 1.

Suppose now contrarily to the claim of the theorem that
δn = α0⊕m(α0)⊕ . . .⊕mn(α0) 6= const. By analogy with
the proof of sufficiency part of the theorem, it can be shown

that
∂

∂u
ϕn(f(x, u)) =

∂

∂u
ψ(z, u) = 0, i.e. the right-hand

side of the equation z+n = ϕn(f(x, u)) does not depend on
the control u that contradicts the equation (5). �
Proposition 22. The following two conditions for system
(1) are equivalent

(i) H∞ = {0} and Hk, for k = 1, . . . , n are completely
integrable

(ii) δi 6= const for i = 1, . . . , n− 1 and δn = const.

Proof. (ii)→ (i) Suppose that δi 6= const for i = 1, 2..., n−
1, and δn = const. According to Theorem 21, in this
case the system (1) can be transformed into the controller
canonical form (5) and therefore, it is accessible. Then by
Proposition 17, H∞ = {0}. Moreover, by the results of
Kotta [2005], H1, . . . ,Hn are completely integrable.

(i) → (ii) Consider a sequence of functions α0 := δ1 ≤
δ2 ≤ . . .. Since the sequence converges at most in n steps,
for some k, δk+1 = δk. If δk 6= const, then it follows
from Proposition 18 that H∞ 6= {0} which contradicts the
condition (i). Therefore for some k, δk = const. According
to Theorem 20, the system (1) is static state feedback
linearizable, and therefore, due to the structure of the
Brunovsky canonical form, k = n. �
Remark 1. If δk−1 ∼= δk 6= const holds for some k, then
ϕ1
∼= M(ϕ1). The latter means that the function ϕ1

is f -invariant and the variable z1 := ϕ1(x) satisfies the
equation z+1 = z1, and the system (1) is not transformable
into the canonical form (5).

Remark 2. If the system is not transformable into the
canonical form (5) one may alternatively say that function
ϕ1 in Remark 1 is an autonomous variable for system (1),
and therefore, the system (1) is non-accessible.

7. EXAMPLES

Example 23. (Continuation of Example 14)

Since for this example n = 5, but already δ4 ∼= const, the
system admits only partial linearization.

Example 24. (Continuation of Example 15) Since δ3 =
δ4 = x2, the system is not accessible.

Example 25. Consider the system

x+1 = x1(x23 + 1)2

x+2 = x2(x23 + 1)3

x+3 = x3 + u
(9)

Compute first according to Aranda-Bricaire et al. [1996]

H∞ = H3 = spanK{3x2dx1 − 2x1dx2};

therefore the system (9) admits an autonomous variable
x31/x

2
2.

Next, using the tools of the algebra of functions one may
compute

δ1 := α0(x) = [x1, x2]T .

Furthermore, by (4) 4 5 ,

δ2(x) = δ1(x)⊕m(δ1(x)) = [x1, x2]T ⊕ x31
x22

=
x31
x22
.

Since

m

(
x31
x22

)
=
x31
x22
,

we get

δ3(x) ∼= δ2(x) 6= const.

Example 26. Consider the system with non-smooth state
transition map f(x, u),

x+1 = x22u
x+2 = x1sign x2
x+3 = u

Compute

δ1 := α0 =

[
x1
x3
, x2

]

and

m(δ1) =
[
[δ1, u]⊕ f(x, u)

]−

=

[[
x1
x3
, x2, u

]
⊕ [x22u, x1sign x2, u]

]−

= [x22u, u]− = [x1, x3].

So,

δ2 = δ1 ⊕m(δ1) =

[
x1
x3
, x2

]
⊕ [x1, x3] =

x1
x3

Furthermore, compute

m(δ2) = [[δ2, u]⊕ f(x, u)]−

=

[[
x1
x3
, u

]
⊕ [x22u, x1sign x2, u]

]−

= u− = x3
4 m(ζ) is a function of x at the time instant t + 1 which can be
computed if ζ is known at time instant t.
5 δ2(x) is a function of x which can be computed both from δ1(x)
and m(δ1(x)).
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and

δ3 = δ2 ⊕m(δ2) =
x1
x3
⊕ x3 = const.

Therefore, define

z1 := δ2 =
x1
x3

z2 := z+1 = M(δ2) = x22

z3 := z+2 = M2(δ2) = M(x22) = x21(sign x2)2

and find the state equations

z+1 = z2
z+2 = z3
z+3 = z22u

2 (sign
√
z3)

2

Example 27. Consider

x+1 = ux1
x+2 = x1x3
x+3 = x3

Compute

δ1 := α0 = [x2, x3]T

and

m(δ1) = [[x2, x3, u]⊕ [ux1, x1x3, x3]]
−

= x−3 = x3.

Furthermore,

δ2 ∼= δ1 ⊕m(δ1) = x3.

Obviously, δ3 ∼= δ2 6= const. The system admits an
autonomous element x3. The system is neither accessible
nor linearizable via static state feedback.

Example 28. Consider the system

x+1 = ζ(x2)u
x+2 = x1x2
x+3 = u

where ζ is an invertible analytic function, and compute

H2 = spanK

{
d

(
x1
x3

)
,dx2

}

and

H3 = spanK

{
d

(
x1
x3

)}
, H3 = {0}.

Define the new state variables

z1 =
x3
x3

z2 =

(
x1
x3

)+

= ζ(x2)

z3 = ζ+(x2) = ζ(x+2 ) = ζ(x1, x2)

(10)

and so the state equations in the controller canonical form
are

z+1 = z2
z+2 = z3
z+3 = ζ(ζ−1(z3)z2u).

(11)

Note that using the results of Theorem 21, one does not
have to assume ζ(x2) to be analytic. Compute

δ1 := α0 = [x1/x3, x2]

and

m(δ1) = [[δ1, u]⊕ f(x, u)]−

= [[x1/x3, x2, u]⊕ [ζ(x2)u, x1x2, u]]−

= [ζ(x2)u, u]− = [x1, x3]

So, δ2 = δ1 ⊕m(δ1) = x1/x3. Then

m(δ2) = [[δ2, u]⊕ f(x, u)]−

= [[x1/x3, u]⊕ [ζ(x2)u, x1x2, u]]−

= u− = x3

and δ3 = δ2 ⊕m(δ2) = const.

Therefore, define z1 = δ2 = x1/x3, z2 = M(δ2) = ζ(x2),
z3 = M2(δ2) = ζ(x1x2) that agrees with (10) yielding
(11).

Example 29. Consider the system

x+1 = x3,
x+2 = sign(x3) + x1,
x+3 = ux1.

(12)

Note that this system cannot be studied using the results
of Theorem 21 since f in (12) is not a smooth function.
Compute

δ1 = [x1, x2],

and

m(δ1) = [[x1, x2, u]⊕ [x3, sign(x3) + x1, ux1]]−

= [x1, ux1]− = [x2 − sign(x1), x3].

Therefore,

δ2 = x2 − sign(x1).

Next, compute m(δ2) = const, yielding δ3 = const. By the
results of Theorem 21 (see the proof), we have

z1 := δn−1 = δ2 = x2 − sign(x1),
z2 := z+1 = x1,
z3 := z+2 = x3,

yielding the equations in the controller canonical form

z+1 = z2,
z+2 = z3,
z+3 = uz2

that are easily linearizable by using the feedback u = z2/v.

8. CONCLUSIONS

For the discrete-time nonlinear SISO control systems the
problems of accessibility and static state feedback lin-
earizability have been readdressed in terms of the new
tools, called the algebra of functions. Unlike the differential
geometric methods the new tools allow to study the non-
smooth systems. The new results are compared to the
existing ones and the relationship is demonstrated on the
numerous examples.
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The extension of the results for the continuous-time case is
not immediate, since the inequality δk−1 ≥m(δk−2) in the
continuous-time case, unlike the discrete-time case, does
not yield the inequality M(δk−1) ≥ M(m(δk−2)) which
was used in the proof.
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DISCRETE-TIME SOLUTION TO THE
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Abstract: Mathematical technicalities, involved in the modern theory of non-linear
control systems, many times prevent a wider use of the impressive theoretical results
in practice. Attempts to overlap this gap between theory and practice are usually more
than welcome and form the main scope of our interest in this work. An important
control problem given by the disturbance decoupling is studied for a real laboratory
model of coupled tanks. Since the theoretical solution to the disturbance decoupling
problem does not satisfy practical control requirements it is modified accordingly.
Experiments on the real plant are included as well and show that the disturbances
practically do not affect the system output.

Keywords: nonlinear discrete-time systems, applications, algebraic methods,
disturbance decoupling, coupled tanks

1. INTRODUCTION

The modern theory of nonlinear control systems
all, continuous-time, discrete-time and time-delay,
owes a large part of its succes to the systematic
use of differential algebraic methods. Since early
80’s of the last century this has been forming
the scope of interest of many authors in a num-
ber of works, see for instance Fliess (1985 1992);
Conte et al. (1993); Aranda-Bricaire et al. (1995
1996); Kotta et al. (2001); Xia et al. (2002); Conte
et al. (2007) and references therein. Nowadays,
such methods offer solutions to a wide range of
nonlinear control problems including feedback lin-
earization, model matching, disturbance decou-
pling, realization problem, non-interacting con-
trol, observer design and many others.
However, a price one has to pay for such impres-
sive and elegant solutions is given by a necessity
to involve many mathematical technicalities. Ob-
viously, this prevents a wider use of the theoretical
results in practice, making the big gap between

control theory and control practice even bigger in
this case. It is generally known that in practice
the way of dealing with nonlinear control systems
is many times based just on the linearization in a
fixed operating point and then methods of linear
control systems are applied. Therefore, attempts
to overlap the gap are usually more than welcome
and form the main scope of our interest in this
work. In particular, an important control prob-
lem given by the disturbance decoupling, which
is quite frequent control problem in practice, is
studied. We begin with the theoretical solutions
of Conte et al. (2007) and apply them to the
laboratory model of coupled tanks, which is a
demonstrative and well know system having con-
tact points to many real control processes, for
instance from chemical engineering. It is shown
that the theoretical solutions cannot be directly
applied and additional problems, related for in-
stance to the difference between model and real
system, have to be considered as well. Similar so-
lution as discussed in this paper has recently been

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

162



given in Žilka and Halás (2010) for continuous-
time case, while here the discrete-time counter
part is treated. Certain contact points exist also
to the non-interacting problem studied in Halás
and Žilka (2011). Finally, for additional existing
results of the disturbance decoupling problem for
nonlinear discrete-time systems the reader is re-
ferred for instance to Kotta (1995) where a simple
inversion-based solution is given and to Grizzle
(1985) where a more advanced differential geomet-
ric solution can be found.

2. DISTURBANCE DECOUPLING

We begin with an introduction to the disturbance
decoupling problem of nonlinear control systems
as discussed in Conte et al. (2007) to which the
reader is referred for additional details and refer-
ences. The ideas can easily be carried over to the
discrete-time systems.
For the sake of simplicity we introduce the follow-
ing notation. For any variable ξ(t) we write only
ξ and for its time shifts ξ(t + T ), ξ(t + 2T ) we
write ξ+, ξ++ respectively, or, in general, ξ[k] for
ξ(t+ kT ), where T is a sampling period.
Using the above introduced notation the systems
considered in this paper are objects of the form

x+ = f(x, u)

y = g(x) (1)

where x ∈ Rn, u, y ∈ R and entries of f and
g are meromorphic functions from the difference
field denoted by K. For more details see Aranda-
Bricaire et al. (1996); Kotta et al. (2001); Halás
et al. (2009).

In the disturbance decoupling our task is to de-
sign, if possible, a control law such that the dis-
turbances do not affect the system output. Tech-
nically speaking, the solution consists of finding
a feedback under which a subspace of the state
space, affected by disturbances, becomes unob-
servable in the compensated system. This situa-
tion can be explained by the following introduc-
tory system

x+1 = x2u

x+2 =w

y = x1

where w is the disturbance.
As can be seen, through x2 the disturbance w
affects the system output

y++ = u+w

However, the state feedback u = v/x2, with v
being an input to the compensated system, makes

x2 unobservable in the compensated system and
thus decouples the disturbance w from the system
output

y+ = v

The general solution follows the same idea. That
is, if possible, make unobservable the subspace of
the state space affected by the disturbance.

Problem statement. Consider the SISO system

x+ = f(x, u) + p(x)w

y = g(x)

where the state x ∈ Rn, the disturbance w ∈ Rq

and the entries of f , g and p are elements of the
difference field of meromorphic functions K. Find,
if possible, a static state feedback

u = α(x, v)

such that

dy[i] ∈ spanK{dx, dv, . . . , dv[i]}
for any i ∈ N.

Theorem 1. Let X = spanK{dx} and Y =
spanK{dy[i]; i ≥ 0}. The disturbance decoupling
problem is solvable if and only if p(x) ⊥ X ∩ Y.

PROOF. The proof follows the same line as in
Conte et al. (2007), however, carried over to the
discrete-time case.

3. COUPLED TANKS

Coupled tanks are well-known and illustrative sys-
tem having contact points to many real control
processes. For that reason practically each labo-
ratory which activities are related to the system
and control theory possesses such a plant. In this
section, the mathematical model of the laboratory
plant is built up, from its identification to the
nonlinear discrete-time state-space model. Then,
the disturbance decoupling is applied.

3.1 System identification

We restrict our attention to a standard coupled
two-tank system, however, with all three valves
active. The structure of such a system is depicted
in Fig. 1. Our aim is to control the level in the
first tank which is, however, coupled with the
second tank by a valve with the flow coefficient
c12. Each of the tanks is equipped by a valve itself,
having the flow coefficients c1 and c2 respectively.
However, the valve c2 is considered here as the
disturbance w. Thus, we deal here with a SISO
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Fig. 1. Coupled tanks

system which can be modelled by the following
state-space equations

ẋ1 =
1

A
u− c12 sign(x1 − x2)

√
|x1 − x2| − c1

√
x1

ẋ2 = c12 sign(x1 − x2)
√
|x1 − x2| − wc2

√
x2

y = x1 (2)

where x1 and x2 are levels in tank 1 and tank 2
respectively and A is a cross-section of the tanks,
see Fig. 1. Note that both tank 1 and tank 2 have
the identical cross-sections here. The disturbance
w ∈ {0, 1}, depending on whether the valve c2 is
switched off or on respectively. In this case the
level of a liquid in tank 2 might be greater than
in tank 1. For that reason a more general model
(2) has to be used.

To identify the system we have to find, besides the
cross-sections A, the values of flow coefficients c1,
c2 and c12. The usual methods to treat the identi-
fication are based on applying a couple of certain
experiments and measurements. Then the coeffi-
cients are computed by using either the steady-
states of the system or the system linearization
in a fixed operating point. However, both of them
are rather slow. In addition, it is, usually, recom-
mended to find a set of values in different steady
states or operating points respectively and take
their average finally. For that reason we, in what
follows, suggest a different approach to the system
identification which is based on finding a solution
to the reduced nonlinear differential equations of
the system (2). As a result we will be able to
compute all the coefficients only by measuring the
time of the respective experiments.

To identify the flow coefficient c1 suppose that all
valves are closed and the pump is inactive. Let
x10 6= 0 be a level of a liquid in tank 1. The
experiment consists of opening the valve c1 only
and measuring the time τ that it takes to empty
the tank from an initial value x10 to a final value
x11. Obviously, this situation can be modelled by
the reduced nonlinear differential equation

ẋ1 = −c1
√
x1

Even though the equation is nonlinear the solution
can easily be found as follows

dx1
dt

=−c1
√
x1

x11∫

x10

1√
x1

dx1 =−
τ∫

0

c1dt

[
2
√
x1

]x11

x10

=
[
− c1t

]τ
0

2(
√
x11 −

√
x10) =−c1τ

Finally

c1 =
2(
√
x10 −

√
x11)

τ
If the final value x11 is chosen to be 0, which
is usually the most reasonable choice, then the
formula reduces to

c1 =
2
√
x10
τ

(3)

where τ is the time it takes to empty tank 1
completely from the initial value x10.
Clearly, the analogous experiment can be repeated
for the second tank giving us the formula

c2 =
2
√
x20
τ

(4)

where this time τ is the time it takes to empty
tank 2 completely from its initial value x20.
To identify the flow coefficient c12 a more ad-
vanced experiment is needed. Suppose that all
valves are closed and both pumps inactive. Let
x10 6= 0 be a level of a liquid in tank 1 and
x20 < x10 be a level of a liquid in tank 2. This time
the experiment consists of opening the valve c12
only and measuring the time τ it takes the level
in tank 1 decrease from the initial value x10 to the
final value x11. Such a situation can be modelled
by the following nonlinear differential equations

ẋ1 =−c12
√
x1 − x2

ẋ2 = c12
√
x1 − x2

However, one can use either of them to find the
solution. For instance the first equation yields

dx1
dt

=−c12
√
x1 − x2

1√
x1 − x2

dx1 =−c12dt

Note that the situation during the experiment
implies that x10 − x1 = x2 − x20 and thus
substituting x2 = x10 + x20 − x1 gives us

x11∫

x10

1√
2x1 − x10 − x20

dx1 =−
τ∫

0

c12dt

[√
2x1 − x10 − x20

]x11

x10

=
[
− c12t

]τ
0
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√
2x11 − x10 − x20 −

√
x10 − x20 =−c12τ

Finally

c12 =

√
x10 − x20 −

√
2x11 − x10 − x20
τ

Here, if the initial value x20 is chosen to be 0 and
the final value x11 is chosen to be x10/2, that is the
levels in both tanks finally equal each other (note
that the tanks have the identical cross-sections)
the formula reduces to

c12 =

√
x10
τ

(5)

where τ is the time it takes the levels in both tanks
equal each other.

Using the above formulas (3), (4) and (5) the flow
coefficients c1, c2 and c12 of the laboratory plant
were identified as 1.17 ·10−2, 1.17 ·10−2 and 2.65 ·
10−2 respectively. Finally, the cross sections of
both tanks are approximately A = 10.18 ·10−4m2.

3.2 Discrete-time state-space representation

To find a discrete-time state-space representation
of the system (2) one needs to find a solution
to the set of nonlinear differential equations and
sample it by the sampling period T . Since the
system equations (2) involve nonlinear functions
we are, in general, not able to find any. In such a
case one usually has to rely on approximations
only. One of the possibilities is to employ the
Taylor series expansion.
Assume that

ẋ(t) = f(x(t), u(t))

where f is analytic. Then one can write

x(t+T ) = x(t)+ ẋ(t)T +
ẍ(t)

2!
T 2 +

x(3)(t)

3!
T 3 + · · ·

However, it is usually sufficient to consider only
the first two terms of the Taylor series expansion
to approximate the system behaviour in which
case one gets the well-known Euler approximation

ẋ(t) ≈ x(t+ T )− x(t)

T

Using such an approximation one can find the
discrete-time state-space model from (2) as

x+1 = x1 +
T

A
u− c12T sign(x1 − x2)

√
|x1 − x2|

−c1T
√
x1

x+2 = x2 + c12T sign(x1 − x2)
√
|x1 − x2|

−wc2T
√
x2

y = x1 (6)

3.3 Disturbance decoupling problem

The standard theoretical solution to the distur-
bance decoupling problem, as outlined in Sec-
tion 2, does not meet basic practical control re-
quirements, as shown in what follows, and thus it
is necessary to modify it accordingly.
To proceed with the disturbance decoupling we
compute

y+ = x1 +
T

A
u− c12T sign(x1 − x2)

√
|x1 − x2|

−c1T
√
x1

Since y+ directly depends on the input u, that is
the relative degree of the system is 1, and it is not
affected by the disturbance w, it can be decoupled.
Note that in according to Theorem 1 we have X ∩
Y = spanK{dx1} and thus p(x) = (0,−c2

√
x2)T

is orthogonal to X ∩ Y.
By solving for u the equation

y+ = v

one gets

u=
A

T
v − A

T
x1 + c12A sign(x1 − x2)

√
|x1 − x2|

+c1A
√
x1 (7)

where v represents input to the compensated
system which is reduced to the first order linear
system y+ = v with the transfer function

F (z) =
1

z
(8)

However, from a practical point of view the com-
pensated system cannot respond in one sam-
pling period T , like its transfer function (8) says,
at least for lower sampling periods T , for we
have a controller output constraint u ∈ 〈0, qmax〉
where qmax is upper limit of the pump capac-
ity. On the other side for higher sampling pe-
riods T the discrete-time approximation (6) of
the continuous-time system (2) might no longer
be sufficient. In addition, there obviously exist
additional differences between the real plant and
its continuous-time model (2) that have not been
considered. For that reason, the real compensated
system will possess oscillations even for not that
high sampling periods T when the discrete-time
approximation (6) is still accurate. Last but not
least, the feedback (7) is not a controller at all.
Obviously, it is only a static state feedback achiev-
ing the disturbance decoupling, however, with no
intention to track the reference signal or to elimi-
nate unmodelled disturbances. For all the aspects
listed above, such a solution is practically not
applicable and needs to be modified accordingly.

There exist several possibilities how to overcome
the problems. One of them, discussed in Žilka and
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Halás (2010) for continuous-time case, suggests to
modify the feedback (7) such that the whole sec-
ond tank, together with the disturbance, becomes
unobservable. Then, one only has to design a con-
troller for a one-tank system which is, obviously,
a trivial task and plenty of solutions have been
given. This seems to be a reasonable choice also
in the discrete-time case. The feedback (7) can
easily be modified to the form

u = v + c12A sign(x1 − x2)
√
|x1 − x2| (9)

under which the compensated system takes now
the form of one-tank system with the discrete-time
state-space model

x+1 = x1 +
T

A
v − c1T

√
x1

y = x1 (10)

Then the controller can easily be designed by the
system linearization in a fixed operating point
(x10, v0, y0) which reads

∆x+1 = ∆x1 +
T

A
∆v − c1T

2
√
x10

∆x1

∆y = ∆x1

where ∆x1 = x1−x10, ∆v = v−v0 and ∆y = y−
y0. It has the transfer function

F (z) =
K

z −D
where K = T/A and D = 1− c1T

2
√
x10

.

If one wants the transfer function of the compen-
sated system

G(z) =
R(z)F (z)

1 +R(z)F (z)

to take the form of a first order linear system with
the time constant T1, then the solution is given
by a linear discrete-time PI controller with the
transfer function

R(z) =
(1− λ)(z −D)

K(z − 1)
=

1− λ
K

(
1 +

1−D
z − 1

)

where λ = e−T/T1 .

Remark 2. Note that more advanced solution,
dealing also with the system linearization, the
controller output constraint and two different dis-
turbances to decouple, has been suggested in Žilka
et al. (2009).

The closed loop structure is depicted in Fig. 2.
The responses of the real laboratory plant are
shown in Fig. 3 where one can observe the differ-
ences between the linear PI-controller with and
without the disturbance decoupling (9). In the
latter the disturbances practically do not affect

Fig. 2. Closed loop

Fig. 3. Closed loop responses: PI-controller with
(solid, green line) and without (dashed, blue
line) the disturbance decoupling.

the system output. However, since we have the
constrained controller output and since only a
standard PI-controller has been used to control
the system both solutions admit an overshoot. A
non-overshooting solution has been suggested in
Žilka and Halás (2010).
The parameters were chosen as follows: T = 0.25s,
T1 = 5s and x10 = 0.2m.

Our final note is related to the slight modification
of the disturbance decoupling (9) which is appro-
priate from a practical point of view and has been
implemented in our solution. When the valve c2
is closed the equations (2) imply that in a steady
state one, theoretically, has x1 = x2. However, in
practice, there are differences between x1 and x2
caused at least by sensors calibration and noise.
Therefore the term sign(x1 − x2) in (9) oscillates
between 1 and −1 and thus produces small oscilla-
tions of the controller output especially in steady
states, which is, of course, inconvenient. The prob-
lem can and has been overcome easily by adding a
deadzone to the disturbance decoupling making it
inactive whenever the difference between x1 and
x2 is less than 2 · 10−3m.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

166



4. CONCLUSIONS

In this work, an attempt to overlap the gap
between control theory and control practice was
studied. An important practical control problem
given by the disturbance decoupling problem were
applied on coupled tanks. It was shown that
the initial theoretical solution to the disturbance
decoupling problem does not satisfy the basic
control requirements. For that reason, the solution
was modified accordingly. This resulted in the PI-
controller with the disturbance decoupling. As a
result the disturbances practically did not affect
the system output of the real laboratory plant.
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ULTRASONIC HYBRID MAP FOR NAVIGATION OF MOBILE ROBOT
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Abstract: Paper deals with principles of ultrasonic hybrid map proposed for indoor mo-
bile robot system. This map is applied in navigation of mobile robot. At the beginning, 
paper presents brief description of indoor mobile robot system used for testing and de-
veloping of algorithms. Major section of paper deals with map creating. In the first step, 
it is local metric map with probabilistic model of ultrasonic sensor. In the second step, it 
is global metric map, which is created by connection of local metric maps. In the last 
step, it is simplification of environment representation from global metric map to topolo-
gical map. In this manner ultrasonic hybrid map is created and it can be used in both re-
active and global navigation of mobile robot.

Keywords: mobile robot, metric map, topological map, hybrid map 

1 INTRODUCTION

Mobile robots can be utilized in many places of hu-
man life. Generally, they are used as service robots. 
Definition of  service robot  is  unclear  and complic-
ated, but it is possible to claim, that service robot per-
forms such tasks, that help, assist or completely re-
place human in various activities. Reason of service 
robotics development is to raise human productivity. 

Mobile robots can be designed for various environ-
ments.  Essential  tasks,  that  every robot  has  to per-
form is to localize and navigate itself in environment. 
For  successful  achievement  of  these  tasks,  robot 
needs some sensors. These sensors are used for per-
ceptions likewise humans do. In world of mobile ro-
botics exist many sensors, but generally we can di-
vide them in two groups:

Sensors  used for  localization (GPS,  encoders,  INS, 
gyroscope, accelerometer, magnetic compass, etc.)

Sensors used for navigation (ultrasonic sensors, laser 
rangefinders,  infrared sensors, visual systems, prox-
imity sensors, contact sensors etc.)

Moreover,  for  specific  applications,  it  exists  many 
others high specialized sensors.  And next,  with ap-
plication of some mathematic methods, sensors used 
for  navigation  can also  be  used for  localization.  It 
seems difficult, but majority of mobile robots use for 
its navigation and localization some specific and ab-
stract representation of environment. This representa-
tion is called map of environment. 

There are three types of these maps. First type is met-
ric  map.  Metric  map  represents  environment  with 
grid, in which every cell represents exactly specified 
size of environment. Key problem is to set appropri-
ate size of the cell. If size of cell is too small, then 
number  of  cells  is  too  big and  there  are  great  de-
mands on CPU performance and memory. If cell size 
is too big, representation of environment is not so ac-
curate  and it  can cause problems within navigation 
and localization. 

Second  type  is  topological  map.  Topological  map 
represents environment in graph structure. There are 
no metric properties stored in this map. Graph con-
sists of places and edges.  Edges represent passages 
between two places. Advantages of topological map 
are  lower consumption of CPU performance within 
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path planning and lower memory consumption within 
map creating. 

Third type is hybrid map, which combines two ante-
cedent types. It means, that robot is globally planning 
its path in global topological map, but for its reactive 
navigation and obstacle avoidance it uses local metric 
map. Local metric map is used in places of global to-
pological  map.  Combination  of  particular  types  of 
maps  improves  robot  possibilities  for  localization, 
navigation  and  it  also  decreases  demands  on  CPU 
performance. This combination is near to human re-
flection.

2 INTRODUCTION

Mobile robot used for experiments is indoor mobile 
robot. Robot has three wheels, two of them are driv-
en,  so  it  is  a  differentially  driven  robot  (Miková 
2008).  Kinematics  scheme  and  configuration  of 
sensors can be seen on Fig. 1. Circular construction 
of robot enables rotation around axis z without inter-
vention of robot to the environment. Sensorial system 
consists of nine ultrasonic sensors and nine infrared 
sensors.  Seven  forward  ultrasonic  sensors  are  used 
for construction of local metric map, two backward 
sensors are used just for obstacle avoidance like all of 
nine infrared sensors. Ultrasonic sensors used in mo-
bile robot are MUST01 sensors with detection range 
from several decimetres up to 5 (3 metres guaranteed) 
metres with 0,1% accuracy over entire range at stable 
temperatures. Beam angle is 15° and repetition rate is 
10Hz astable (for our experiments repetition rate was 
600ms stable). 

Fig. 1. Kinematics scheme of mobile robot and con-
figuration of sensors.

Outputs from ultrasonic sensors are analog 0-5 VDC. 
That's why Advantech I/O card is used. Moreover, for 
interpretation  of  measured  distances,  it  is  need  to 
know transfer characteristic (Fig. 2, Tab. 1). 

Fig.  2.  Transfer  characteristic  of  ultrasonic  sensor 
MUST01.

Voltage [V] 0.415 0.910 1.420 1.920 2.425

Distance [m] 0.550 1.050 1.550 2.050 2.550

2.935 3.450 3.970 4.460 4.920

3.050 3.550 4.050 4.550 5.020

Table  1.  Transfer characteristic of ultrasonic sensor 
MUST 01.

Because the robot is differentially driven with negli-
gible influence of wheels slippage and friction, its es-
timation of position is derived from number of wheels 
revolutions. That's why there are used incremental en-
coders MR ENC type L with 1024 impulses per re-
volution. Incremental encoders are placed on motor 
shaft.  Because there  are  used motors  Maxon RE40 
with gearbox GP42C (15Nm, 43:1), every revolution 
of wheel evokes 1024*43 pulses. Moreover, the posi-
tion of mobile robot is derived from odometry, which 
is based on kinematics scheme (Fig. 3). Inputs are ve-
locities of wheels derived from number of wheels re-
volutions.

Fig. 3. Kinematics scheme used for odometry.
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3 LOCAL METRIC MAP

Local metric map of environment is created following 
data  from ultrasonic  sensors.  For  single  ultrasonic 
sensors, we can divide area covered by this sensor in 
four regions (Fig. 4) (Murphy 2000) (Hanzel 2007). 

Fig. 4. Four regions within ultrasonic sensor measure-
ment (Murphy 2000).

Region I. stands for detected object. This region has 
curved  shape,  because  information  about  obstacle 
must be propagated through entire arc. Height of this 
region is specified by resolution of local metric map 
(thus  ultrasonic  sensor)  and  by  errors  of  measure-
ment. In our model, region I.  and III.  are the same. 
Region II.  is interpreted as free region. It  is logical, 
because if there is another obstacle, region I. will be 
closer to the ultrasonic sensor. Region III. is theoret-
ically covered by sensor,  but practically there is no 
information  about  this  region  based  on  data  from 
sensor. On the other hand, majority of models join re-
gion I. and III. Region IV. is region outside of meas-
urement range. For ultrasonic sensor MUST01 is R  
equal to 3m and β  is equal to 7,5°. 

Data from ultrasonic sensor can be written into local 
metric map with simple additive model. However us-
age  of  some  probabilistic  model  is  more  correct. 
Model like that is more corresponding to properties 
of real ultrasonic sensor. Our model is derived from 
basic Elfes model (Elfes 1989)(Elfes 1992). For re-
gion  II.   is  probability of  occupation for  each  cell 
computed as:

RPPyxP .),( β= , (1)

where: 
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
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β  is  angular  radius  of  sensor  cone,  α  is  angular 
width of sensor cone, intpoR  is radius of actually writ-
ten point into local metric map derived from position 
of ultrasonic sensor,  minR  is minimal radius derived 
from minimal measurement range of sensor,  mesR  is 
actually  measured  radius  of  obstacle  derived  from 
sensor data and ep  is range of probability interpreted 
for region II. 

For region I. and III. is probability of occupation for 
each cell computed as:

rPPyxP .),( β= , (5)

where:
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β  is  angular  radius  of  sensor  cone,  α  is  angular 
width of sensor cone, intpoR  is radius of actually writ-
ten point into local metric map derived from position 
of ultrasonic sensor, maxR  is maximal radius derived 
from minimal measurement range of sensor,  mesR  is 
actually  measured  radius  of  obstacle  derived  from 
sensor data and op  is range of probability interpreted 
for  region  II.  Equations  (2)  and  (6)  were  derived 
heuristically. 

In our model values of  probabilities ranging from 0 
to 0,4 represent unoccupied space, values of probab-
ilities ranging from 0,6 to 1 represent occupied space, 
values ranging from 0,4 to 0,6 represent lack of in-
formation. It follows, that both ep  and op  are equal 
to 0,4. With modification of mutual rate of  ep  and 

op , it can be given emphasis on faster record of oc-
cupied space or on faster record of unoccupied space. 
This is important, if robot performs its activities in 
environment with movable obstacles. 

Consequently,  one  reading  of  ultrasonic  sensor  is 
written to local metric map. This model is used for 
each  ultrasonic  sensor  of  the  robot.  However,  one 
sensors  reading is  not  useful  for  navigation.  That's 
why multiple readings must be put to correlation. For 
this purpose,  it's  used well known Bayesian update 
rule:
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Where  )|( NROP  is  new empirical  probability of 
occupation of cell,  )|( ONRP  is priory probability 
of occupation of cell defined from new sensor read-
ing and )(OP  is priory probability of occupation of 
cell  defined  from  local  metric  map  with  previous 
sensors readings. Despite of the simplicity of update 
rule, it has some disadvantages. If any of priory prob-
abilities is equal to 0 or 1, new empirical probability 
will  not  change.  This  is  ineligible  in  environment 
with movable obstacles. That's why this rule in our 
model was modified by means of restriction of prob-
ability values. Probability of occupation of cell can-
not reach value of 0 or 1. It can be just quite near to 
these values.

Seeing that robot is moving in environment, this fact 
must be reflected in local metric map. The movement 
of robot is divided into two types: translation and ro-
tation. Translation express itself in local metric map 
as shift of cells in direction of movement. This means 
that  cells  in  direction  of  movement,  regarding  the 
amount of the movement, are filled with value 0,5. 
Thus, this cells were not scanned by sensors and ro-
bot has lack of information about these cells. Cells in 
opposite  direction  of  movement,  regarding  the 
amount  of  the  movement,  are  simple  deleted.  Re-
maining cells  are  moved to  new positions,  that  are 
defined by the amount of the movement. There are 
two ways,  how to  achieve  rotation  of  local  metric 
map.  First  way  is  complicated  and  computational 
hungry.  It  is  rotation  of  grid  structure  around  its 
centre.  Second way, used in our model, is to rotate 
robot in local metric map itself. In this regard regions 
of sensors records are expressed through outlines. Af-
terwards it is simple to rotate outlines and fill corres-
ponding cells with probabilities. 
     

 

Fig.  5.  Example of real  environment and one local 
metric map of this environment.

4 GLOBAL METRIC MAP

The use of the local metric map alone is not very use-
ful for  navigation of robot.  It  can navigate through 
environment reactively, but for autonomous robot is 
needed to know and record information about already 
known environment. Afterwards, this information can 
be applied in global planning of path (Župa 2008). 

Global  metric map is constructed as fusion of mul-
tiple local metric maps. We assume, that startup posi-
tion of robot is known and it is predetermined. Local 
metric maps can be easily and simply connected, be-
cause their orientation is equivalent. This property of 
equivalent orientation is guaranteed by rotation of ro-
bot  in  local  metric  map.  Accordingly,  local  metric 
maps are connected in terms of shifts of their centres. 
In addition there is applied compensation from robot 
movement  in  order  to  preserve  perpendicularity  of 
map. For these reasons it is not needed to record pos-
itions from which were cells of global map recorded. 

After connection of local metric maps in one global 
metric map, some threshold must be applied.  Local 
metric map is described by probabilities for each cell. 
In global metric map used for global planning cannot 
figure probabilities, because global planning usually 
uses exact mathematical methods without probabilit-
ies. After threshold application, area of local metric 
map is erased from global metric map. Cause of this 
step are fast changes in local metric map used for re-
active navigation, that are not very effective for glob-
al planning. 
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Fig. 6. Example of global metric map (one pixel rep-
resents 5x5cm, length of area approx. 20m).

5 TOPOLOGICAL MAP

In most cases, global metric map of environment is 
very demanding on memory. That's why the structure 
of global metric map is simplified to topological map. 
One way how to construct topological map from met-
ric map is to create Voronoi diagram. Then with set 
of  critical  points  topological  map  can  be  created 
(Thrun  1999)(Siegwart  2004).  Usually  construction 
of  Voronoi  diagram  based  on  metric  map  is  very 
computational  hungry  (Niemuller  2003)(Choset 
2005). Request on our model, that every step of hy-
brid map creation must be done online, leads to own 
method called orthogonal equidistant diagram. 

This method seeks for equidistant points between two 
obstacles  in  orthographic  directions.  Thereby  way 
originates  discontinuous  diagram,  which is  determ-
ined in online mode. Despite of discontinuities in dia-
gram, many continuous lines appear. These lines rep-
resent  nodes of  topological  map.  Discontinuities  of 
environment (such as doors,  passages,  etc.)  express 
themselves as discontinuities in map, so they divide 
environment on nodes. 

If every isolated continuous line represents one topo-
logical node, then it is possible to search for neigh-
bourhood nodes. Likewise it is possible to find two 
marginal points of each node. Between these margin-
al points, it  can be created edges between marginal 
points  (thus  nodes)  and  from distance  of  marginal 
points, each edge can be priced by value of this dis-
tance. For detection of marginal points, some masks 
are used (Fig. 7). 

Fig. 7. Examples of masks.

Generally for each marginal point stands: 

( ) ( ) 1785,0,
1
1

1
1

=++∧= ∑
−=
−=

j
i

jyixfyxf (10)

Where ( )yxf ,  is size of image intensity on position 
( )yx, . Equation (10) says, that marginal point is in 
the middle of the mask and in its  surroundings are 
seven white points with image intensity equals to 255 
and one black point with image intensity equals to 0. 

Fig.  8.  Examples  of  found  marginal  points  (red 
points).

Node of topological map is defined, if there is a con-
nection between two marginal points and the distance 
between these marginal points is higher than empiric-
ally specified  distance.  Edge of  topological  map is 
defined, if there isn't connection between two visible 
(i.e. no obstacle between them) marginal points and 
the distance between these marginal points is smaller 
than empirically specified distance. Moreover, edges 
and nodes can have distance values between its mar-
ginal  points.  This  property can be  useful  in  global 
path planning. 

Fig.  9.  Example  of  topological  map  created  from 
global metric map.

6 CONCLUSIONS

Ultrasonic hybrid  map is  very powerful  and robust 
tool for autonomous mobile robot navigation. Despite 
of  many  drawbacks,  map  created  with  ultrasonic 
sensors is accurate  enough to provide resources for 
mobile robot navigation. Of course, there are sensors 
which provide more accurately and more precisely in-
formation, such as laser scanner or camera, but ultra-
sonic sensors can be used in many less expensive ro-
bots,  that's  why they are  still  popular  in  scientific 
world.
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Abstract: This paper presents interface between personal computer and radio controlled 

helicopter model through an electronic component – microcontroller board. The com-

munication is established through USB interface. The paper describes philosophy of 

manual RC model control and exploitation of a classical RC model transmitter for con-

trolling an RC model through the computer. Collection of feedback data and GUI for 

controlling the helicopter are also described. 
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1 INTRODUCTION 

The helicopter is an unstable MIMO system and 

therefore suitable for tryout of various control prob-

lems and algorithms. To retain the helicopter in a 

stable and controlled flight is a very complex prob-

lem. A number of works have been dedicated to study 

the problem and related subtasks, as for instance 

creating a mathematical model of a helicopter in 

(Fogh, et al., 2004; Mettler, 2003; Pestun, 2009), 

UAV helicopter design (Cai, et al., 2008), stabiliza-

tion of an RC helicopter in a hover (Hald, et al., 

2006; Hald, et al., 2005), to mention a few. Designed 

control algorithms are usually tested on helicopter 

models of various sizes and types. For such experi-

ments, it is convenient to put a helicopter in a labora-

tory and ensure it against damage. There are many 

possibilities how to control the helicopter. Frequently 

used approach for controlling the helicopter is to put 

the control unit directly on the helicopter’s body with 

all the algorithms ensuring autonomous flight and to 

control desired position and other flight parameters 

wireless with a ground station PC, see for example 

(Fogh, et al., 2004; Hald, et al., 2006). This method is 

good to use especially when the helicopter is about to 

use outdoors for free flying with already tested con-

trol algorithms. The main disadvantage is lower per-

formance of the control unit and the requirement of 

reprogramming the whole unit in case of every 

change. Another way how to control the RC helicop-

ter, more suitable for laboratory tests, is to make in-

terface with a high-performance PC and edit the flight 

and stabilization algorithms there, see for example 

(Andersen, et al., 2008). Our goal was to create inter-

face between the helicopter and PC with high perfor-

mance. The interface is also small control unit, but it 

is only used for transforming and forwarding signals 

from computer to the helicopter and for collecting 

feedback from sensors and sending them back to 

computer. So there is no need to reprogram the unit 

during the experiments, because all the control algo-

rithms are programmed on the PC where they can be, 

thanks to enough performance, more easily edited in 

more sophisticated and user friendlier programs than 

microcontroller programming language is. Hence, 

this way was found to be more suitable for testing 

miscellaneous controllers for helicopter stabilization 

and control in laboratory conditions, forming the 

main scope of our interest in this work. In particular, 

the attention is paid to the communication established 

through USB interface. For that reason the so-called 

trainer mode is employed, allowing us to interconnect 

PC and the helicopter. Note that the similar idea was 

suggested in (Net-Scale Technologies, 2004) where 

an RC model of a car was controlled. 

The paper is organized as follows. Section 2 de-

scribes signals used for control of the RC model, 

transmitter’s mode used for interfacing the RC model 

and microcontroller board used as the interface ele-

ment, Section 3 describes sensors used for feedback 

and their inadequacies and, finally, Section 4 de-

scribes the developed software for the helicopter con-

trol. 
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2 BASIC PRINCIPLES OF MANUAL RC MODEL 

CONTROL 

2.1 Signals used for control of an RC model 

The RC models, whether they fly, drive or float, con-

sist of receiver, which receives the signals from a 

transmitter and controls of all actuators like driving 

gears and servo motors. Driving gears give the RC 

model propulsion and servo motors handle the con-

trols. All this RC models actuators are controlled by 

an RC pulse signal. This signal is a specialized form 

of the so-called PWM (Pulse Width Modulation) 

signal. Typically the signal’s period is 20 ms (50 Hz 

PWM frequency), but the signal itself has a width 

from 1 ms to 2 ms (The Model Electronics Company, 

Tech. note). 

 

Fig. 1. RC pulse signal and the corresponding servo 

position examples.  

 

The signal width represents the position of the servo 

or the power of the driving gear. The midrange (or 

center) position represents the signal with width of 

1.5 ms. Then the left position is represented by the 

signal with width of 1 ms, and the right position is 

represented by the signal width of 2 ms (Vastianos, 

dipl. thesis), as shown in Fig. 1. 

Each single actuator is controlled by its own PWM 

signal supplied by the receiver. For example, when 

the model has 6 actuators (like in our case of RC hel-

icopter), 6 independent PWM signals (6 channels) are 

needed. Sending each PWM signal from the transmit-

ter for each actuator separately would cost a lot of 

energy and the update frequency would depend on a 

number of signals. In order to be more effective, the 

information related to each channel is sent in a serial 

fashion, one after the other, over a single RF link 

(The Model Electronics Company, Tech. note). This 

signal is the so-called Pulse Position Modulation, or 

PPM.  

PPM is a modulation which uses pulses with variable 

width and uniform height and time between the 

pulses. The PPM signal consists of channel sections 

(the number depends on the number of actuators) and 

a synchronization time space. Channel section is 

composed of a fixed time, usually 0.5 ms, and of a 

variable time with length of 0.5 ms to 1.5 ms (Fig. 

2a). The synchronization time is the “dead time” and 

varies with the number of channels and also with the 

channel content. However, even for a system with 

more than 8 channels, it is much longer than the time 

between channel pulses. The receiver uses this syn-

chronization time to synchronize itself to the pulse 

train, so that the positional information for channel 1 

always drives the correct servo (The Model Electron-

ics Company, Tech. note). Also in case of a signal 

loss in the middle of the transmitting, the receiver 

knows that after a time space much longer than 0.5 

ms the first channel follows. Thus, when the signal 

recovers, the channels will not be disordered. 

 

Fig. 2. a) single channel section of a PWM signal; 

b) example of a PPM signal carrying information for 

six channels  

 

The variable time of the pulses can be compared to 

the pulse width in PWM. For example, 6 PWM 

pulses with the pulse widths of 1.5 ms, 2 ms, 1.5 ms, 

1 ms, 1 ms, 1 ms will be modulated to a PPM signal 

shown in Fig. 2b. 

 

 

Fig. 3. Communication between the transmitter and 

receiver through PPM signals and servo control from 

the receiver through PWM signals. 
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In a standard manual hand control, the amount of 

variations on the transmitter’s joysticks changes into 

the above mentioned PPM signal carrying informa-

tion for controlling all the actuators, which is trans-

formed into a radio signal and transmitted in a specif-

ic frequency. The receiver on the model, which is 

controlled by the transmitter, constantly monitors this 

frequency. When the radio burst from the transmitter 

is received, the receiver transforms the PPM signal to 

the PWM signals and split them up to the channels - 

for each actuator its own PWM signal, see Fig. 3. 

2.2 Description of a “trainer” mode 

In this section the so-called trainer mode is described, 

for it is employed to interconnect PC and the RC 

model.  

In case when for instance the trainee pilot has prob-

lems with the control of the RC model, most of the 

transmitters are fitted with a trainer mode. For using 

this mode, two transmitters have to be interconnected 

with a cable, see Fig. 4. The signal, which the inter-

connected transmitter sends through the cable, is the 

inverted PPM signal with amplitude of transmitter’s 

supply voltage. 

 

Fig. 4. Trainer switch function. 

 

When the trainer mode on the transmitter, which is 

controlling the model, is turned on, the transmitter 

stops to send signals created from the positions of the 

joysticks and starts to send the signals from the inter-

connected transmitter, which is for instance in the 

hands of experienced pilot. However, in this work 

this idea was used to develop and establish an inter-

connection with PC, rather than with the second 

transmitter. 

2.3 Microcontroller interface board description 

To achieve such an interconnection the interface 

board, which creates PPM signals asked by the com-

puter, was connected to the trainer port of the receiv-

er. Through the USB the PC sends desired values for 

all channels to microcontroller interface board which 

creates, based on this values, corresponding PPM 

signal and sends it to the transmitter. For this purpose 

the transmitter is set to the trainer mode all the time, 

so the signals are forwarded from the interface board 

to the helicopter’s receiver. Besides the sending of 

control signal, the microcontroller interface board 

ensures data collection from sensors and shifts them 

to the computer for evaluation and handling. The 

scheme of connection is shown in Fig. 5. 

 

Fig. 5. The scheme of Helicopter – PC interconnec-

tion. 

 

In order to match the desired transmitter’s input po-

larity of the PPM signal via “trainer” connection, the 

PPM signal’s amplitude have to be switched to the 

level of the transmitter’s supply voltage. For the case 

of the chosen transmitter, it is the voltage 9.6 V. Ex-

ample of the PPM signal entering the transmitter with 

all channels set to width of 1 ms, which represents 

left position on all the servos, can be seen in Fig. 6a. 

 

Fig. 6. PPM signal entering the transmitter from the 

“trainer” cable. a) All channels set to width of 1 ms. 

b) Channel 1 set to 2 ms. 
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Example of the PPM signal entering the transmitter 

with the first channel set to width of 2 ms, which 

represents right position of the servo connected to the 

first channel, can be seen in Fig. 6b. 

To switch the PPM signal’s amplitude to the level of 

the transmitter’s supply voltage an NPN transistor 

was used in the “trainer” cable. However, the transis-

tor also inverts the PPM signal. Therefore the signal 

generated by the microprocessor needs to be created 

in an inverted form (see Fig. 7). Such a PPM signal 

modification was necessary, otherwise the transmitter 

would not respond to the signal TTL levels from the 

microprocessor.  

The PPM signal is generated in the microprocessor 

using a 16 bit counter TCNT1, set in a fast PWM 

mode with a variable length of the counter’s TOP 

register. Since the 6 channels are needed, a state ma-

chine is created within the counter's overflow inter-

rupt routine to alter the counter's registers after each 

transmitted impulse and counter overflow. The state 

machine sequence cycles through all 6 channels and 

then holds the signal low to transmit the synchroniza-

tion delay. The whole process repeats in every cycle. 

In case of change of some channel, the new informa-

tion affects the PPM signal in the next cycle. The 

outgoing signal from the microprocessor has ampli-

tude of 5 V, synchronization time 7.5 ms and seven 

pulses with width 0.5 ms, displaced from each other 

0.5 ms – 1.5 ms. Example of the signal generated by 

the microprocessor, which will lead, after inverting 

by the transistor in the “trainer” cable to the PPM 

signal shown in Fig. 6, can be seen in Fig. 7. 

 

Fig. 7. Inverted PPM signal generated by the mi-

croprocessor. a) All channels set to width of 1 ms. b) 

Channel 1 set to 2 ms. 

 

The PPM generator hardware is based on the Atmel 

ATmega8 microcontroller which features counters 

with PWM generation option and also serial port 

which is used to interface with PC using the serial to 

USB converter. FTDI FT232RL chip play a role of a 

serial to USB converter. It is easy to interface and 

incorporate in user programs either in C++ or Delphi. 

The microcontroller is also used to interface the sen-

sors like 3-axis accelerometer and gyroscopes and is 

able to provide the acceleration and angular velocity 

readings via the USB interface for the PC. There are 

also unused free pins on the board which may be used 

for connection of additional sensors or other hard-

ware if the need arises. The whole microcontroller 

interface board can be seen in Fig. 8. 

 

Fig. 8. Microcontroller board used as interface be-

tween the RC helicopter and computer. (1- Power 

connection; 2- connection with the transmitter; 3- 

sensors connection; 4- USB connection with PC ) 

3 FEEDBACK FROM HELICOPTER 

To control the helicopter, a feedback is needed to 

detect the helicopter states. For measuring accelera-

tions of the helicopter’s body a triple axis acceler-

ometer has been connected to the microcontroller 

interface board. The accelerometer measures accel-

erations in three axes orthogonal to each other. For 

detecting the heeling of the helicopter two single axis 

gyroscopes are employed and measure the angular 

velocities about the helicopter’s longitudinal and lat-

eral axes. 

 

Fig. 9. Housing of the sensors attached to the heli-

copter. 

 

These sensors were put into a thin metal plate box 

(see Fig. 9), which dispose of similar characteristics 

to a Faraday cage and bring the protection against 

spurious fields. 
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Fig. 10. Inside of the sensors housing. 

 

The gyroscopes were mounted on the front side and 

the right side of the box such that they are orthogonal 

to each other (see Fig. 10) and measure the angular 

velocities about two axes. The accelerometer was 

mounted on the bottom side of the box (see Fig. 10). 

3.1 Triple axis accelerometer 

For our purposes, the triple axis accelerometer based 

on a LIS3LV02DQ chip (see Fig. 11) was chosen and 

connected to the microprocessor board through the 

I2C bus. The LIS3LV02DQ is a capacitive accelero-

meter chip. When the acceleration is applied to the 

sensor, the proof mass displaces from its nominal 

position, causing an imbalance in the capacitive half-

bridge. This imbalance is measured using charge in-

tegration in response to a voltage pulse applied to the 

sense capacitor. The complete measurement chain is 

composed by a low-noise capacitive amplifier, which 

converts into an analog voltage the capacitive unba-

lanced voltage of the MEMS sensor and by three ΣΔ 

analog-to-digital converters, one for each axis, that 

translate the produced signal into a digital bit stream. 

The acceleration data may be accessed through an 

I2C/SPI interface, thus making the device particularly 

suitable for direct interfacing with a microcontroller 

(STMicroelectronics, 2005). 

 

Fig. 11. Tripple axis accelerometer used for sensing 

accelerations of the helicopter’s body. 

 

The accelerometer measures three types of accelera-

tions: decomposition of the gravitational acceleration, 

accelerations caused by the translational displacement 

of the helicopter and accelerations caused by a centri-

fugal force when the helicopter is turning. 

3.2 Inadequacy of an accelerometer  

The accelerometer is mainly used for sensing the 

heeling of the helicopter. The principle is to measure 

the gravitational acceleration decomposed into the 

three orthogonal axes of the accelerometer, as can be 

seen in Fig. 12. From the components of the gravita-

tional acceleration measured by the accelerometer, 

the longitudinal and lateral heeling of the helicopter 

can be estimated. 

 

Fig. 12. Decomposition of the gravitational accelera-

tion by the heeling of the acceleromete (mounted on 

the  helicopter’s body). 

 

As mentioned in Section III A, acceleration is meas-

ured by the displacement of the proof mass from its 

nominal position in the sensor. To depict this idea, a 

ball in a box is chosen to represent the accelerometer 

(Fig. 13). If the box heels the ball starts to move to-

wards the direction of the heeling. This is, therefore, 

understood as an acceleration measurement in this 

direction, as shown in Fig. 13a. However, if the box 

is accelerating horizontally (and not heeling), the ball 

starts to move in to the opposite direction, which is 

also understood as an acceleration measurement but 

in the opposite direction, as shown in Fig. 13b. Clear-

ly, this causes problems, for one cannot distinguish 

whether the helicopter heels or accelerates in the op-

posite direction. Therefore, the helicopter feedback 

has to be improved and is, for that reason, usually 

equipped with gyroscope sensors. 

 

Fig. 13. Simplified figure of acceleration measuring 

principle in one axis. a) Acceleration measured by the 

heeling of the accelerometer. b) Acceleration meas-

ured by the linear acceleration of the accelerometer. 
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3.3 Piezoelectric gyroscopes 

Heeling of the helicopter can be measured with the 

gyroscope. Classical rotating mechanical gyroscopes 

are rather expensive and for our purposes even too 

heavy and big-sized.  

 

Fig. 14. Piezoelectric gyroscope with XV-3500CB 

chip used for sensing angular velocities of the heli-

copter’s body.  

Therefore, piezoelectric gyroscopes were chosen. 

Unlike the classical rotating mechanical gyroscope, 

the piezoelectric gyroscope does not measure the 

turn, but the angular velocity by the turning. The pie-

zoelectric gyroscope consists of a vibrating piezoe-

lectric material which tends to keep the vibrations in 

the same plane as its support is rotated.  A Coriolis 

force can be measured to produce a signal related to 

the rate of rotation (Wikipedia, 2010).  

        Fig. 15. Main window of the program. 

For our purposes two angular rate piezoelectric gy-

roscope boards with XV-3500CB chip (see Fig. 14) 

were chosen and connected to the microprocessor 

board through the I2C bus, like the accelerometer. 

One of the gyroscopes is used for measuring the an-

gular velocity about the longitudinal axis of the heli-

copter and the other for measuring the angular veloc-

ity about the lateral axis of the helicopter. The gyro-

scope board uses MCP3421 A/D converter chip for 

interfacing the I2C communication. This chip has a 

fixed address 1101000X (if “X” stands for 1, the AD 

conversion value and configuration bytes can be read, 

if “X” stands for 0, the configuration bytes writing 

would follow) (Sure electronics, 2008). Because the 

communication with two devices with the same ad-

dress connected to the I2C bus would not be working, 

only one gyroscope was connected to the hardware 

I2C bus, used also for collecting the data from the 

accelerometer. For the second gyroscope, the new 

software I2C bus was created. 

4 SOFTWARE FOR HELICOPTER CONTROL 

The software for controlling the helicopter with the 

PC was programmed in BORLAND C++ Builder. 

The main GUI window of the software consists of  
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several blocks with various functionalities, as can be 

seen in Fig. 15. The helicopter can have controlled 

each channel manually in a “Direct channel control” 

block. This can be done with moving 6 different track 

bars.  

Longitudinal input (heeling of the helicopter for-

ward/backward), lateral input (heeling of the helicop-

ter to the sides) and collective input (ascent/descent 

of the helicopter) are controlled by the variable pitch 

of the helicopter’s main rotor blades, executed by 

three servos. Hence, the control of these three chan-

nels has to be mixed such that the main rotor can be 

controlled correctly. Mixed control signals for con-

trolling the direct helicopter inputs are controlled in 

the program with “Direct control” block. The soft-

ware also offers sampling time modification, graphs 

for measured accelerations and angular velocities and 

basic PID controllers which serves as a first choice in 

experiments with the helicopter stabilization. For first 

experiments with helicopter stabilization, only feed-

back data from accelerometers were used.  

 

Fig. 16. Helicopter stabilization scheme using feed-

back data from accelerometer. 

 

The aim was to keep longitudinal and lateral accel-

erations equal zero. Computer controlled pitch and 

roll of the helicopter, while the operator has a manual 

control of rotor RPM and collective angle of attack 

for controlling ascent/descent of the helicopter. RC 

helicopters are equipped with yaw gyroscope, which 

can hold the yaw position to make the control of the 

helicopter simpler. This yaw control was exploited to 

simplify the stabilization. The scheme used for this 

approach can be seen in Fig. 16. Values of PID con-

trollers for longitudinal and lateral stabilizations can 

be set in “Acceleration PID controller parameters” 

block of the program (see Fig. 15). 

Another approach for stabilizing the helicopter, 

which can be seen in Fig. 17., was to use feedback 

data from gyroscopes. Computer controls pitch and 

roll of the helicopter so that pitch and roll rates 

measured by the gyroscopes were zero. For this ap-

proach the operator also has manual control of the 

helicopter’s ascent/descent and the yaw control is 

kept on the helicopter’s gyro 

 

 

Fig. 17. Helicopter stabilization scheme using feed-

back data from accelerometer. 

5 CONCLUSION 

The aim of this work was to describe the developed 

interface between the helicopter and PC, which con-

trols the helicopter and collects the feedback data. 

The PC sends through the USB desired values for all 

channels to the developed microcontroller interface 

which creates, based on these values, the correspond-

ing PPM signal and sends it to the transmitter. The 

transmitter, which is set to the “trainer” mode, for-

wards the signals to the receiver and controls the RC 

helicopter. The helicopter has a triple-axis acceler-

ometer and two piezoelectric gyroscopes ensuring the 

feedback from the helicopter. The sensors are con-

nected through the I2C to the microcontroller inter-

face board which collects the feedback data from 

sensors and sends them back to the computer through 

the USB. Evaluation of the feedback signals and 

creation of the control signals is treated by the PC. 

For this purpose, the software for controlling the 

helicopter manually and stabilization based on a PID 

controller was developed. However, due to the delays 

caused by the feedback data evaluation and process-

ing, the stabilization did not work properly. By de-

mand of the real time control, our next task is to de-

velop software in Linux environment. In addition, the 

feedback data evaluation is to be improved. From that 

point of view, the complementary filter, described in 

(Rodina, et al., 2009), seems to be appropriate. As a 

control algorithm, the LQ controller described in 

(Kozakova, 2008) and, for example, used for the 

helicopter stabilization in (Andersen, et al., 2008), 

seems to be convenient. 
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______________________________________________________________________________ 
Abstract: The paper presents a Genetic Algorithm (G.A.) for off-line path planning of Autonomous Small 
Airships in known 3D environments with special consideration of restricted areas. The algorithm assumes 
that the airship is used in Fire Fighting and Mine Detection projects, so the aircraft will fly only a few 
meters above the ground, which means there is a high possibility of collision with obstacles. The task of 
the Off-Line Path Planner algorithm is to find an optimal route to visit all the predefined locations for 
airborne measurement exactly once per mission, without any collisions with environmental obstacles and 
to avoid fly over a defined restricted area. The planner task posed here is an NP problem. This paper 
proposes a 3D Off-Line Path Planner using G.A. including chromosome representation, G.A. crossover and 
collision avoidance with known obstacles. The proposed algorithm is implemented using MATLAB with 
Genetic Algorithms and Mapping Toolboxes. The proposed algorithm is tested using real maps of our 
research airfield and the result shows that the algorithm finds a near-optimal collision free path for the 
airship. 

______________________________________________________________________________________ 

 

1. Introduction 
Autonomous Small Airships have many 

applications in civil and military areas[3], e.g. for different 
missions including fire fighting, mine detection, traffic 
surveillance, maintenance of high power electric lines and 
advertising. The main advantages of using an airship are: it 
has low energy consumption, there is no vital risk for 
operators during performance of hazardous missions, and its 
long endurance in the air. 
The airship need a control system that can make both low-
level control decisions in real-time, medium-level decisions 
such as path planning, and high-level decisions, such as  

 
Figure (1): Fernuniversität Airship 

cooperative task assignment, for long time missions without 
human interference. Task assignment is crucial for designing 
successful missions in difficult environments while the path 
planners which generate collision-free and optimized paths 
are needed to give autonomous operation capability to the 
airship. The combined solution of both aspects for the 
mission planning problem leads to a near optimal flight 
trajectory [6]. 

The paper is organized as follows. Section 2 
formulates the path planning problem. The description of the 
proposed path planner follows in section 3. In section 4 
experiments and results are given. The conclusion of this 
paper is drawn in section 5. 
    
2. Problem Definition 

The mobile robot path planning problem is typically 
formulated as follows: given a mobile robot and a description 
of an environment and set of user-defined way-points (wp), 
the problem is to calculate a route that visits all user-defined 
way-points exactly once. The resulting path should be free of 
collision and satisfy certain optimization criteria (i.e., 
shortest path)[3]. This problem corresponds to finding the 
shortest Hamiltonian cycle in a complete graph G = (V, E) of 
an n nodes. Thus the path planner consists of finding a 
permutation of the set {wp1,wp2,wp3,…,wpN} that minimize 
the quantity:  
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Where d(wpi, wpj) denotes the distance between waypoint 
wpi and waypoint wpj. 

Researchers distinguish between various methods used to 
solve the path planning problem according to two factors, (1) 
the environment type (i.e., static or dynamic), (2) the path 
planning algorithms (i.e., Off-Line or On-Line). A static 
environment is defined as the environment which doesn’t 
contain any moving objects other than a navigating robot; 
while any dynamic environment includes moving objects 
(i.e., human beings, vehicles and other robots). 
The Off-Line path planning algorithm requires a complete 
knowledge about the search environment and is based on the 
fact that all terrain should be static. On the other hand, On-
Line path planning means that the path planning algorithm is 
calculated in real-time while the robot is moving around. In 
other words, the algorithm is capable of producing a new 
path in response to environmental changes [2]. Many studies 
try to solve the path planning problem for mobile robotics by 
using evolutionary approaches like genetic algorithms 
[1,5,7,10], but most of them solve the problem as how to go 
from one location to another and this study try to find an 
optimal trajectory to visit many locations exactly once with 
respect of collision avoidance, also this study is different 
from [9] by introducing the existence of user-defined 
restricted area that make the problem of path planning more 
complicated. 
 
3. The Proposed Path Planner 
 The proposed path planner accomplishes its task 
into two phases: the preparation phase and the G.A.  
3.1. The Preparation Phase 

In this phase all inputs data such as digital 3D maps 
and user-defined way-points are represented and prepared to 
be use by the genetic algorithm. 
3.1.1 Environment Representation 

This paper considers that the airship will fly in static 
and well known environments, while these environments are 
represented as digital maps (e.g. for processing in MATLAB 
Mapping Tool Box). 
3.1.2 Restricted Area Avoidance 

The procedure starts with checking if the direct 
(straight line) path between any two of the User-Defined 
locations is crossing a defined restricted area or not. If it is 
crossing a restricted area then, a process starts to find new 
subway points to avoid this area. There are only two possible 
ways to avoid the restricted area, one is to go left way side 
and the other is to go right way, the decision of where to go 
(left or right) is taken according which one is the short. The 
technique used to determine the short way to avoid the 
restricted area can be described as the following: suppose 
that (UDPi, UDPj) are two User-Define points, and 
{v1,v2,v3,v4,v5} are set of vertices of a restricted area as 
shown in figure(3). The direct path from UDPi to UDPj is 
crossing the restricted area and divide its vertices into two 
sets: the vertices {v1,v2} that are located to the right of direct 
path line, and the vertices {v3,v4,v5} that are located to the 

left. The alternative path to avoid the restricted area in this 
example can be defined as: 

Minimum(|(UDPi,v1)+(v1,v2)+(v2,UDPj)|, 
|(UDPi,v3)+(v3,v4)+(v4,v5)+(v5,UDPj)|) 

It is clear from figure(3) that |(UDPi,v1)+(v1,v2)+(v2,UDPj)| is 
the minimum in length so, the vertices {v1,v2} are added as 
new subway points into the path between (UDPi and UDPj) 
to avoid the restricted area. Another issue in restricted area 
avoidance is how to determine the elevation of the new 
subway points? The elevations of UDPi and UDPj are 
defined by user and the elevation of the new subway points 
can be defined as: 

Maximum (eUDPi, eUDPj, eh) 

Where: eUDPi,eUDPj are the elevations of UDPi,UDPj in 
order, and eh is the elevation of the highest point of the 

terrain in the path [UDPi,v1,v2,UDPj] . 

 
Figure (3): Example of restriced area avoidence 

 
3.1.3. Verifying Feasibility and Adding New Subway 
Points  

The Feasibility of all direct paths between each set 
of user-defined way-point are verified and if there is a 
feasible direct path between any pair of these points, its path 
length is calculated and stored in a cost table, otherwise (i.e. 
there is an obstacles between two waypoints), a process is 
being started to find an indirect feasible path between these 
two user-defined way-points by adding a new subway point 

 
Figure(3) Example of obstacles avoidance 
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to avoid this disturbing obstacle. The strategy of adding new 
subway points is based on making a displacement around the 
obstacle in all directions in order to find an intermediate 
way-point that is feasible from both user-defined way-points 
under consideration.  The main advantage of this step is to 
reduce the calculation and the execution time of G.A.  
 
 

 
 Figure (4): Path Planner Process Flowchart 

3.2. The G.A. Algorithm: 
 This new pre-processing strategy enhances the 
G.A. search that is used to solve the travel salesman problem 
in [8] to be used as an optimization tool for the airship path 
planner.  A description of the G.A. search for 3D-problems is 
as follows: 

3.2.1 Path Representation: 
 The proposed algorithm represents a robot mission 
as an Upper Triangle Binary Matrix (UTBM) as in Figure 
(5) which represents the tour (1, 3, 5, 2, 4, 6). Every 
chromosome is represented in binary form, which means: if 
the element (i,j) of the matrix is equal ( 1) there is a feasible 
path between user-defined way-points (i) and (j) in the tour. 

                                                 

 2 3 4 5 6 

1 0 1 0 0 1 

 2 0 1 1 0 

  3 0 1 0 

   4 0 1 

    5 0 

 

Figure (5): The Proposed Representation of a Chromosome 

The matrix representation must satisfy the following 
conditions in order to represent a feasible tour: 

1- The number of elements in the matrix that have the 
value (1) must be equal to the number of the user-
defined way-points. 

2- The number of matrix elements that have the value 
of (1) in each row and each column of the same 
way-point must be equal to two.   

 

3.2.2. The Crossover 
The crossover operation generates an offspring from two 

parents as follows: 
1- Unify the two parents matrices in one matrix by 

executing (Or) operation. 
2- The result matrix from step 1 may be an invalid 

tour (do not satisfy the two conditions from 
above). So it must be repaired by counting the 
number of edges of each way point. If any way 
point has more than two edges, then keep the 
shortest two edges and delete the others. The 
way points that have less than two edges are 
added to a list of disconnected way points. 

3- Adding the missing edges to disconnected way 
points by using the greedy algorithm. 

End 

The path 

Extract the trajectory of the path  

Order to visit locations 

Find a tour between the set of location 
points using GA 

Cost Table 

Verify the feasibility between each two pints and 
introduce new subway points for unfeasible path  

Check for restricted area avoidance and find alternative 
paths for the direct paths which cross the restricted area. 

Start 

Environment description of location 
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3.2.3. The Evaluation Function: 
             The evaluation function is an important part of any 
evolutionary process using G.A. Only an appropriate 
selection of the evaluation function will lead the search 
towards the desired optimal solution. For the airship that is 
used in complex flight missions, the optimal path has two 
type of constrains: 
 
- Hard constrains: the path should be free of collision and 
every user-defined way- point of the flight mission should be 
visited exactly once. (The algorithm proposed here 
guarantees that all the solutions that are produced meet these 
conditions). 
- Soft constrains which can be defined by user requirements: 
in specific scenarios such as fire fighting and mine detection 
some additional constrains can be formulated, e.g. 
enforcement of a shortest path and of path types keeping the 
airship in low altitude above the ground.  The following 
equation is used as evaluation function for the algorithm 
proposed here: 

F = minimize [ |T| + H ] 

Where: 
Parameter |T| is the length of the flight 
mission [e.g. in meters] and is computed as 

the sum of the paths lengths between every 
two way-points of the tour. 
Parameter H is a value computed as 
following: 

H = h * Hf 

Where: 
 h is the sum of the difference between the 
maximum height of the airship during the 
tour and the height of the user-defined 
way-points. 
Hf is a user defined value; for a large value 
the GA will select the solution that avoids 
the airship to go up even if the tour will be 
longer. 
 

4. Experiments and Results 
The proposed algorithm is implemented using 

MATLAB and tested both in a real three-dimensional map of 
our experimental area in Hemer (Northrhine-Westfalia), and 
sample Matlab DEM files like Geoid and South San 
Francisco. The following figures are showing the results of 
the experiments.  
 

 

Figure (6): Sample tour for 6 user defined way-points in map of Hemer. 
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Figure (7): A sample tour of 7 user defined way-points in map Geoid 

  

 

Figure (8): Sample tour of 6 User-Define points in South San Francisco map. 
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5. Conclusion: 

        This paper represents an Off-Line path planner for small 
autonomously operating airships in restricted but well known 
static 3D environments. Using G.A. search, the separation 
between Preparation phase and the G.A. process reduces the 
execution time of G.A. and makes the path planner more 
flexible. For example, it is relatively simple to modify the 
proposed G.A., or to integrate optimization criteria 
considering further factors of influence (like the direction of 
wind force, the energy consumed by airship devices …etc.). 
Another advantage of using GA as problem solver is, that in 
case of any changes in the environment (e.g. the boundaries 
of the restricted area are change.) the last solution of the GA 
planner is still important and it can be used as initial solution 
for an updated search procedure. This speeds-up the 
calculation of an optimal solution with respect to recent 
changes in the environment and it makes the GA path 
planner more efficient for on-line operation during the 
airship mission in a dynamically changing environment. 
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Abstract: Nowadays, more frequently than ever, the unmanned aerial vehicles (UAVs) are used 

effectively as mobile sensor platforms. The UAV system equipped with an airborne camera and special 

sensors is a valuable source of various important information helping to build an actual overview of an 

environment. It can take place like an observer in disaster situations as well as a special mobile monitoring 

device which is able to collect required data from a predefined area. This paper introduces our approach to 

design effective data management architecture to be able to manage, reliably distribute and represent 

different types of measured data with taking many aspects and limitations of the tele-operated UAV 

system to consideration.  

 

1. INTRODUCTION 

In the last few years various UAV systems became very 

popular as an effective platform to observe particular areas 

and collect the data using specific sensors. The UAVs enable 

us to obtain a bird’s eye view of the environment, having 

access to areas, where often only incomplete and inconsistent 

information is available. To get actual and precise 

information or data from a desired place is important in many 

situations of a modern crisis management or plenty of 

inspection or data acquisition tasks. Proper utilization of 

collected data usually varies according to the purpose of the 

required mission of the UAV system. The main task of the 

mission normally forces to use specific, narrow focused type 

of sensors that need to be carried by the UAV. For this reason 

we decide to develop a modular, service based data 

management architecture, which can provide all desired 

functionality to complete the mission successfully and enable 

the operator to control the UAV system reliably and 

comfortably. 

Management and distribution of data provide an interesting 

field of research in different domains, ranging from hardware 

architecture over communication and network architecture, 

resource awareness to categorization, deployment, flow 

control and representation of data. 

This paper is organized as follows. In the first part the 

overview and the desired functionality of our system is 

described. The main limitations which need to be taken to 

consideration by design are presented as well. In the second 

part the system architecture as our base hardware (HW) and 

software (SW) platform is detailed and the engineering 

tradeoffs considered by specification are mentioned. The 

categorization and deployment of data measured by the 

airborne sensors is discussed in the third section. The fourth 

part explains the main data flow control between the HW/SW 

modules itself and the base station and shows the process of 

the representation of data. In the last part our experiences 

with measuring data by using a laser scanner as a new 

additional on-board sensor are described. 

2. OVERVIEW OF OUR UAV SYSTEM 

FUNCTIONALITY AND LIMITATIONS 

At our department we are focused on the development of an 

autonomous flying airship. We use a robotic airship (BLIMP) 

filled with helium which is 9 meters long with maximal 2.5 

meters diameter and its payload is about 5 to 6 kilograms. 

 

Fig. 1. Robotic Airship during a field test in Hemer, 

Germany, 2009 

The required task of the mission has a big influence on the 

desired functionality of an UAV system. The functionality of 

an UAV system and its data management architecture from 

various aspects could be split into several levels.  
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The first and base level of the main functionality of an UAV 

system and its data management architecture is of course to 

provide the possibility to be controlled by the operator during 

the flight. This requirement is closely coupled with 

communication capabilities and the on-board autonomy of 

the system. Depending on the increasing on-board autonomy 

there appear three possible control modes. 

• Remote Control 

• Teleoperation 

• Automatic mode 

In the remote control mode the data management architecture 

provides to transmit primer and necessary data or commands 

from the operator to UAV’s actuator system. In this case the 

level of autonomy is very low and the operator has to control 

the UAV manually using a remote control. This flying mode 

delivers many constraints depending on a potential 

application of the UAV. In our case one of the main 

limitations is that controlling the airship manually via remote 

control is a quiet difficult task for the pilot. It assumes to 

have some skills to keep the airship flying smoothly by rough 

weather conditions. Moreover the airship has to be visible for 

the pilot permanently during the flight. On the other hand this 

type of control is useful for some maneuvers which could be 

problematic for the autonomous control algorithms as well as 

a very important backup control system by any unexpected 

failure of the on-board systems. 

The teleoperation mode increases the on-board autonomy into 

a semi-autonomous control, which means that the operator is 

able to control the UAV via joystick with support of basic 

automatic control algorithms to assure the desired course and 

altitude during the flight. The operator doesn’t need to 

promptly react on each disturbance appeared during the flight 

and doesn’t need to keep a visual contact with the UAV as 

well. It effects also the data management architecture, 

because it is necessary to deliver and intuitively represent an 

information of the actual position and many additional 

information from UAV’s sensor system, which can give the 

operator feedback and a better overview of the environment. 

In this mode it is very important to provide and keep reliable 

communication with low latency between the UAV and the 

operator, because the system is usually not able to make any 

decision itself.  In fact many UAV systems are working 

properly on semi-autonomous mode of control, because it 

enables them to complete many types of missions 

successfully.  

The full automatic mode is the highest level of autonomy. 

The autonomy of an UAV relieves the operator of controlling 

the UAV and enables him to concentrate just on the main task 

of the mission. The operator just pickups the desired points to 

fly, the system calculates a flight path and flies it over. In this 

mode the control system is enhanced with a supervisory 

control and decision algorithms with support of various 

integrated modules like a path planner and collision avoiding 

algorithms. Although all information, which give a feedback 

for the operator like an actual position, are still important, 

this level of autonomy allows the system to make some pre-

programmed decision by itself. With the support of a more 

advanced on-board intelligence, a short communication 

delays or disconnections between the UAV and base station 

communication does not necessary lead to any critical 

situation or damage of the UAV. Such a sophisticated control 

system enables the UAV to complete also some kind of 

missions successfully, where the capability of low latency 

communication is limited or restricted. On the other hand, in 

this mode various HW and SW modules are coupled together. 

These modules normally depend on each other and for the 

correct functionality of the whole system the effective 

exchange of actual data or the event messages between these 

collaborative modules is one of the major challenges for the 

data management architecture. 

The second level of the functionality of an UAV system and 

its data management architecture is to enable the whole 

system to fulfill the required task of the mission successfully. 

As we mentioned in the introduction part of this paper, 

generally the tasks could be focused on monitoring some 

areas like an observer or any data acquisition tasks. For the 

data management architecture it usually means that various 

additional data from third-party sensor systems need to be 

transferred online to some operation centre or collected to be 

post-processed and analyzed after the mission. Our 

department was a member of two research projects: 

International mine detection and removal (iMR) and 

International forest fire combat (iWBB). In the first project 

the role of our airship was to be used as an inspection vehicle 

to ensure the total destruction of mines by a high-energy laser 

system. Therefore, it was equipped with a remote camera 

system (Gerke 2009). This camera system is able to stream 

the video signal online to the base station and even to remote 

control the camera’s viewpoint by the operator.  

 

Fig. 2. The view on a destroyed dummy landmine which is 

captured by the on-board camera system during a test flight 

in Hemer, Germany, 2009 

In the second project our airship was used as a mobile sensor 

platform for the third-party heat, smoke, gas detection and 
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pollution monitoring sensoric systems. Another important 

aspect of our research was the establishment of redundant 

communication links between the airship and the base station, 

and to create a data interface to the project operation centre 

(Gerke 2009).   

 

Fig. 3. The detection and monitoring of fire using the third-

party sensoric system during the test flight in Hemer, 

Germany, 2010 

The airship equipped with such a sensoric system is a 

valuable source of information about the actual situation for 

the firemen. As you can see in Figure 3 the airship was 

measuring data using these sensors to detect and monitor the 

fire and these data were online transferred to the project 

operation centre using the communication link of the 

airship’s data management architecture. 

 

Fig. 4. Schematic of the data flow between the airborne 

sensoric system and the operation and data processing centre 

on the ground. 

3. SYSTEM ARCHITECTURE AND ENGINEERING 

TRADEOFFS 

During the design of our system architecture some limitations 

have to be taken to consideration. Our airship is powered by 

electric energy. The source of this power is just the battery 

system of the airship. Minimizing the power consumption of 

all embedded systems is a strict requirement. In order to save 

the energy that could be used to power the airship actuators 

and to maximize the time of flight as much as possible. The 

second very important limitation is the restricted payload of 

the airship.   

The primary components of the hardware platform consist of 

a few modules. The first module represents an appropriate 

pre-designed control board with a DSP processor to handle a 

low level control of the airship in real-time. It has very low 

power consumption and it is optimized to minimal size and 

weight. Moreover it enables a rapid prototyping using the 

Matlab development environment. It includes the navigation 

system, which couples various sensors like GPS and an 

inertial measurement unit (IMU), which uses a combination 

of accelerometers and gyroscopes. This board is the main 

source of telemetric data for the operator as well as the 

superior system to process his commands. It is the most 

important node in the data management architecture. 

 

Fig. 5. The primary components of the hardware platform. 

 The next module is the embedded PC 104 board, which is 

dedicated to manage the data flow control and reliable 

distribution of data between all the collaborative modules and 

the base station on the ground. It is based on the Intel x86 

processor architecture and uses a 500 MHz AMD Geode 

processor with 1 GB of RAM. The system uses a 32 GB 

compact flash card (CF) for storage and has many HW 

interfaces like dual Ethernet, RS232 or USB ports, to be able 

to connect additional third-party sensors or devices. This 

platform is a balanced trade-off between the needed resources 

and power consumption. Nowadays mostly expanding boards 

are based on Intel Atom platform with more resource 

capability, but also coupled with higher power consumption, 

which can be in some cases 4 times more like our board. For 

the purpose of a data flow manager, communication router 

and data collector we rather took the less powerful variant.  

The base station, as an airship operator centre, is located on 

the ground. This module consists of a powerful mobile 

workstation PC equipped with pre-developed SW modules to 

keep the reliable communication between the airship and the 

base station and a special control panel module for the 

airship. 
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Our last tested additional module is the laser scanner UTM-

30LX produced by Hokuyo Automatic CO., LTD. It is a 

relatively small type of a laser scanner. It weights just about 

210 grams and its power consumption is less than 8 W, so it 

is an ideal device for a middle-sized UAV like our airship. It 

is intented to be used for the purpose of making 3D scans of 

the environment the airship is flying over and for obstacles 

detection as an information source for the collision avoiding 

algorithms. 

4. CATEGORIZATION AND DEPLOYMENT OF DATA 

By design of data management and communication 

architecture for tele-operated UAV system it is very 

important to specify all the data sources. The main source of 

data is of course the navigation system of the airship which 

delivers information of the actual position, altitude, 

orientation and velocities of the airship. As a second source 

of information and event messages the control panel module 

is located on the base station. It fires control commands and 

event messages from the operator to the airship’s on-board 

control system. The next source of valuable information is 

the battery and actuator system status observer that gives an 

information of the actual battery capacity, voltage, current 

and propellers rpm. Other sources of data are also the laser 

scanner system and third-party sensoric systems, which 

usually use our communication platform just to transfer or 

collect measured data.  

 

Fig. 6. Schematic of the data relations between the system 

components. 

We can categorize the data to different types based on their 

utilization. Some applications like navigation and control 

system need to execute their calculations in real-time. For 

these applications a continuous exchange of their data in real-

time is necessary. This real-time requirement is realized by 

joining and executing these application modules on the same 

real-time platform.  

Real-time delivery: Some applications require that a message 

must be delivered within a specified time, otherwise the 

message becomes useless or its information content is 

decreasing after the time bound. (Kansal 2010) 

Another type of data represents event based messages. These 

messages can be usually invoked by the operator like a 

control, setup commands or path-planner recalculated flight-

points or any obstacle detection event fired by collision 

avoiding system. These messages usually don’t appear in 

every real-time sample, but a low latency delivery is 

necessary to keep their relevancy. Moreover their delivery 

status has to be checked. This approach is used also for the 

main exchange of information between airship on-board 

systems and the base station on the ground. 

The next type of data is usually collected and stored on a 

storage device of the PC 104 board. These data are further 

used for post processing and analysis. The source of these 

data is the laser scanner system and any third-party sensoric 

system. It often handles large amounts of data. In some cases 

it is required to transfer these data online to the base station 

or any mission operation centre on the ground. The 

communication link needs to handle larger amounts of data, 

but the low latency by data delivery is not critical. 

5. FLOW CONTROL AND REPRESENTATION OF DATA 

In the previous few sections the primary requirements and 

constraints of data management architecture, system 

architecture and data categorization have been discussed. But 

the most important part of data management architecture is to 

provide a reliable communication between all of these 

collaborative modules. This capitol explains the main concept 

of the communication architecture.   

5.1 Communication Architecture 

The communication architecture was designed as follows. In 

the beginning the best concept has been searched. Several 

communication approaches have been tested to find out the 

best results. The main criteria of a wireless network structure 

are reliability of a communication channel, communication 

range, baud rate and latency by transferring data packets. 

Moreover all the devices have to be certified by European 

Regulations.  

The ad-hoc network structure was chosen as the first 

communication approach. In this case the network is 

decentralized and does not rely on a pre-existing network 

infrastructure. Communication between the nodes in the 

network is realized just like a point-to-point data link. This 

type of wireless network structure fits the requirements of 

communication architecture for the UAV system, because 

there are just two nodes which need to communicate with 

each other. It is the communication node located on the base 

station on the ground and the on-board communication node 

of the UAV system. As the first type of wireless network a 

popular Wi-Fi IEEE 802.11 b/g standard transmitting in the 

2.4 GHz frequency band with allowed transmit power of 100 

mW has been chosen. Several tests have been realized to 
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prove our main criteria. The best result was the baud rate 

around 10 Mbit/s and very low latency by transferring data 

packets, but even in the line of sight the communication 

range was just about a 100 to 190 meters by using 9 dB 

Omni-directional antennas. As a second difficulty by using 

this wireless network type appears a problem with the 

reliability of a communication channel. After disconnection 

caused by coming out of the communication range and 

returning back into it, the Wi-Fi device was not able to 

establish the communication link before reaching a very near 

bound of about a 50 meters from base station. It means that a 

save operation area for a flying UAV to keep reliable 

communication channel has to be restricted even to a half of 

the available communication range. As a second type of 

wireless communication a radio-modem transmitting in ISM 

868 frequency band with 250 mW transmit power (by 

European regulations is allowed up to 500 mW) was applied. 

During some tests the same criteria have been evaluated. In 

this case the baud rate was just 28.8 kbit/s with latency about 

120 to 250 ms, but the communication range in the line of 

sight was about 1500 meters by using 5 dB Omni-directional 

antennas. The reliability of the communication channel was 

excellent. 

 

Fig. 7. Schematic of the Communication Architecture. 

For the second approach we decided to use an already 

existing network infrastructure of the Universal Mobile 

Telecommunications System (UMTS). This type of 3G 

network infrastructure is nowadays provided by any mobile 

telecommunication operator. The client is able to connect to 

internet using resources of this infrastructure. On the other 

hand this internet connection is provided by the 

telecommunication operator as a paid service and there is no 

direct possibility to make a point-to-point data link. To be 

able to communicate from one UMTS network device on the 

base station to another device connected to the PC 104 board 

on the airship a virtual private network (VPN) has to be 

established. For this purpose a VPN server with a public IP 

address is used. The same criteria have been evaluated as 

well as in the case of ad-hoc networks. The baud rate, 

reliability of communication channel and data delivery 

latency depends of the actual signal coverage and of network 

type. The typical values are presented in the table Tab. 1. 

Especially the data delivery latency varies depending on the 

actual network link capacity and of course on the delays 

caused by overhead of the necessary VPN network, which 

routes the data via VPN server.  

 Downlink Uplink Latency 

HSDPA 7.2 Mbit/s 3.6 Mbit/s 100-300 ms 

UMTS 384 kbit/s 128 kbit/s 200-1000 ms 

EDGE 236 kbit/s 59.2 kbit/s 300-2500 ms 

GPRS 60 kbit/s 40 kbit/s 400-3000 ms 

 

Tab. 1. Typical downlink, uplink and latency values of most 

used GSM standards. 

This type of network connection is in our communication 

architecture primary used as a redundant communication 

channel. So the whole communication architecture, illustrated 

on the figure 7, consists of the communication channel based 

on point-to-point communication via radio-modem, and as a 

second redundant channel the communication via UMTS is 

used.  

5.2 Data Flow and Reliability 

The data management architecture has to manage and to keep 

reliable data flow with the base station using the pre-designed 

communication architecture. Various data have to be routed 

via these two communication channels by specific criteria. 

The very important telemetric data, control commands from 

the operator with a higher priority needs to be transferred 

with low latency. These information and messages are 

usually smaller data-packets which are transferred via a 

point-to-point radio-modem communication channel. For the 

data, which low latency is not such a limiting factor like data 

measured by third-party sensors or large amounts of collected 

data, the second UMTS communication channel will be used. 

The UMTS communication channel will be used also as a 

backup system in situations by radio-modem communication 

interruption. The pre-developed data router manager (in 

testing phase) handles this functionality. The data flow 

between the components is realized as a service oriented 

architecture (SOA). It is based on a pre-developed 

lightweight protocol applied mainly over TCP protocol, so it 

uses primary a TCP socket interface. 

When some component needs a functionality not provided by 

itself, it asks the system for the required service. If other 

component of the system has this capability, their location 

will be provided and finally the client component can 

consume the service using the common interface in the 

provider component. The interface of a SOA component must 

be simple and clear enough to be easily implemented in 

different platforms both hardware and software. (Pastor 

2006) 
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On the base station is also a pre-developed data hub server as 

a service provider for multiple clients on the ground like 

control panel component on the base station or any third-

party clients, which use a service to become the data from its 

sensoric system located on the airship as it is illustrated on 

the figure 4. The data hub server checks also a delivery status 

of each message and control the network delay measuring the 

message delivery with time constraints.   

5.3 Data Representation 

The next challenge for the data management architecture is 

the effective and intuitive representation of distributed data 

for the operator. For this purpose a special control panel 

module for the airship as a graphical user interface (GUI) has 

been developed. It is the important module in the system 

architecture used for interaction between the operator and the 

airship. The main goal of such an interaction is an effective 

operation and control of the airship. Moreover, the feedback 

from the airship sensors aids the operator in making 

operational decisions.   

 

Fig. 8. GUI of the airship’s control panel module. 

The control panel provides the input and output capabilities. 

The input functionality allows the operator to control the 

airship. It enables him to select the airship control mode, 

setup some system options. The output functionality provides 

the indication of important data like information about the 

actual position, altitude and orientation of the airship. For a 

better overview for the operator the airship orientation is 

visualized with the help of a three-dimensional virtual reality 

model. The actuating signals are indicated as well as the 

information of the airship systems and batteries state. There 

is also a possibility to record the measuring data using the 

pre-developed data acquisition module.  

The actual position is displayed in the two-dimensional (2D) 

map, which is georeferenced in Universal Transverse 

Mercator (UTM) geographic coordinate system. It is a very 

practical grid-based 2D Cartesian coordinate system. The 

position on the Earth is referenced in the UTM system by the 

UTM zone, and the easting (E) and northing (N) coordinate 

pair. (Wikipedia) The navigation system of the airship 

calculates the actual position in local north, east, down 

(NED) coordinates as it is illustrated in Figure 9. This local 

coordinate system needs to be referenced to specify its 

location on the surface of the Earth. For this purpose the 

navigation system sets the reference location in Earth-

Centered-Earth-Fixed (ECEF) conventional terrestrial 

coordinate system and this information is sent to the control 

panel. The reference point is displayed on the map of the 

control panel. The transformation from ECEF coordinate 

system to UTM is necessary. As a first step the position 

needs to be converted from ECEF to geodetic coordinates 

WGS84 (latitudeφ , longitude λ , height h) using the Kaplan 

algorithm. 

 

Fig. 9. NED Coordination system. 

Afterwards the conversion from geodetic coordinates 

(latitudeφ , longitude λ ) to UTM coordinates pair (E,N) and 

the UTM zone is calculated. 

6. 3D SCANNING OF THE EARTH SURFACE BY A 

LASER SCANNER 

A typical data acquisition task for our airship could be a 

scanning of the Earth’s surface by a laser scanner. The laser 

scanner is an additional sensor installed on-board. A basic 

principle is based on measuring the distance of the scanned 

points from chosen reference point that is usually placed over 

the surface. Knowing its exact position and having a 

possibility to measure its distance precisely to all points of 

the scanned surface and direction of the measurement, it is 

possible to calculate exactly their positions.  

6.1 Choice Of The Measurement Method 

A 3D scanning of the surface based on reflection of waves 

can be carried out in several ways: By sonar using ultrasonic 

waves, or by radar working with electromagnetic waves. The 

distance from a reference point may also be determined using 

stereoscopy, whereby it is evaluated by comparing two 

pictures of an object made from two reference points. This 

leads to different angles of view. Precision of all these 

systems is given by the used wave lengths and by their 

propagation. Systems like sonar have a relatively slow 

response speed and a relatively low resolution not enabling to 

see details of the scanned surface. A reasonable improvement 
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was brought by laser technology guaranteeing high linearity 

of the ray movement, its fast speed (above 300 000 m/s) and 

measurement of details in range of millimeters. After 

bringing reflectors to Moon by Apollo missions, by using 

laser technology it was e.g. possible to measure that the 

Moon is spiraling away from Earth at a rate of 38 mm per 

year (Espenak 1994), whereby its mean distance is about 

384.467 kilometers and the round pulse trip time is about 2½ 

seconds. So, the laser systems are able to give precise 

measurement information over a long distance.  

By scanning the Earth’s surface, the resulting precision 

depends highly on precision of the reference point 

localization and orientation of the beam. The final resolution 

will directly depend on the density of emitting and orientation 

of the beams. 

6.2 Measurement Principle 

Assume a laser device emitting laser beams oriented in 

a plane. That means that this system is able to scan just 

information about a curve lying in this plane. When wishing 

to scan the entire space, such scan must be repeated in 

infinitely many other planes. In order to get stereoscopic 

information the measurement must be repeated at least from 

one additional place. Such a measurement can e.g. be based 

on a translation movement, when the laser moves its 

reference position and the beam falls to the surface from 

other reference positions. 

During the measurement, the reference position and 

orientation of the beam must be measured in order to enable 

the calculation of the points of reflection. This information is 

usually achieved by a measurement and recording system  

completing the laser measurement by information about the 

laser reference position in 3D coordinating system [x,y,z], as 

well as angular orientation of the beam in all three axes X, Y, 

Z denoted usually as Roll, Pitch, and Yaw. 

 
Fig. 9. Earth’s surface scanning illustration by a laser 

scanner. 

6.3 Data Identification 

For this task two frames are given: navigation frame 

(FRAME) and body frame (BODY). Data acquisition is 

considered in body frame. For following representation of 

measured data, they have to be transformed into a global 

navigation frame. 

The body frame may freely move and rotate in the navigation 

frame, i.e. it may change the coordinates of its origin in 

navigation frame, as well as orientation of its axes. The 

navigation frame is usually considered to be static. 

While scanning laser beams are emitted with the origin 

placed to the origin of body frame [0,0,0]. 

 

Fig. 10. Illustration of the coordinate systems BODY and 

FRAME. 

These always lie in a plane YZ. After being reflected by the 

Earth’s surface, its points are calculated according to: 

    (1) 

    (2) 

d – Measurement of the scanned point from laser. 

α – Angle between zero reference position and the emitted 

beam. 

 

 

Fig. 11. Scanning principle.  

Under zero reference position we will understand beam 

orientation parallel to axis Z, i.e. vertically to the Earth in 

direction of –Z. While looking into the X direction, deviation 

from the zero position do the right means deviation under 

a negative angle α. Deviation to the left corresponds to 
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positive angles. This sign convention enables an easy 

calculation of Y coordinates. For such a measurement, the 

first X-coordinate will be zero, i.e. the measurement will be 

represented as [0,y,z]. 

Known coordinates in body frame are necessary to transform 

into navigation frame coordinates. The coordinate 

transformation is calculated by means of the direction cosine 

matrix (DCM). The DCM matrix performs the coordinate 

transformation of a vector in navigation frame axes (ox0, 

oy0, oz0) into a vector in body frame axes (ox3, oy3, oz3). 

  (3) 

In the case of 3D space there exist in principle 12 different 

options how to describe a general body orientation by a 

sequence of three rotations. It could be demonstrated that the 

rotation according to  X (Roll) axis, then with respect to 

Y(Pitch) axis and finally with respect to Z(Yaw) axis is 

different from that one with the same rotation in Roll, Pitch 

and Yaw carried out in different order. DCM transformation 

matrix is defined by combination of three axis transformation 

matrices M(X), M(Y), M(Z). 

In our case the rotation angles in body frame are known and 

we need to carry out the inverse transformation into the 

navigation frame coordinates. This can be done according to: 

  (4) 

By translation movement of the body frame origin, the 

transformation is calculated as follows: 

 (5) 

In the navigation frame the points are recorded in a way that 

corresponds to their position within the scanned surface. 

6.4 System Implementation 

The type of used laser scanner was briefly described in the 

section 3. Up to now a few first tests have been done mostly 

in laboratory conditions. The laser scanner enables a 

measurement in the range from 30 to 60 meters (m). The final 

results depend on the surface reflection capability, whereby 

precision given by the producer is for measurement up to 10 

m in range of 0.03 m, and for measurement up to 30 m in the 

range up to 0.05 m. The first statement was partially 

confirmed by a measurement repeated several times in 

laboratory conditions, whereby the maximal difference of 

two measured samples was 28 mm. Of course, this does not 

yet guarantee the absolute measurement precision, but 

characterizes repeatability of the measurement 

During the tests the laser scanner was installed 1.35 m over 

the surface on a moving platform which enables to control 

the translation in axis X. The position x values in body frame 

X axes was incrementally preset in range of -0.9 m up to 0.9 

m. Laser beam was emitted in the plane YZ. Pitch was 

changed in the range from -32° up to 32°. It corresponds to 

changes of Y value within the range from -0.81 m up to 0.81 

m for the given distance of the body frame origin respectively 

laser scanner over the scanned surface. 

These tests were carried out by scanning two boxes and one 

box with banked surface and decreasing height from 0.245 m, 

0.18 m to 0.075 m. The results, displayed in Figure 13, 

illustrate a relatively correct reproduction of the scanned 

surface distorted partially by the measurement noise. 

  

Fig. 12. Results of the measurement precision for 33 realized 

experiments. 

For noise elimination some various filtration procedures may 

be applied. 

 

Fig. 13. Results of scanning. 

The determination of the laser position respectively the body 

frame origin and its rotation angles (roll, pitch, yaw) has 

a dominant influence on the final measurement precision. 

7. CONCLUSION 

This paper has introduced our approach to design a modular, 

service based data management architecture for our UAV 

system, in our case the robotic airship, to provide the data 

management and routing as well as a reliable distribution of 

information between all the collaborative system modules. 

For this purpose the system and communication architecture 

has been described. As a very important component of the 

complex system the control panel module for intuitive data 
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representation and control has been developed. Such an 

architecture enables to establish a robust communication 

structure, comfortable control capability for the operator and 

even to provide a service based interface for a mission 

operation centre with an opportunity of online distribution of 

important data from the airborne sensoric system as a 

valuable source of information. The main constraints and 

experiences by the design and practical experiments have 

been mentioned as well. The most valuable experiences were 

gained by fulfilling the major tasks in our two research 

projects, where design and development of the architecture 

was formed by the real constraints and problems, which 

appear during the tests. 

As a future work some enhancement of communication data 

flow and a more robust reliability are planned. The 

communication structure could be used as a source of 

information to any leashing algorithms.  

Leashing is then performed by having the robot react to low 

message rates by moving towards the base in order to 

improve the communication. (Hauert 2010) 

The data throughput by a communication channel with low 

band rate like our radio-modem data link could be enhanced 

by any real-time data compression methods.   

Huffman style compression scheme exploits temporal locality 

and delta compression to provide better bandwidth 

utilization, thus reducing latency for real time applications. 

(Szalapski 2010)   

The next interesting mission for our airship is a 3D scanning 

of the Earth surface by the new additional sensor system, the 

laser scanner. The last section introduces the measurement 

method and our first results in this problem. 
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Abstract: In the past two years, an autonomous airship was developed at our department as a
flying sensor platform. Our main research areas during this period were navigation, modelling
and automatic control of the airship. In this article, we present a gain-scheduled LQR control
design for the airship. First, the mathematical model of the system and its linearization will be
introduced. After that, we split the linearized system in a lateral and a longitudinal subsystem.
With the combined gain-scheduled controlled subsystems, a high-level navigation system allows
the airship to follow an appropriate flight trajectory.

Keywords: airship, LQR control, gain scheduling.

1. INTRODUCTION

Unmanned aerial vehicles (UAV’s) became very popular
in the last years, because of the availability of cheap HW
components likes motors, sensors (digital gyroscopes, com-
pass, accelerometers, barometers, etc.), embedded micro-
controllers and power units. There exists plenty of designs,
including autonomous helicopters and quad- (or more-
) copters ([Prior et al. (2009)], [Jaimes et al. (2008)]),
but they have a few common problems - typically a very
small payload capacity, a short flight time and an intrinsic
instability. These properties reduce the number of possible
applications to short-time reconnaissance missions - very
often with low-cost and therefore low-quality cameras.

As we were confronted with the problem of designing an
UAV, which could be used as a carrying platform for a
lot of various sensor and camera systems for a couple of
hours, which should be safe for ground personal and easy
to manoeuvre for the operator, we decided to return back
to aviation roots and to design an autonomous airship.
Namely, there are some very advantageous properties of
such lighter-then-air flying system. In particularly a bigger
payload capacity; a longer flight time, because there is
no need to actuate the airship all the time; a very good
stability in the air and no strong oscillations caused by the
motors, that can influence the sensors and cameras.

The developed airship is shown in Fig. 1. The length of the
airship is 9 m and the maximal diameter of the hull is 2.5
m. The hull volume of 24 m3 is filled with helium and could
lift a payload of about 5-6 kg. The airship is controlled by
two 700W synchronous main motors with propellers, which
could be vectored, by the tail thruster and the elevator
and rudder control surfaces. The operational speed of the
airship is up to 30 km/h.

Fig. 1. An autonomous airship of the University of Hagen

2. MATHEMATICAL MODEL OF THE AIRSHIP

For the derivation of the airships mathematical model, two
coordinate systems are defined according to Fig. 2. An
earth-fixed inertial coordinate system e is used to describe
the position and orientation of the airship.

The origin of the body coordinate system b is in the air-
ships centre of volume CV . In this coordinate system, the
linear and angular velocities of the airship are described.
Moreover, it is used to specify the forces and moments
acting on the airships body. The center of gravity CG is the
point, in which the total mass of the airship is concentrated
(mean location of the gravitational forces).
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Fig. 2. Coordinate systems of the airship [Khoury (2004)]

2.1 Kinematic model

The kinematic model of the airship involves the position
(η1) and orientation (η2) vector η, described in the earth-
fixed coordinate system e:

η = eη =

(
η1
η2

)
; η1 =

(
x
y
z

)
; η2 =

(
φ
θ
ψ

)
(1)

Moreover, ν is the vector of linear (ν1) and angular (ν2)
velocities

ν = bν =

(
ν1
ν2

)
; ν1 =

(
u
v
w

)
; ν2 =

(
p
q
r

)
(2)

and τ is the vector of forces (τ1) and moments (τ2) acting
on the airship.

τ = bτ =

(
τ1
τ2

)
; τ1 =

(
X
Y
Z

)
; τ2 =

(
K
M
N

)
, (3)

whereX, Y and Z are forces acting in x-, y- and z-direction
and K, M and N are moments acting about these axes.
Both are defined in the coordinate system b.

Transformation between the coordinate systems For the
transformation of our vector quantities between the coor-
dinate systems, we use the Euler-rotation matrices about
the x-, y- and z- axis:

Rx,φ =

(
1 0 0
0 cφ sφ
0 −sφ cφ

)
(4)

Ry,θ =

(
cθ 0 −sθ
0 1 0
sθ 0 cθ

)
(5)

Rz,ψ =

(
cψ sψ 0
−sψ cψ 0

0 0 1

)
(6)

Transformation of translational velocities Using the xyz-
convention, we can define a Jacobi-matrix to transform
the translational velocities from coordinate system b to e
[Fossen (1991)], [Brockhaus (2001)]:

J1(η2) = RTz,ψR
T
y,θR

T
x,φ (7)

J1(η2) =

(
cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψsφ
−sθ cθsφ cθcφ

)
(8)

The translational velocity applies to:

η̇1 = J1(η2)ν1 (9)

The matrix J1(η2) is ortogonal (J1(η2)TJ1(η2) = I).
Therefor the inverse velocity transformation can be writ-
ten as:

ν1 = J1(η2)
−1

η̇1 = J1(η2)
T
η̇1 (10)

Transformation of rotational velocities A Jacobi-matrix
J2(η2) is used to transform rotational velocities between
the coordinate systems b and e [Brockhaus (2001)].

To transform η̇2 from e into the vector ν2, described in
the airships body coordinate system b, following equation
must be solved:

ν2 =



φ̇
0
0


+Rx,φ




0

θ̇
0


+Rx,φRy,θ




0
0

ψ̇


 (11)

=

(
1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

)
·



φ̇

θ̇

ψ̇


 (12)

ν2 = J−12 (η2) η̇2 (13)

The matrix J2(η2) is not orthogonal (J2(η2)
−1 6= J2(η2)

T
).

Solving the equation for η̇2 yields to:

η̇2 = J2(η2) ν2 =

(
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

)
· ν2 (14)

Kinematic equations in vector form The kinematic equa-
tions can be expressed in a more compact vector form as:

(
η̇1
η̇2

)
=

(
J1(η2) O3×3
O3×3 J2(η2)

)
·
(
ν1
ν2

)
(15)

η̇ = J(η) ν (16)

2.2 Dynamic model

The Newton’s laws of linear and angular momentum for
rigid bodys (RB) describe the airships dynamic behaviour.

MRB ν̇ + CRB(ν)ν = τb (17)

The rigid body inertia matrix MRB can be expressed as:

MRB =

(
mI3×3 −mS(rG)
mS(rG) Ib

)
(18)

One possible variant to express the rigid body Coriolis-
and centrifugal matrix CRB is:
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CRB(ν) =

(
03×3

−mS(ν1) +mS(rG)S(ν2)
(19)

−mS(ν1)−mS(ν2)S(rG)
−S(Ibν2))

)

With

• the vector cross product S(k),
• the inertia tensor Ib,
• the mass of the airship m and
• the position of the center of mass brG.

The vector τb of external forces and moments can be
written as

τb = τadd + τV + τrest + τFK + τFin + τA (20)

where the parts of τb are:

• added -mass and -Coriolis and centripedal matrix
τadd = −MAν̇r − CA(νr)νr

• damping forces of fuselage τV = −D(νr)νr
• restoring forces τrest = −g(η)
• Froude-Krylov forces τFK = MFK ν̇c
• fixed fins and control surfaces τFin = DFin(νr, δ) −
DFin(νr)

• propulsive forces τp = PS + PB + PStern

νr is the relative airspeed.

Added -mass and -Coriolis and centripedal matrix A
body accelerates a certain surrounding air mass with
movement. The body behaves thereby simplified, as if an
additional mass would be adhere to it. For a completely in
a medium submerged body with three planes of symmetry
and low velocity, the added mass- MA and the added
Coriolis and centripedal- matrix CA(νr) can therefore be
considered:

MA = diag(Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ) (21)

CA(νr) = (22)


0 0 0 0 Zẇwr −Yv̇vr
0 0 0 −Zẇwr 0 Xu̇ur
0 0 0 Yv̇vr −Xu̇ur 0
0 Zẇwr −Yv̇vr 0 Nṙrr −Mq̇qr

−Zẇwr 0 Xu̇ur −Nṙrr 0 Kṗpr
Yv̇vr −Xu̇ur 0 Mq̇qr −Kṗpr 0




For example: The force YA along the y axis due to an
acceleration v̇ in y-direction is:

YA = Yv̇ v̇ mit Yv̇ =
∂Y

∂v̇
(23)

Damping forces of fuselage The damping effects on
the airships fuselage are mainly caused by linear and
quadratic surface frictions, due to laminar and turbulent
fluid motions. For a completely submerged body, the linear
and quadratic damping forces can simplyfied be written:

D(νr) = diag(Xu, Yv, Zw,Kp,Mq, Nr)

+diag(Xu|u||ur|, Yv|v||vr|, Zw|w||wr|, (24)

Kp|p||pr|,Mq|q||qr|, Nr|r||rr|)

Restoring forces The gravitational force W = mg works
against the buoyancy force B = gρV .

fG = J−11 (η2)

(
0
0
W

)
; fB = −J−11 (η2)

(
0
0
B

)
(25)

The restoring forces can be therefore represented by:

g(η) = −
(

fG(η2) + fB(η2)
rG × fG(η2) + rB × fB(η2)

)
(26)

brB is the position of the center of buoyancy.

Froude-Krylov forces The Froude-Krylov forces results
from differences of pressure, acting on the body surface
due to the flow rate vc of the surrounding air masses. The
Froude-Krylov forces can be expressed as:

τFK = MFK ν̇c (27)

MFK can be calculated with der inertia tensor and the
mass of the displaced air. Assuming a buoyancy neutral
airship and homogeneous mass distribution, the inerta
matrix MFK could be set equal to MRB .

Fixed fins and control surfaces The airship has three
by 120 degrees displaced stabilisation fins with control
surfaces. Each fin has its own coordinate system fi, whose
xi- direction is equal to the bodies x-direction. The control
surfaces can be rotated about an angle δi around its yi-
axis. [Campa and Innocenti (1999)] The rotation matrix
bRfi transforms the fin forces from coordinate system fi
to b.

bRfi = R−1x,(π/2+2πk/3)R
−1
y,δi

(k = 0, 1, 2) (28)

δi is null for all fixed stabilisation fins. The velocity of fin i
in relation to the wind flow, denoted in coordinate system
b, can be written:

bVFi/c = (bVb/c + bwb/c × bPFi) (29)

bPFi is the position of the i-te fin. bwb/c is the angular- and
bVb/c the translational- velocity part of the relativ airspeed
νr.

bVFi/c can be transformed into the fin coordinate system
fi as follows:

fiVFi/c = fiRb
bVFi/c (30)

The wind in y-direction of fi leads to no application of
force and can therefore be neglected. The angle of attack
αfi between the wind- and the fin coordinate system is
given through:

αfi = atan2(fiVFi/c(z),
fiVFi/c(x)) (31)

The positive x- axis of the wind w coordinate system shows
toward the relative velocity between fin and wind-current.
A transformation from the wind into the fin coordinate
system can be achieved with the matrix:
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fiRw =



cαfi 0 −sαfi

0 1 0
sαfi 0 cαfi


 (32)

Damping forces of fins are given in the wind coordinate
system:

wFFi = −1

2
ρA

(
CD
CC
CL

)
fiV TFi/c

fiVFi/c (33)

CD, CC and CL are aerodynamic damping coefficients.

The forces are transformed from w into the b coordinate
system:

bFFi = bRfi
fiRw

wFFi (34)

and leads to moments via the lever arm bPFi:

bMFi/b = bPFi × bFFi (35)

τFin can be devided into forces and moments caused by
the stabilisation fins DFin(νr) and the control surfaces
−DFin(νr, δ).

τFin = −DFin(vr, δ) +DFin(νr) (36)

=
4∑

i=1

(
bFFi(vr, δ)

bMFi/b(vr, δ)

)
+

4∑

i=1

(
bFFi(vr)

bMFi/b(vr)

)

Propulsive forces The airship is actuated by two main
gondola motors with propellers, witch could be vectored
(rotated about an angle α around the bodys y-axis). The
motor forces aFS and aFB points in x-direction from
coordinate system a. The rotation matrix bRa transforms
the motor forces from coordinate system a to b.

bRa = Ry,α (37)

bFS = bRa
aFS ; bFB = bRa

aFB (38)

The main gondula motor forces and moments can be
written as:

PS =

(
bFS

brS × bFS

)
; PB =

(
bFB

brB × bFB

)
(39)

brS and brB are the positions of the main gondula pro-
pellers.

The tail motor forces and moments acting upon the airship
can be written as:

PStern =

(
FStern

rStern × FStern

)
(40)

FStern and brStern are the tail motor force and its position.

Wind current The wind current points towards the x-
axis of w. One can transform the wind current from w
into the e coordinate system, by rotating about the angle
of attack αc and the angle of sideslip βc:

eVc = Ry,αcRz,−βc · wVc (41)

The transformation in the body coordinate system can be
achieved with J(η). The relative speed νr = ν − νc is the
speed between the airship (ν) and the wind velocity (νc).

2.3 The overall airchip model

The overall non-linear 6-DOF (degrees of freedom) model
of the airship has the following form:

(MRB +MA)ν̇r + CRB(ν)ν + CA(νr)νr (42)

+D(νr)νr +DFin(νr) + g(η) = τP +DFin(νr, δ)

η̇ = J(η) ν

3. DESING OF THE AIRSHIP CONTROL

A very good solution to handle all input/output variables
is to use a state-space controller. The airship is a non-
linear system. Therefore, we decided to use a nonlinear
gain-scheduling controller. A gain-scheduling controller
optimizes the linear state-space controller parameters to
various operating points of the airship. There exists many
design methods for linear state controllers. We choose an
LQR-based controller design, because of its relatively easy
implementation. However, LQR-controller designs are only
applicable for linear systems. Therefore, in a first step, the
linearization of the airship model is necessary. It is reason-
able to split the linearized model of the whole airship into
a lateral and a longitudinal subsystem. Each of them are
used to control some particularly motions. The control-
loop structures for lateral and longitudinal motions are
explained bellow. Moreover, the airship is a nonholonomic
6-DOF system. So, it is not possible to control it in every
direction with arbitrary orientation. The following control
system is at this time only designed without implementing
the tail fin control surfaces as controller inputs.

3.1 Linearisation of the airship model

Equilibrium points The nonlinear airship system can be
writtes as:

ẋ(t) = f(x(t), u(t)) (43)

An equilibrium point corresponds to a condition, at which
the dynamical system is in steady state.

0 = ẋ0 = f(x0, u0) (44)

Due to the complex aerodynamic data, the equilibrium
points cannot be found analytically. We use a numeric
optimization algorithm to find the equilibrium points
x0, u0 over the flight envelope. Therefor, a convex cost
function is minimized.

F = min = u̇0
2 + v̇0

2 + ẇ0
2 + ṗ0

2 + q̇0
2 + ṙ0

2 +

(ẋ0 − VGS)
2

+ ẏ0
2 + ż0

2 + φ̇0
2

+ θ̇0
2

+ ψ̇0
2

+ (45)

v0
2 + p0

2 + q0
2 + r0

2 + x0
2 + y0

2 + z0
2 + φ0

2 + ψ0
2

The scheduling-variable VGS specifies various speeds of the
airship in ẋ0 direction and so the flight envelope.

Linaerization With the derivations

x̃ = x− x0 ũ = u− u0 (46)

the system can be lineaized by using a multivariable Taylor
serie.
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˙̃x(t) ≈ ∂f

∂x

∣∣∣∣
x=x0;u=u0

x̃+
∂f

∂u

∣∣∣∣
x=x0;u=u0

ũ (47)

Were A = ∂f
∂x

∣∣∣
x=x0;u=u0

and B = ∂f
∂u

∣∣∣
x=x0;u=u0

are the

n× n and n×m Jacobi-matrices.

Because of the complex nonlinear data (aerodynamic
data), the linearization cannot be done analytically. The
numerical linearization can be done by perturbing each
state or input signal slightly from its equilibrium points.
The matrices A (and B) can be approximated as:

˜̇x1 − ˜̇x−1 = f(x0) + h
∂f

∂x

∣∣∣∣
x=x0

− f(x0) + h
∂f

∂x

∣∣∣∣
x=x0

(48)

A=
∂f

∂x

∣∣∣∣
x=x0

≈
˜̇x1 − ˜̇x−1

2h
(49)

The linear model of the airship can be expressed in a well-
known general state-space form:

˙̃x=Ax̃+Bũ (50)

y =Cx̃+Dũ (51)

C = I(12×12) (52)

D= 0(12×3) (53)

3.2 Lateral controller

The heading system is nonholonomic, because the yaw
angle can not be controlled without changing the airships
y position. The main purpose of the lateral system is to
control the yaw angle ψ. For this reason, the y position
is not included in the state vector: xH = v, p, r, φ, ψ. The
input variable is u = FStern. [Metelo and Campos (2003)]

The state and input matrices for the lateral sub-system
are extracted from the linearised model by using the new
state vector xH :

AH =

v p r φ ψ


a2,2 a2,4 a2,6 a2,10 a2,12
a4,2 a4,4 a4,6 a4,10 a4,12
a6,2 a6,4 a6,6 a6,10 a6,12
a10,2 a10,4 a10,6 a10,10 a10,12
a12,2 a12,4 a12,6 a12,10 a12,12




v
p
r
φ
ψ

(54)

BH =

FStern


b2,1
b4,1
b6,1
b10,1
b12,1




v
p
r
φ
ψ

(55)

The state vector deviation from the operating point is
given by:

x̃H = xH − xHd(0) =




v − v0
p− p0
r − r0
φ− φ0

ψ − ψ0 − (ψd − ψ0)


 (56)

The controlled input variable

Fig. 3. Closed-loop lateral system

ũH = −KH x̃H (57)

stabilizes the state space equation of the lateral system:

ẋH = AH x̃H +BH ũH (58)

In order to find the optimal controller parameters, the
quadratic cost criterion should be minimized:

J =
1

2

∞∫

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt = min

K
(59)

Therefore, the optimal controller parameters K can be
calculated by solving the Riccati equation for the matrix
P :

PA+ATP − PBR−1BP +Q = 0 (60)

K = R−1BTP (61)

The parameters qi > 0 from the weight matrix
Q = diag(q1, q2, . . . , qn) are weighting the associated
states. The parameters ri > 0 from the weight matrix
R = diag(r1, r2, . . . , rm) are weighting the associated in-
puts.

The closed-loop lateral system with state controller is
shown in Fig. 3.

All poles of the open-loop lateral system are stable. How-
ever, one of them is on the imaginary axis. The pole
location of the open-loop lateral system is shown is Fig. 4.

The weighting matrices Q = QT ≥ 0 with n = 5 and
R = RT ≥ 0 with m = 1 elements on the main diagonal
should be selected in such a way, to ensure, that the
output variable FStern does not saturate. Moreover, the
state variable (ψ − ψd) should converges faster to zero as
the others. This request can be realised through a larger
value for q5 in the weighting matrix Q.

Resulting poles of the closed-loop heading system with
LQR-controller are shown in Fig. 5. The step response for
the yaw angle is shown in Fig. 6.

3.3 Longitudinal controller

The longitudinal (XZ) control is dedicated to control the
state variables u and z. The gondola drives with propellers
are used as input variables. Similar to the lateral system,
the longitudinal system is not independent controllable in
all DOF. The yaw angle ψ affects the controllability of
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the x−position of the airship. Therefore, the state variable
x is not included in state vector for longitudinal control.
Moreover, the pitch angle θ is at the equilibrium points
not equal to zero. Thus, it is not reasonable to control
this angle to zero. Therefore, this variable is also not
included in the resulting state vector xXZ = u,w, q, z. The
input vector includes the forces, generated by the main
propellers. The input forces F (α) are splitted for control
purpose in an x and z direction u = Fx, Fz. [Metelo and
Campos (2003)]

F = FS + FB (62)

Fx = Fcos(α) (63)

Fz = Fsin(α) (64)

The linearized longitudinal state and input matrices are:

AXZ =

u w q z

a1,1 a1,3 a1,5 a1,9
a3,1 a3,3 a3,5 a3,9
a5,1 a5,3 a5,5 a5,9
a9,1 a9,3 a9,5 a9,9




u
w
q
z

(65)

and

BXZ =

Fx Fz

b1,2 b1,3
b3,2 b3,3
b5,2 b5,3
b9,2 b9,3




u
w
q
z

(66)

The primary controlled variables u and v are coupled,
because the flight speed u can affect the altitude z. Since
the LQR-controller has only proportional feedback, there
will result a not negligible error. By introducing an I-type
feedback, this error can be eliminated. For this purpose,
new state variables are defined:

x∫ = (x∫
u
, x∫

z
) =




t∫

0

u(τ)dτ,

t∫

0

z(τ)dτ


 (67)

The new state variables can be added to the existing
longitudinal state-space variables,

x̃XZ = xXZ − xXZd(0) =



u− u0 − (ud − u0)

w − w0

q − q0
z − z0 − (zd − z0)


 (68)

witch results in the following controlled longitudinal over-
all system:




˙̃xXZ
˙̃x∫

u

˙̃x∫
z


=




AXZ 04×2(
1 0 0 0
0 0 0 1

)
02×2






x̃XZ
x̃∫

u

x̃∫
z


 (69)

+

(
BXZ
01×2
01×2

)
ũXZ

The input signals are calculated as:
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Fig. 7. Closed-loop longitudinal system with additive I-
controller
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Fig. 8. Step response of the longitudinal system

ũXZ = −
(
K K∫

u
K∫

z

)


x̃XZ
x̃∫

u

x̃∫
z


 (70)

Fig. 7 shows the closed-loop longitudinal system.

The procedure for calculating the controller parameters
is similar to the lateral system. In this case, the state
variables u−ud, z−zd, x∫

u
and x∫

z
should be controlled

faster than the others. Therefore, the weighting coefficients
q1, q4, q5 and q6 of the matrix Q must be greater then
the values of q2 and q3, respectively. The resulting LQR-
controller is a 2× 6 matrix.

The values of integral-feedback gains can reach very large
values, if the airship has an unilateral error from the
desired flight path. Therefore, it is necessary to implement
an anti-wind-up saturation of these signals.

The step response of the longitudinal closed-loop system
for the output variable u is shown in Fig. 8.

3.4 Gain-scheduling controller

A linear controller can only guarantee stability in a short
range about the operating point, for which it was designed.
However, the airship should be controlled under all possi-
ble flight conditions. This can be realised by using a non-
linear controller.

A nonlinear gain-scheduling controller acts as a switch
between a lot of linear controllers. Each of them are
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Fig. 9. Parameters of the LQR-controller for lateral system

designed for a specific operating point. Operating points
are equilibrium points for a certain value of the gain-
scheduling variable s [Moutinho (2007)].

0 = f(x0(s), u0(s)) (71)

The gain-scheduling variable s for the airship is defined by
its speed. This speed corresponds to the x-velocity exyvrx
of the relative speed vr, transformed into XY plane of the
earth coordinate system:

exyvr =

( exyvrx
exyvry
exyvrz

)
= J1(φ, θ, 0) · vr (72)

The nonlinear airship model ẋ = f(x, u) is linearized at
all equilibrium points (Eq. 71.), given by various values
s(1), s(2), ...s(n) of the gain-scheduling variable s.

In this way, n linear systems are developed:

˙̃x=A(s)x̃+B(s)ũ (73)

ỹ =C(s)x̃ (74)

For each of the n linear systems, an LQR controllers K(s)
will be calculated:

ũ=−K(s)x̃ (75)

The controller parameters K(s) are then interpolated
between all equilibrium points. The interpolated controller
parameters K(s) are depending on the value of the gain-
scheduling variable s.

The graphs in Fig. 9. shows the calculated and interpolated
parameters of the LQR-controller for the lateral control
system.

It is easy to detect that there are some step changes in the
parameter values. These can lead to an instability of the
whole closed-loop system, if it is controlled between two
operating points with big changes in controller parameters.
As a solution we designed a checking algorithm, which
allows only to change the coefficients of controller param-
eters with limited range and so without step changes in the
scheduled controller coefficients. The step changes of the
controller coefficients are detected by using the derivation
of the controller coefficients curve. The following figure
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Fig. 10. shows the step responses of the designed lateral
gain-scheduling controller.

3.5 Navigation

The above described lateral and longitudinal control sys-
tems are not able to control the airship in all 6DOF, as it
is a nonholonomic and so a not fully controllable system.
Besides the yaw angle ψ, it must be also controlled the
altitude Ze and the speed u in Xb-direction. For flying
on an appropriate flight trajectory, the desired set values
must be proper generated for the controllers.

For this purpose we designed a navigation module, which
switches between the two operating modes of the airship -
steady state control and point-to-point flight. The point-
to-point control is used to flight to a new target point. In
this mode, the lateral control system is used for adjusting
the airship orientation towards the desired set position.
The longitudinal system controls the desired speed u and
desired Ze position of the airship. The desired speed u
is increased, if the control deviation of the orientation
decreases. If the airship is nearby the target point, the
steady state control mode is activated. In this mode, the
maximal speed of the airship is limited and decreases
with decreasing distance to the target point. This strategy
prevents the airship to do very ineffective maneuvers in the
neighbourhood of the set position. Moreover, the airship
can flight backward to the target position in this mode
[Metelo and Campos (2003)].

Combining these strategies yields to a complex motion
control for the airship. Fig. 11. shows simulation results of
a typical airship flight with take-off, movement on a linear
and circular composed trajectory with constant altitude
and landing [Moutinho (2007)].

4. CONCLUSION

In this paper we presented the design procedure for a
gain-scheduled LQR controller for an autonomous airship.
Two types of control sub-systems (lateral, longitudinal)
have been designed from the nonlinear 6DOF airship
model to fulfill different goals (yaw as well as speed
and position control). The navigation system generates
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Fig. 11. Spline trajectory with gain-scheduled LQR-
controller

appropriate inputs for the controllers of both sub-systems
and combines them to a complex control unit, witch
allows the airship to follow an adequate flight trajectory.
Simulations shows a good performance of the designed
control system, which will be tested on the real airship
in near future.
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Abstract: In this paper we present experience gathered in our work on UAV design. UAVs (Unmanned 

Autonomous, or Aerial Vehicles) are radio controlled flying vehicles, e.g. airplanes equipped with RF 

communication systems, cameras and sensors (e.g. accelerometers, gyros, temperature and pressure 

sensors, a GPS module etc.) enabling to be capable of autonomous flight. Currently UAVs are mostly used 

in the military area to safely watch areas of potential risk without endangering the lives of people 

otherwise needed to provide information on such areas. Lately UAVs have begun to make their way into 

civil applications as well. Possible uses include monitoring of forest fires, following fleeing suspects by 

the police, scanning of ground surface to create maps on a local level and so on, or simply for fun. 



1. INTRODUCTION 

In this paper we present our achievements gain so far in 

approximately 3 year experience. Our goal is to 

design hardware and software architecture for a fully 

autonomous UAV capable of flying to its destination to carry 

out some task (e.g. to gather visual information) and safely 

returning without the need for user interference. 

2. CONSTRUCTION AND ELECTRONICS 

We chose a standard model RC (Remotely Controlled) plane 

made of balsa and plywood. This means that it is light but 

also strong enough to survive vibrations generated by the 4 

horsepower, 2-stroke combustion engine. The total weight is 

around 4.5 kilograms (including electronics) and it is possible 

to add another 0.75 kilogram load and still maintain stable 

flight conditions. 

The plane electronics is powered by two Li-Pol batteries (one 

for the main system and the other for the servomotors). The 

star architecture is centred around the main 32-bit PIC 

(Peripheral Interface Controller) microcontroller. Other 8-bit 

PICs whose purpose is to collect and process data from 

sensors are connected to it. The reason for this architecture is 

distribute the A/D conversion time, whereas the main μC can 

be used for other necessary calculations. The main advantage 

of this architecture is that the main μC can work without 

having to wait for its peripheral circuits to finish a conversion 

from the analogue sensors. Another advantage is the ease 

possibility of adding additional system components since the 

computing power of the main μC is never fully used. We 

prepared our PCB (Printed circuit board) designs to be able to 

add more electronic equipment if needed. XBee RF 

communication modules compliant with IEEE 802.11 

standards are used for wireless communication with the 

model. The control station is composed of a laptop, joystick 

to control the aircraft and of the XBee RF communication 

module. 

 

 
 

Fig. 1. Hardware architecture 
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3. UTILITY SOFTWARE OF THE GROUND STATION 

 

The utility software gives the pilot all the necessary 

information he needs to pilot the plane. This includes a video 

feed from the on-board camera, acceleration in X, Y and Z 

axes, roll and pitch indication is also present. Also the 

joystick calibration will be available, as well as the fuel level 

indication and battery charge status. Our goal is to make GUI 

as simple and intuitive as possible so that the pilot can fully 

concentrate on controlling the aircraft. 

4. COMMUNICATION 

 

Communication between ground station and the plane is 

performed via XBee RF modules at a 115 200 baud per sec. 

data rate. Communication runs on 868 MHz frequency. Each 

of the modules has its role in the network. One acts as 

coordinator (ground station), the other as end-device 

(plane).The coordinator works in a broadcast mode so it does 

not require acknowledgement messages from the end device 

since they are not needed because minor data dropouts are 

acceptable. This further increases communication speed. 

Before the network is established, the coordinator finds the 

most suitable channel and sets a PAN ID (Personal Area 

Network) specific only to this network. The end device then 

scans for coordinator networks and associates only with the 

one with a specific 64-bit address. This ensures no other 

coordinators interfere with our communication. 

 

5. PRIMITIVE AUTOPILOT 

 

From the GPS module we get the following data: 

 - Latitude 

 - Longitude 

True course in degrees is calculated using the following 

formula: 

 

 
 

Where ‘Lat1’ and ‘Lat2’ are gathered directly from the GPS 

module (‘Lat1’ being the last known latitude and ‘Lat2’ the 

current latitude value) and ‘d’ is the great circle distance. 

This is the shortest path between two points on a sphere, in 

our case the globe. 

 

 
 

Fig. 2. Great circle distance (‘d’) 

 

From the gathered data we can calculate out true heading. 

The waypoint heading is a constant telling the autopilot 

where to steer the aircraft. 

 
 

Fig. 3. Waypoint heading calculation 

 

 

The flight direction deviation is counted as: 

 

Error = waypointHeading – trueHeading.   

if (error >= 180) error = error - 360;  

if (error <= -180) error = 360 + error;  

PolohaServa = stred - error; 

 

The variable PolohaServa sets the turning of the direction 

flaps on the tail of the plane, to turn the whole plane to the 

desired course. 

6. SENSORS 

6.1 GPS module 

Our GPS module has an RS-232 output with 4800 baud per 

sec. communication speed. The data refresh rate is 1 Hz. 

GPGGA is the protocol we use. The output data consists of 

15 blocks, proceeded by a synchronization symbol ‘$’, and a 

comma separating each data block. The data structure is: 

 

$GPGGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,

M,x.x,xxxx*hh 
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1    = World time 

2    = Latitude 

3    = North/South 

4    = Longitude 

5    = East/West 

6    = GPS signal quality indication 

7    = Number of satellites 

8    = Horizontal spacing 

9    = Altitude (above sea level) 

10   = Unit (meter) 

11   = Altitude (geoid) 

12   = Unit (meter) 

13   = Time of last refresh 

14   = ID#    

15   = Checksum 

 

6.2 Accelerometers and gyroscopes 

To get values for pitch, roll and acceleration we use a 

CHAR6D module. 

 

 
 

Fig. 4. CHR-6d module 

 

The CHR-6d is a 6-axis IMU, combining three accelerometer 

axes and three rate gyro axes in a .8" by .7" footprint. An 

onboard ARM Cortex™ processor samples and filters gyro 

and accelerometer outputs and sends results over a TTL 

(3.3V) UART. 

 

Data Outputs 

 3-axis roll rates (+/- 400 deg/s) 

 3-axis acceleration (+/- 3 g) 

 Pitch and roll angles 

 16-bit effective measurement resolution (after 

oversampling and decimation) 

 

Features 

 Configurable digital filter (windowed Parks-

McClellan FIR) 

 Onboard EKF for pitch and roll angle estimation 

 Automatic bias calibration 

 High bias stability over temperature 

 Adjustable output rates (20 Hz - 300 Hz) 

 TTL (3.3V) UART interface 

6.3 Ultrasound sonar 

We added sonar oriented towards the ground to assist while 

landing because the camera is mounted on top of the plane 

making it hard to perform a visual landing since you cannot 

always see the ground. The range is circa 8 meters and 

refresh rate is around 14 Hz. 

 

 
 

Fig. 2. Sonar radiation 

 

6.4 Prandtle probe 

To measure flight speed of aircraft Prandtl probes are used 

enabling to measure flow velocity of liquids, in our case 

plane velocity with respect to surrounding air. It is based on 

measuring difference between the total pressure and the static 

pressure of flow in a point of flow streamline. The velocity 

meter in central part of Prandtl probe flow velocity is brought 

to zero isentropically. With velocity equal to zero measured 

pressure equals to the total pressure. On outer part of probe 

where the flow streamlines are tangent the flow velocity is 

not changed and the pressure measured on that part is called 

the static pressure. The difference between the total and the 

static pressure in one point of flow streamline is called 

dynamic pressure. The dynamic pressure represents kinetic 

energy of the flow. 

 

 
 

Fig. 3. Measurement principle 

 

Flow velocity can then be calculated. 

 

For ideal gas:  

 

For real airflow: 

  

 

These equations work only for speeds lower than the speed of 

sound. 
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Fig. 4. Speed measurement characteristic for ideal gas (green) 

and real gas (blue) 

 

The Prandtl probe is capable of measuring speeds up to 

100 m/s. This means dynamic pressure up to 6 kPa. The most 

suitable pressure sensor to measure such values has proven to 

be MPXV4006G. This is a piesoresistive pressure sensor 

with integrated temperature compensation. 

 

 

        

 
 

Fig. 5. MPXV4006DP pressure sensor diagram and case and 

module architecture 

 

Sensor output is an analogue signal from 0.2 to 4.7 Volts. 

Thus, the measurement sensitivity is 766 mV/kPa. For a 

proper pressure measurement we needed to design 

appropriate filtering and A/D conversion. 

 

 

 

 

 

 

7. PROBLEMS AND SOLUTIONS 

7.1 Parachute 

Since in the development of the flight control system one has 

to consider potential problems that could lead to serious 

malfunctions, the aeroplane should be equipped with a 

parachute safety system. In the case of uncontrolled 

movement it should automatically start its activity and to 

assure sufficiently damped landing. 

Before choosing the appropriate type of parachute 

we need to put together some basic data. This includes:  

- Max falling speed 

- Weight of the plane + weight of the parachute 

itself 

- Density of air 

- Max limit for oscillation 

- Deployment speed 

 

There are two possible choices for the parachute shape. One 

is a more stable cross-chute and the other a cone-shaped 

chute that is more prone to oscillations but has a higher air 

resistance constant. 

 
 

Fig. 8. Cross chute 

 

Air resistance constant = (0.6 – 0.85) 

Deployment force constant = (1.1 – 1.2) 

Oscillation = (0° -  3°) 

 

 
 

Fig. 9. Our parachute 

 

Air resistance constant = (0.75 – 0.9) 

Deployment force constant = (1.8) 

Oscillation = ( 10° -  35°) 
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Equations needed: 

- Brake force  

 

- G-force  

 
 

- Falling speed  

 
 

- Surface area  

 
 

- Diameter after deployment  

  

 

Where: 

- C – resistance constant 

-  – air density 

- g – gravitational force constant 

The parachute test proved that our calculations were correct, 

at 5 m/s windspeed we measured a force of roughly about 50 

Newtons. This means it is possible to use this parachute as a 

backup landing system in case of emergencies or lack of 

landing space. 

7.2 Communication fault protection 

In case of interrupt of communication, the plane could 

become a hazard for surroundings. To prevent such 

situations, if communication is interrupted, the flaps are 

extended to the maximum possible position so the plane is 

forced in a corkscrew motion sending it directly to the ground 

instead of flying off to a populated area. Also to prevent 

damage to the plane and/or injuries to anyone standing 

beneath the falling plane the safety parachute deploys after 

entering communication fault mode. This ensures a softer 

landing. 

7.3 Vibrations problems 

The most serious problem solved so far is caused by 

vibrations generated by the engine. These are detected by 

accelerometers and; in fact, they are so strong that it does not 

produce any relevant data. The problems are caused by a 

number of factors, which include: 

- Combustion of fuel in the engine cylinder. 

Since the piston and everything connected to it 

have some momentum, combustion of fuel 

causes a force, which forces the engine in the 

opposite direction of piston movement. This is 

the cause of Z-axis vibrations. 

- Rotation axis vibrations are caused by 

compression and decompression of gasses in the 

engine cylinder. This effect causes mild 

deceleration and acceleration of the propeller 

thus transferring force into the body of the 

plane. 

The CHR6d module (described in section 6.2) oversamples 

and decimates the ADC data on all channels to reduce 

quantization noise and increase the effective ADC resolution 

to 16 bits. After decimation, sensor data is processed using a 

configurable Parks-McClellan window FIR (Finite Impulse 

Response) low-pass filter. The corner frequency of the filter 

is independently adjustable for each channel from 10 Hz to 

140 Hz in 10 Hz increments. 

FIR (Finite Impulse Response) filters represent one of two 

primary types of digital filters used in Digital Signal 

Processing (DSP) applications. FIR filters sometimes have 

the disadvantage that they require more memory and/or 

calculation to achieve a given filter response characteristic. 

Also, certain responses are not practical to implement with 

FIR filters. 

 

 
 

Fig. 6. Block diagram of a simple FIR filter 

 

Tap - A FIR "tap" is simply a coefficient/delay pair. The 

number of FIR taps is an indication of: 

1) The amount of memory required to implement 

the filter 

2) The number of calculations required 

3) The amount of "filtering" the filter can do 

 

In effect, more taps means more stop band attenuation, less 

ripple, narrower filters, etc. 

 

The measurement was done for idle thrust of the engine (25 

rps/ 25 Hz). The body of the plane was placed on a fixed, 

rigid base. During measurement we adjusted values of the 

low-pass filter and tap value. These values were set to 140Hz 

for the filter and 8 taps during the first part of measurements 

and 10Hz 64 taps for the second part. 

There is a very noticeable reduction of interference after the 

second setting on both the accelerometers and gyros. 
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Fig. 7. Accelerometer measurement 

 

 
 

Fig. 8. Gyro measurement 

 

Pitch and roll angles are calculated using an extended 

Kalman filter, which is a comoponent of the sensor module. 

Even after filtration there is some interference. This can be 

caused by imperfection of the whole system (accumulated 

vibrations in the hull, irregular operation of the engine etc.). 

The basic theory behind the filter is this: if the sensor is not 

accelerating, then the onboard accelerometers can be used to 

detect gravity and (hence) estimate pitch and roll angles.  In 

general, however, the sensor might be moving around and 

vibrating, so that in the short term, the accelerometers can't 

be trusted. This is where the rate gyros come in. MEMS 

(Microelectromechanical systems) gyro output is angular 

velocity. In order to get pitch and roll angles we need to 

integrate this velocity. Since rate gyros are less sensitive to 

acceleration, they can be used to estimate changes in pitch 

and roll in the short term. But angle estimates produced by 

rate gyros tend to drift over time. The onboard Extended 

Kalman Filter is used to combine accelerometer and rate gyro 

measurements in a way that removes long-term drift, and that 

removes the negative effect of transient vibrations. In 

practice, a tradeoff must be made between trusting the rate 

gyros and trusting the accelerometers. When the filter trusts 

rate gyros more, it is less sensitive to acceleration and more 

sensitive to nonzero gyro biases. On the other hand, if the 

filter trusts accelerometers more, it is more sensitive to bad 

acceleration, and less sensitive to nonzero gyro biases.  

To get the plane’s absolute position we need to avoid long-

term double integration of acceleration values (leading to 

increasing relative position value errors) by using acquired 

GPS position data in our calculations. By fusing this data 

together we get all the information about the plane’s velocity 

and absolute and relative position we need. 

On the CHR6d, the Extended Kalman Filter is tuned by 

adjusting the process variance. If the sensor were mounted on 

a rotorcraft, for example, the process variance could be set 

very low to reduce the effect of vibrations. 

 

8. CONCLUSION 

 

UAV development is directly tied with multiple disciples; 

mathematics, physics, engineering, telecommunication, IT 

and many others. The project is conducted in order to achieve 

fully autonomous flight equipment with no input from 

humans. In proposing solutions, we note the aircraft hazard to 

people in case of errors. 

We emphasize on the criterion of real-time, safety and 

transfer the event of failure on backup safety systems. 
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Abstract: The presented paper deals with the experimental and theoretical work related to mcl-PHAs 
biopolymer production process using fed-batch cultivations of the bacterium Pseudomonas putida 
KT2442. The focus is on the definition and identification of process states in the form of physiological 
situations relevant to intracellular biopolymer production as well as the design of appropriate process 
control strategies. 

 

1. INTRODUCTION 

Polyhydroxyalkanoates (PHAs) are microbial polyester 
polymers synthesized by numerous bacteria as carbon and 
energy storage material. These polymers are deposited 
intracellularly in the form of inclusion bodies and can amount 
up to 90% of dry weight of cells. PHAs belong to promising 
candidates for biodegradable plastics and elastomers of 
industrial interest and of environmental value. Potential fields 
of their application include e.g. drug delivery, bone 
replacement applications, etc.  

PHAs are in general classified in two major classes: short-
chain-length PHAs (scl-PHAs) with C4-C5 monomers and 
medium-chain-length PHAs (mcl-PHAs) with C6-C14 
monomers. At present, only few PHAs, typically from the 
structurally simpler class of scl-PHAs are industrially 
produced. Especially in the case of the more complex mcl-
PHAs the disadvantage of the high production cost has 
prevented its wide use despite their promising properties.  

Even though fermentation processes were developed 
employing different kinds of bacteria to improve PHA 
productivity there is still considerable room for further 
improvements, including the area of process control. The 
work done in this field by ICTP Prague has been 
concentrated on the development of a physiological state 
control approach for the production of mcl-PHAs 
biopolymers by cultivation of the Pseudomonas putida 
KT2442 strain. 

2. MATERIALS AND METHODS 

The inoculum (bacterium Pseudomonas putida KT2442) for 
fed-batch cultivations was prepared at 30 °C in shaking flasks 
in a rotary incubator (incubation duration: 16-18 h).  The 
fed-batch cultivation conditions were as follows: temperature 
at 30 °C, pH = 7, stirrer speed 900 min-1, air flow 9.5 l.min-1. 
Base (14% NH4OH) and acid (17% H3PO4) solutions were 

added to the cultivation medium to control pH. Following the 
initial batch phase octanoic acid was continually supplied as 
carbon source using feeding strategies described further in 
the text. 

All cultivations were carried out in a 7-litre laboratory 
bioreactor (newMBR). The bioreactor was equipped with an 
IMCS 2000 analogue control unit, a programmable logic 
controller and the proprietary Biogenes II control system. The 
dissolved oxygen tension was measured by an oxygen probe 
(Mettler Toledo); the oxygen and carbon dioxide 
concentrations in the off-gas were measured by SERVOMEX 
1100 and 1440 analysers, respectively. For the substrate 
supply to the bioreactor a DP200 peristaltic pump (New 
Brunswick) was used. Control variables feeding rate, acid 
and base were also recorded. 

The capacitance measurement reflecting the amount of live 
biomass in the bioreactor was carried out by an Aber 
Biomass Monitor 210 (Aber Instruments Ltd., UK) operating 
in scanning mode and equipped with a highly sensitive four-
annular ring probe AberProbe. The measuring device 
measured both the capacitance spectrum and the capacitance 
difference (ΔC=C(0.47 MHz)-C(15.65 MHz)). Biomass 
concentration in the bioreactor was determined off-line 
gravimetrically as dry cell weight. 

The intracellular PHA content was also determined 
gravimetrically. Biomass for PHA gravimetric determinations 
was prepared by centrifuging samples (50 ml). The pellet was 
washed three times with deionized water and lyophilised. 
PHA was extracted from the lyophilised cells by Soxhlet 
extraction with hot chloroform (150 ml) for 24 h. Excessive 
chloroform was then distilled off to obtain cca 5 ml residue. 
PHA was subsequently precipitated in 10 volumes of cold 
methanol. The precipitated polymer was separated by 
decantation, the solvent evaporated to dryness and the 
purified PHA was then weighed. 
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In order to characterize quantitatively the process of 
biopolymer accumulation in the cultivated bacterial cells, 
several new variables computed from off-line analyses of 
PHA and biomass concentrations were introduced. Besides 
standard cumulative productivities and yields of biomass, 
residual biomass and PHA, there are specifically: 

the specific PHA synthesis rate based on the amount of 
residual biomass - qPHA(Xr), defined as (dPHA/dt)/Xr 
(g PHA . g Xr-1 . h-1), 

the specific PHA synthesis rate based on the amount of PHA 
- qPHA(PHA), defined as (dPHA/dt)/PHA (g PHA . g PHA-1 
. h-1). 

The specific PHA synthesis rate based on the amount of PHA 
has been found to be particularly useful for the evaluation of 
the PHA production process and the definition of individual 
physiological situations (see Figures 1 and 2). 

3. RESULTS AND DISCUSSION 

3.1 Definition of physiological situations 

From the standpoint of industrial operation it is important to 
note that the type of metabolism used by the cultivated 
microorganism for the processing of substrates has decisive 
impact on process performance measured by indicators like 
productivity and yield. Therefore the design of bioprocess 
control strategies has to be focused not only on the issue of 
cell environment control but should ideally also aim at the 
control of the cell physiology itself. This issue has been 
addressed by the introduction of a control concept referred to 
as physiological state control by Konstantinov and Yoshida 
(1989). In contrast to conventional control strategies 
operating in closed loop in respect to the cell environment, 
the physiological state control scheme creates a closed loop 
in respect to the cell state. Consequently the environment is 
not a goal but a tool for manipulating cell physiology. 

First step in the design of a control scheme based on the 
concept of the physiological state control is thus the 
definition and subsequent classification of bioprocess states 
related to the physiology of the cultivated microorganism – 
referred to as physiological situations. In the presented case 
this approach is demonstrated using the experimental data 
from two cultivations carried out in the Bioprocess Control 
Laboratory at ICT Prague (named Experiment 100210 and 
Experiment 100513). 

Although the final classification was done for the process of 
fed-batch cultivations of the strain Pseudomonas putida 
KT2442 grown on octanoic acid for production of mcl-PHAs 
biopolymers, it is also valid for all fed-batch processes which 
use toxic substrates and where precise carbon source feeding 
is necessary. 

The physiological situations are defined according to the 
feeding quality with respect to the state of the cells 
themselves (see Table 1). 

 

Name Description Definition 

BATCH 
Batch or Return 

from 
Overfeeding 

Fm = 0, DO ↓, DO 
spectrum I 

OPT 

Optimal feeding 
(optimal growth 

with optimal 
substrate 

utilization) 

Fm > 0, DO ↓, DO 
spectrum II 

OF 

Overfeeding 
(growth 

inhibited owing 
to excessive 

substrate 
concentration) 

Fm > 0, DO ↑, DO 
spectrum I 

UF 

Underfeeding 
(growth limited 
owing to lower 

substrate 
concentration) 

Fm > 0, DO ↑, DO 
spectrum II 

DOLIM DO limitation 2 % < DO < 10 %, 
CO2 ↑ 

DOZER DO zero or DO 
near zero value DO < 2 %, CO2 ↓ 

Tab. 1. Physiological situations definitions (Fm – carbon 
source feedrate, CO2 – carbon dioxide offgas concentration, 
DO – dissolved oxygen concentration, DO spectrum I, II – 
different spectra of the dissolved oxygen concentration 
signal) 

Two different DO limitation situations were introduced, 
because different DO limitations were observed to have 
different effect on cell growth and PHA production 
respectively. The situations can be estimated on-line from the 
carbon source feeding rate Fm and the trends of DO and CO2 
variables. 

In the two above mentioned experiments 100210 and 100513 
the physiological situations were identified as follows from 
Table 2 and Table 3 and depicted in Fig. 1 and Fig. 2. 

 

Cultivation Time (min) Physiological Situation 
0-250 BATCH 

255-405 OPT 
405-565 OF 
565-750 BATCH 
750-790 UF 

790-1180 OPT 
1180-1380 UF 
1380-1440 OPT 
1440-1580 UF 
1580-1660 OPT 
1660-1850 DOLIM 
1850-2040 DOZER 

Tab. 2. Physiological situations - Experiment 100210 
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Cultivation Time (min) Physiological Situation 
0-320 BATCH 

320-420 OPT 
420-520 OF 
520-600 BATCH 
600-650 UF 

650-1560 OPT 
1560-2070 DOZER 

Tab. 3. Physiological situations - Experiment 100513 

From Figures 1 and 2 it can be seen that optimal situation for 
mcl-PHA production according to the specific PHA synthesis 
rate based on the amount of PHA - variable qPHA(PHA) – is 
Optimal feeding, during which this variable is increasing. On 
the other hand this variable is decreasing in Overfeeding and 
also Underfeeding situations, not to mention DO limitations. 
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Fig. 1. Physiological situations during Experiment 100210 
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Fig. 2. Physiological situations during Experiment 100513 

Both experiments were also visualized and analysed in the 
3D space of the first three principal components (see Figures 
3 and 4). These components were computed using Principal 
Component Analysis (PCA) from nine selected physiological 
variables (specific uptake/production rates and rate ratios), 
without significant loss of information about the process. The 
selected variables are all of the ratio type and were chosen 
from the complete set of computed physiological variables to 
eliminate the time trend effect on the fermentation trajectory 
depiction in the PCA space. 

It can be observed that during fed-batch cultivations the 
fermentation goes through different physiological states 
(points in the space) even if it remains in the same 
physiological situation, as e.g. Optimal feeding. 

Summary of the results of both experiments is presented in 
Table 4. 

Experiment: 100210 100513 
Cell concentration 

(g⋅l-1) 64.53 42.34 

PHA concentration 
(g⋅l-1) 33.26 25.50 

PHA content 
(%) 54.94 65.19 

Overall PHA yield 
(g⋅g-1) 0.48 0.56 

Overall PHA productivity 
(g⋅l-1⋅h-1) 3.36 3.67 

Tab. 4. Experimental Results – Summary of attained maxima 

 

Fig. 3. Physiological situations during Experiment 100210 
(PCA) 
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Fig. 4. Physiological situations during Experiment 100513 
(PCA) 

 

3.2 Process control strategies 

Microbial bioproduction processes are traditionally mostly 
operated in fed-batch mode capable of achieving high-cell 
density cultures in an efficient way. The key issue related to 
the design of such processes is the choice of suitable 
substrate feeding strategies to control key nutrient 
concentrations, being in most cases the carbon source. The 
ideal solution, i.e. control strategies based on a direct 
measurement of the particular key nutrient concentration, is 
in many cases not feasible due to the limited availability of 
the necessary analytical devices. The carbon source used in 
the mcl-PHAs fed-batch bioproduction - octanoic acid - is a 
typical example of such a case, where sensor system suitable 
for routine on-line measurement of its concentration is not 
readily available. A common solution to this problem is often 
the use of predetermined exponential feeding profiles, i.e. 
feeding recipes calculated apriori from historical data with 
the aim to achieve a prescribed cell growth rate. However, 
the main drawback of this approach is its lack of flexibility 
vis-a-vis unexpected process events, since it cannot 
compensate for process disturbances that may severely affect 
the cell physiology. More appropriate are therefore control 
strategies where the key nutrient feeding is based on cell 
physiology, typically via one or several physiological 
variables that are calculable or even directly measurable on-
line. 

Specifically for the mcl-PHAs fed-batch bioproduction 
process, two such new process control strategies for the 
phases of optimal cell growth (CER agent) and oxygen 
limitation (DOPID) respectively have been designed and 
implemented. 

CER Agent - control strategy description 

• carbon-source (octanoic acid) feeding strategy based 
on CO2 evolution (production) rate CER (Eq. 1). 

• 

sourceCCO
CER

CER

Y
k

CERkratefeedingsourceC

−

≈

⋅=−

2

1where

__
         (1) 

• based on similar strategy applied by Sun et al. 
(2006) in high-cell-density fed-batch cultivation of 
P. putida KT2440 with glucose as the carbon source 

• contrary to common feeding strategies based on 
predetermined exponential feeding profile this 
strategy is able to adjust the feeding profile in 
response to the variability of individual bacterial 
cultures 

• using this strategy both high mcl-PHAs 
concentration and content have been achieved 

• the strategy can be tuned by just one parameter - 
kCER, which is adjusted by process operator using a 
process state classification scheme (based on CO2, 
DO online measurements and carbon-source feeding 
rate), automation of this adjustment strategy is 
envisaged. This new classification scheme turned 
out to be better (more robust and easier to 
implement on-line) than the classification scheme 
based on the so called “obesity quotient” studied 
previously (Hrnčiřík et al. 2010). 

 

 

 

Fig. 5. Cell growth controlled by the CER agent strategy 
(Experiment 100210, Fm = substrate feeding rate, DCW = 
dry cell weight, PHA content = intracellular biopolymer 
content) 
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DOPID - control strategy description 

• carbon-source (octanoic acid) feeding strategy based 
on dissolved oxygen (DO) concentration 

• aiming to stabilize the DO level above critical 
values to avoid excessive carbon-source overfeeding 
that might lead to inhibiting accumulation of the 
carbon source (octanoic acid) in the cultivation 
medium 

• switched to from the CER agent strategy after 
oxygen limitation sets in (at approx. DO=15%) 

• implementation by a standard PID control loop 

• oscillatory behaviour of the controlled variable (DO) 
serves as an immediate indicator of an adequate 
feeding level 

 

 

Fig. 6. Process control during the oxygen limitation phase - 
DOPID strategy (Experiment 110317, DO = dissolved 
oxygen concentration, Fm = substrate feeding rate) 

3.3 Conclusion 

Using these strategies in combination with the classification 
of physiological situations it was possible to maintain the 
process in the optimal feeding regime just on the border 
between underfeeding and overfeeding situations, thereby 
bringing about the optimal exploitation of cell growth 
potential and PHA production capacity. 
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Abstract: The paper considers identification problem of linear dynamic object based on real interpolation 
method. It is provided the solution of raised problem that gives formalized algorithm for structure and 
parameters definition using as input data step-response function. Suggested approach gives possibility to 
build transfer function of analyzed object with pre-determinate level of relevant error in time domain. 
Numerical example is provided.

Keywords: Identification, transfer function, real interpolation method.



1. INTRODUCTION

Identification problem plays significant role in automation 
control system design, operation and diagnosis. Mathematical 
model type and plant parameters determination enables to 
design and adjust controllers with a high accuracy, to create 
self-tuning systems etc.

It is convenient to use transfer functions for describing
mathematical models of linear object. In this case 
identification problem consists of two subtasks. The first one
is called structure identification and includes mathematical 
model structure determination, in particular, polynomial 
degrees determination of transfer function numerator and 
denominator. The second subtask is parametric identification. 
It includes transfer function coefficients definition of given 
structure.

For the case, when the dynamics of an analyzed object could 
be described with the help of linear differential equations, 
there exist quite a large number of solutions for identification 
problem (Hildebrand et al. 2007), (Agüero et al. 2010) and 
(Liu et al. 2010).

Real interpolation method showed high efficiency in 
parametric identification problem solution. However there is 
no formalized and algorithmically efficient solution of 
structure identification problem within this method. For 
example, in the work (Rudnitsky et al. 2008), the single 
structure according to Ishlinsky rule is chosen for all plants. 
Such approach introduces excessive redundancy in case of 
objects identification, which is described by low order 
differential equations, and do not allow reproducing specific 
characteristics of 4th and higher order objects behavior. In the 
paper (Antropov et al. 2004) it is offered to identify transfer 
function structure by enumerative technique, starting from 

the first order object with the further increase of denominator 
and numerator polynomial orders. The order is increasing 
until error in a time domain reaches specified level. Such 
approach is rather effective, but it is desirable to reduce 
number of considered variants of transfer function structures. 

The main goal of this paper is to suggest more efficient 
algorithm for structure identification of transfer function such 
as degree orders of numerator and denominator using step 
response function as input information. The raised problem 
requires decreasing number of iterations in case of 
enumeration of structure parameters such as degree orders of 
numerator and denominator.

In the paper is considered new approach for structure and 
parametric identification, which is based on real interpolation 
method.

2. BASIS OF REAL INTERPOLATION METHOD

It is known that signal images could be obtained on the basis 
of appropriate real transformation, based on the direct 
Laplace transform formula

0

( ) ( ) ,


  ptF p f t e dt (1)

where ( )f t is an original function, ( )F p – Laplace 

representation of given function,   p j – complex 

transformation variable. There are several important things 
from point of mathematical description and automation 
control system design. Functions ( )F p are images and 

therefore their usage is more preferable in contrast with time 
functions ( )f t . For instance, time function differentiation 

operation ( )f t in the Laplace domain, corresponds to 
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function multiplication operation in case of zero initial 
conditions ( ) { ( )}F p L f t by variable p. Integration in the 

original domain corresponds to the division of function
( )F p by variable p .

Taking into consideration the fact that real interpolation 
method operates in a real domain, the formula of such 
transformation could be obtained by replacement of
transformation complex variable p for real  in the 

expression (1)

0

( ) ( ) .


  tF f t e dt (2)

The most important moment when describing automation 
control system from mathematical point of view while 
obtaining the result of expression (2) is the lack of imaginary 
unit. Conditions of function ( )F existence and uniqueness 

are defined by integral convergence (2). Therefore variable δ
is constrained:

0

( ) ( ) , [ , ), 0.tF f t e dt C C 


    (3)

Expression (3) is a formula of direct integral real 
transformation or δ-transformation.

In application to linear automation control system, when 
( )f t represents its dynamic characteristic of plant, 

convergence (3) is provided by choosing an appropriate 
parameter C value. For stable system with an impulse step 
response C may be assumed as 0.

In literature (Goncharov 1995) this method is known as real 
interpolation method (RIM)

3. PARAMETRIC IDENTIFICATION OF DYNAMIC 
OBJECT

To obtain image functions ( )F by time functions ( )f t it is 

possible to use the method, which is based on direct δ-
transformation formula (3). This method of obtaining 
mathematical description of signals is convenient to use in 
case when original function ( )f t in analytical form is known 

or such function could be obtained by means of experimental 
tabular data interpolation.

In the general case function ( )W can be obtained on the 

basis of transfer function definition, as output signal image 
( )W to input signal image ( )X ration (in case of zero 

initial conditions)

0 0

( )
( ) ( ) ( )

( )
 



 
    t tY

W y t e dt x t e dt
X

. (4)

The «input-output» correlation takes on a standard form 
( ) ( ) ( ).  Y W X

The most suitable form of function approximation on infinite
intervals of an argument changing is fractionally rational 
representation of the following type

1
1 1 0

1
1 1

...
( ) ,

... 1

  


  







   
 

   

m m
m m

n n
n n

b b b b
W n m

a a a
. (5)

The possibility of obtaining real function, based on 
expression (4) creates favorable preconditions for solving
practical and research problems while designing automation 
control systems via RIM. Realization of these facilities using 
computers demands transition from analytical expressions to 
numerical sequences, with further transition from one form of 
representation to another.

For this aims it is offered in RIM to implement continuous 
functions ( )F discretization, performing their following

restoration in continuous form with the help of interpolation. 
For real function ( )F , [0, )   , in a node system  i , 

1, 2,3...i a set of values ( ) iF , 1,i is formed, where η

– numerical characteristic dimension:

1 2{ ( )} { ( ), ( ),..., ( )}    iF F F F . (6)

It is necessary to define the disposition interval and 
distribution law, when choosing the interpolation nodes. In 
general case this task do not have any exact solution, 
therefore uniform distribution law of nodes is used very 
frequently. Coverage of the domain where the most essential
changes for function ( )F happen is a requirement made to 

the interval 1[ , ]   .

In the general case, when the inequality m n is hold for the 
polynomials order of a numerator m and denominator n of 
function (5), then for  node estimation the following 

equation is considered:

( ) (0,1 0,2)[ (0) ( )] ( )      F F F F . (7)

The solution of equation (7) is found numerically with the 
iterative procedures.

Nodes position inside the 1[ , ]  interval for analytical grid 

is determined in a following way: 

1
1 ( 1), 1,

1
 

  



   
i i i . (8)

Then «input-output» equation for automatic control system 
design with the real images involvement, written in a form

( ) ( ) ( )  Y W X , (9)

could be represented as a correlation between numerical 
characteristic elements { ( )} , iX { ( )} , iY { ( )} iW of 

input ( )x t and output ( )y t signals with a transfer function

( )W :

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

217



   

{ ( )} { ( )} { ( )}    i i iY W X .

The usage of a numerical representation for the system signal
in aggregate with low operation number turns to be a positive 
characteristic of the latter equation in contrast to analytical 
representation (9).

Connection between the model in form of numeric
characteristic and real transfer function in form (5) is
established by means of linear algebraic equations system

1
1 0

1
1 1

...
( ) , 1,

... 1

 
 

  







  
 

   

m m
m i m i

i n n
n i n i i

b b b
W i

a a a
. (10)

The solution of (10) is found in the following form 

1
1 1 1 0 1 1 1 1 1 1

1
2 1 2 0 2 2 1 2 2 2

1
1 0 1

... ( ) ... ( ) ( ),

... ( ) ... ( ) ( ),

...

... ( ) ... ( ) ( ).      

      

      

      










      


     


      

m m n
m m n

m m n
m m n

m m n
m m n

b b b a W a W W

b b b a W a W W

b b b a W a W W

As a result of linear algebraic equations system solution,
unknown transfer function ( )W coefficients will be found. 

And their number will be equal to parameter . For the case 

of representation a transfer function in form (5) the value of 
this parameter is 1   n m , that provides linear algebraic 

equation system (10) solution unicity. The transition from 
real transfer function ( )W to Laplace representation is 

realized by formal substitution of complex transformation
variable p in transfer function expression. 

The principal unsolved problem at this stage is a choice of the 
transfer function structure. That is numerical value n and m
determination in expression (5). Let’s consider this problem
deeper.

4. IDENTIFICATION STRUCTURE OF TRANSFER 
FUNCTION

Transfer function structure problem, that is numerator m and 
denominator n polynomial order, can be solved by the 
method offered in paper (Shalaev 2005). Let’s use equation 
(5) and extreme correlation

( )
lim ,

( )










n mW

g
W g

(11)

Where 1g is a real number. From the resulting correlation 

(11) structure parameters estimation is obtained 

ln( )

ln( )




  
n mg

n m
g

. (12)

Real number is obtained with a help of formula (12) that 
contains integer and fractional parts. Let’s assume fractional 
part as one unit and add to integer part.

Unfortunately, it is rather difficult to define the limit (11) 
analytically, because the expressions for ( )W and ( )W g

are defined according to the formula (4). In connection with 
this it is offered to restrict an interval ( )W of essential 

function changes and consider not extreme correlation (11), 
but the expression

( )

( )










n m
W

g
W g

, (13)

where node  is defined by solution of the equation (7) with 

substitution   g , since denominator transfer function 

(12) changes g times faster, than in numerator. Then 

magnitude  specifies right interval boundary 1[ , ]  of 

interpolation nodes distribution , 1, i i . Having a single 

step response and taking into account extreme correlations 

0
lim ( ) lim ( )



 


t

W h t and
0

lim ( ) lim ( ),



 


t

W h t it is possible to 

write in the right part of expression (7)

( ) (0,1 0,2)[ ( ) (0)] (0)     W g h h h , (14)

where ( ), (0)h h – final and initial step response values 

( )h t correspondingly. Then  evaluation is found as a result 

of equation (14) and further calculations for expressions (13) 
and (12). With the help of obtained structure parameters
estimation  it is possible to form the transfer function 

structure identification algorithm. To make this, it is 
necessary to express numerator m order through 
denominator n order and estimation value 

 m n , 
1, 2,... if 0,

, 1,... if 0.


  


   

n (15)

Value n is a free argument in the last equation. The 
existence of the fixed parameter  , allows to get rid of 

examination a set of transfer function structures, which do 
not meet the requirements of equation (15). Parameter n
value enumeration should be continued until relative 
identification error satisfies specified criterion in the time 
domain.

5. NUMERICAL EXAMPLE

Let’s examine structure and parametric identification 
approach. As a result of the experiment, the signal ( ) 1( )x t t

(with zero initial conditions) was feed to the object input. 
Object response ( ) ( ) objy t h t is represented on figure 1.
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Fig. 1. Step-response of given object

For calculating ( )objW  in expression (4) the numerical 

integration formula is used (Collins 2003)
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where ΔT – input and output signal sampling period 
accordingly, tj = j·ΔT – current moment of time, 

0, ( 59) j k k . Let’s assume ΔT = 0.22 sec. Notice that

experimental data were obtained on the interval 0t , so that 
function 1(t) corresponds to the constant value 1(t) = 1, in 
this example. Taking into account simplifications, the latter 
expression could be represented in the form of

0

0

1
0

1

1

1

( ) ( )
( )

2
( ) .

2

 


 




  



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















k

j

k
j

t t k
tobj obj k

obj j
j

obj t t k
t

j

h t e h t e
h t e

W
e e

e

Further let’s define interval boundaries, inside which 
interpolation nodes will be placed. Since object is stable, it’s 
possible to assume δ1=0 for the left bound. Right bound will 
be defined by node δη placement. Its value will be found from
equation (14) 

0 0( ) 0.2 [ ( ) ( )] ( )    obj obj k obj objW g h t h t h t .

Let’s place real transfer function ( )objW expression in a left 

side of equation, and then turn to equation examination

0

0

1
0

1

1

1

0 0

( ) ( )
( )

2

2

0.2 [ ( ) ( )] ( ).

k

j

k

j

g t g t k
g tobj obj k

obj j
j

g t g t k
g t

j

obj k obj obj

h t e h t e
h t e

e e
e

h t h t h t

 



 


 


 


  



  









 

   




(16)

After accepting a parameter value as 2g (Shalaev 2005)

and using numeric values for the last equation, it is possible 
to find the solution of the equation (16). In order to solve 
equation (16) iterative procedure is used. For given numeric 
values the solution is 2.15  with an accuracy 

of | | 0,01  .

Let’s implement substitution (13) to (12) and find structure
estimation

( ) (2.15)1 1
ln ln 1.88.

( ) ln( ) (2 2.15) ln(2)









   
            

obj obj

obj obj

W W

W g g W

Finally according to recommendation given earlier let’s 
assume 2  . Then according to (15) let’s write

2, 2,3,...  m n n . (17)

The last expression provides information about relative 
degree of transfer function model ( )mW  .

Nodes system is formed according to expression (8). Then
while taking into account structure parameter estimation 
linear algebraic equation system (10) is composed. The 
solution gives possibility for defining transfer function model 

( )mW p parameters. As proximity criterion for identified 

transfer function ( )mW p and object transfer function ( )objW p

the estimation in time domain is used in the following form

[0, ]

( ) ( )
max 100

( )

 
  
 
 

obj m

t T
obj

h t h t
I E

h t
,

where ( )mh t – step response of transfer function ( )mW p , 

13 secT  – observation time for given object, E = 5 % –

maximum identification error.

Using expression (16) it is possible to make a conclusion that 
transfer function identification procedure should be started
from the second order model with m = 0 degree of numerator 
and n = 2 degree of denominator. If the identification error 
isn’t satisfy proximity criterion then more complex structure 
of transfer function ( )mW  should be used. According to 

expression (17) denominator degree is n = 3 and numerator
degree is 1m  . This iterative process is continuing until 
identification error will reach a pre-determinate level.

Let’s demonstrate how to compose equation system (10) for 
the transfer function ( )mW  with with m = 0 degree of 

numerator and n = 2 degree of denominator:
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where interpolation nodes are performed on the base of 
formula (8): δ1 = 0, δ2 = 1.07, δ3 = 2.15. The solution is: b0

=15.9, a2 = 0.63, a1 = 0.47. The value of proximity criterion is 
I1= 72.3 %. Given solution doesn’t satisfy pre-determinate 
level of error E. It means that structure of transfer function 

( )mW  should be more complex.

The results of identification for different structures of transfer 
function ( )mW  are presented in table 1.

Table 1. Identification results

Degree Transfer function ( )mW p I, %

m = 0
n = 2 2

5.986

0.629 0.469 1p p 
72.3

m = 1
n = 3 3 2

0.547 5.986

0.036 0.279 0.597 1

p

p p p

 
  

27.7

m = 2
n = 4

2

4 3 2

0.068 4.695 5.986

0.107 0.292 0.909 1.543 1

p p

p p p p

 
   

4.93

After analyzing the results we could see that appropriate
approximation was reached with the proximity criterion value
I = 4.93 %, for transfer function

2

4 3 2

0.068 4.695 5.986
( )

0.107 0.292 0.909 1.543 1m

p p
W p

p p p p

 


   
.

On the figure 2 step-response functions for this model ( )mh t

and object ( )objh t are represented.

Fig. 2. Step-responses of object and identified model

Thus in case of simple enumeration we have to consider 
transfer functions with following combinations of numerator 

and denominator degrees: (m = 0, n = 2), (m = 1, n = 2), 
(m1=12, n = 2), (m = 0, n = 3), (m = 1, n = 3), (m = 2, n = 3), 
(m = 3, n = 3), (m = 0, n = 4), (m = 1, n = 4) and (m = 2, 
n1=14). Instead of considering ten different variant of transfer 
functions for parameters estimation it was used only three 
structures, which were determinate according to expression 
(16). This obviously demonstrates that proposed 
identification procedure provides rather efficient way of 
model estimation for linear dynamic object.

6. CONCLUSION

This paper presents a new method of structure and parametric 
identification of linear dynamic systems based on RIM which 
was improved with more efficient algorithm of structure 
definition. The efficiency of the method was shown on 
numerical example. The proposed identification procedure 
operates with signals in time domain and uses step-response 
function as input information for further processing. Whereas 
traditional identification methods (as recursive least squares 
method) provides only parametric approximation for given 
function template, the new identification procedure in 
addition to parameters definition gives possibility of model 
structure estimation. 
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Abstract: Paper deals with dynamic mathematical model of an ideal differentially steered drive system 
(mobile robot) planar motion. The aim is to create model that describes trajectory of a robot’s arbitrary 
point. The trajectory depends on supply voltage of both drive motors. Selected point trajectory 
recomputation to trajectories of wheels contact points with plane of motion is a part of the model, too. The 
dynamic behaviour of engines and chassis, form of coupling between engines and wheels and basic 
geometric dimensions are taken into account. The dynamic model will be used for design and verification 
of a robot’s motion control in MATLAB / SIMULINK simulation environment. 

 

1. INTRODUCTION 

Paper deals with dynamic model of an ideal mobile robot 
with differentially steered drive system and planar motion. 
Single-axle chassis or caterpillar chassis is mostly used in 
case of small mobile robots (Novák 2005). Caster wheel is 
added to single-axle to ensure stability. This solution together 
with independent wheel actuation allows excellent mobility 
on the contrary to a classic chassis – see commercially 
available robot in Fig. 1. Derived mathematical model comes 
from lay-out, nominal geometric dimensions and other 
features of that robot with view of ideal behaviour of 
individual components and some simplifying assumptions. 
The aim is to create model based on forces caused by engine 
moments of independent wheel drives. Model will consist of 
dynamic behaviour description of chassis and in series 
connected DC motors. Presented motion model based on 
centre of mass (primary element) dynamics is different from 
models reflecting kinematics only and commonly used in 
literature – published e.g. in (Stengel 2010) or (Lucas 2010). 
Standard models describe robot’s trajectory time evaluation 
depending up to known wheel speed (information from wheel 
speed sensors) and chassis geometry - odometry – published 
e.g. in (Winkler 2010). Our model extends standard model 
with dynamic part describing wheel speed dependency on 
motor supply voltage by respecting dynamics, construction, 
geometry and other parameters of chassis and motors. 
Motor supply voltage actuating the wheel causes driving 
torque and thereby wheel rotation. Inertial and resistance 
forces act against driving torque. Both driving torques 
influence each other because of these forces. Planar 
curvilinear motion of the robot is result of various time 
variant wheel rotation speeds. 
Planar curvilinear motion can be decomposed to a sum of 
linear motion (translation) and rotation motion. Forces 
balance is starting point for the derivation of motion 
equations. If F is actual force acting to a mass point with 

weight m and with distance r from axis of rotation then it 
holds for general curvilinear motion that vector sum of all 
forces acting to a selected point is zero - see literature (Horák 
et al. 1976) 

 ( ) 02 =××+×+×++ 43421
rrr

43421

r
r

43421

r

321

rr

l forcecentrifuga
forceCoriolisrceEuler's foorceinertial f

rm
dt
rdmr

dt
dm

dt
vdmF  (1) ωωωω

Application of this general equation requires specification of 
individual forces according to actual conditions and/or 
eventually implementing other acting forces. We will 
consider forces originated by motion of real body – induced 
with resistances (losses) in addition to curvilinear motion 
forces. 

Fig. 1 Differentially steered mobile robot 

 
We will approximate these forces in simplest manner to be 
proportional to a speed. Equations describing dependences of 
translation and rotation speed of selected chassis point to 
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actual wheel motor voltages will be result of the dynamic 
part. 

Fig. 2 Equivalent circuit of motor 

Selection of the point where actual translation and rotation 
speed will be evaluated influences significantly initial 
equations and hence complexity of the resulting model. If the 
selected point is centre of gravity then initial equations of 
dynamic part are simplest but equations describing 
dependencies between wheel speeds and translation and 
rotation speed are more complicated. Centre of the join 
between wheels is used as the selected chassis point in 
common literature. Such a choice leads to simplest 
recalculation of actual wheel speeds to motion equations of 
that point. Trade-off between these two approaches is chosen 
in our paper – point as centre of gravity projection to join 
between wheels is selected. Trajectory (time course) 
computation of another chassis points (points where wheels 
meet the ground) supplements dynamic part of the model. 

2. MATHEMATICAL MODEL 

Described mobile robot is driven by two DC motors with 
common voltage source and independent control of each 
motor. Motors are connected with driving wheels through 
gear-box with constant gear ratio. Ideal gear-box means that 
it reduces linearly angular speed and boosts the moment 
(nonlinearities are not considered). Loses in motor and also in 
gear-box are proportional to rotation speed. Chassis is 
equipped with caster wheel with no influence to chassis 
motion (its influence is included in resistance coefficients 
acting against motion). 
Model of the robot consists from three relatively independent 
parts. Description of the ideal DC motors connected in series 
is given in chapter 2.1. Two equations describe dependency 
of the motor rotation speed and current on power supply 
voltage and loading moment related to chassis dynamics. 
Motion equations are presented in chapter 2.2 – dependency 
between translation and rotation speed of the selected point 
on moments acting to driving wheels. Chapter 2.3 is 
dedicated to equations describing how motor speed 
influences translation and rotation speed of the selected point 
and to complete model formulation. In last chapter 2.4 the 
model is transformed to simpler form which is more suitable 
for next using and for trajectory of arbitrary point calculation. 
Equations describing trajectory corresponding to contact 
points of the driving and caster wheels with the ground are 
formulated. 

2.1 DC motor in series connection dynamics 

Equivalent circuit of ideal DC motor in series connection 
(Poliak et al. 1987) is in Fig. 2. It consists from resistivity R, 
inductance L and magnetic field of the motor M. Commutator 
is not considered. Rotor produces electrical voltage with 
reverse polarity than source voltage – electromotive voltage 
UM, which is proportional to rotor angular velocityω. 
Twisting moment of the rotor MM is proportional to current i.  
Ideal behaviour means that whole electric energy used to 
magnetic field creating is transformed without any loses to 

mechanical energy – moment of the motor. We do not 
consider loses in magnetic field but only electric loses in 
winding and mechanical loses proportional to rotor speed. 
Firs equation describes motor behaviour through balancing of 
voltages (Kirhoff’s laws) 

 ωKU
dt
diLRiUUUU MLR −=+−=+ 00 ,  (2) 

where 
R  [Ω] is motor winding resistivity, 
L  [H] is motor inductance, 
K [kg.m2.s-2.A-1]  is electromotoric constant, 
U0  [V] is source voltage, 
ω  [rad.s-1]   is rotor angular velocity and 
i [A] is current flowing through winding. 
Second equation is balance of moments (electric energy) – 
moment of inertia Ms, rotation resistance proportional to 
rotation speed (mechanical loses) Mo, load moment of the 
motor Mx and moment MM caused by magnetic field which is 
proportional to current 

 
KiMk

dt
dJ

MMMM

xr

Mxos

=++

=++

ωω  (3) 

where 
J  [kg.m2] is moment of inertia, 
kr  [kg.m2.s-1] is coefficient of rotation resistance and 
Mx  [kg.m2.s-2] is load moment. 

2.2 Chassis dynamics 

Chassis dynamics is defined with vector of translation speed 
vB acting in selected chassis point and with rotation of this 
vector with angular velocity ω

B

BB (constant for all chassis 
points). It is possible to calculate trajectory of arbitrary 
chassis point from these variables. Point B for which the 
equations are derived is centre of gravity normal projection to 
join between wheels – see Fig. 3. This leads according to 
authors to simplest set of equation for whole model. We 
consider general centre of gravity T position – usually it is 
placed to centre of the join between wheels. 
We consider forces balances as starting equations. It is 
possible to replace two forces FL and FP acting to chassis in 
left (L) and right (P) wheel ground contact points with one 
force FB and torsion moment MB BB acting in point B. Chassis is 
characterized with semi-diameter of the driving wheels r, 
total weight m, moment of inertia JT with respect to centre of 
gravity located with parameters lT, lL, lP. 
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Fig. 3 Chassis scheme and forces 

Let us specify equation (1) for our case. Position of the centre 
of gravity is constant with respect to axis of rotation so we do 
not need to consider Coriolis force. We have to consider 
Coriolis force for example if the chassis moves on rotating 
surface. 
Similarly we do not consider centrifugal force – chassis is 
supposed to be solid body represented as mass point (centre 
of gravity). Because force vector causing the movement acts 
in point B and goes through centre of gravity it is enough if 
we consider inertial force by linear motion. By rotational 
motion it is necessary to consider moment caused with 
Euler’s force because the axis of rotation does not go through 
the centre of gravity. 
By the balance of forces causing linear motion we will 
consider except of forces FL, FP caused by drives and inertial 
force FS also resistance force FO proportional to speed vB. 
The balance of forces influencing linear motion is 

B

 
0

0

=−−+

=+++

dt
dvmvk

r
M

r
M

FFFF

B
Bv

GPGL

SOPL
 (4) 

where 
m [kg]  is robot mass, 
kv  [kg.s-1] is resistance coefficient against linear motion 
MGL  [kg.m2.s-2] is moment of the left drive, 
MGP  [kg.m2.s-2] is moment of the right drive, 
vB  [m.s ]  is linear motion speed and B

-1

r  [m]  is semi-diameter of the wheels. 
Balance of moments is slightly more complicated because the 
rotation axis does not lie in centre of gravity. That’s why it is 
necessary to take into account except chassis momentum MT 
also moment ME = lT FE caused by Euler’s force FE. Similarly 
as by linear motion we will consider moment MO caused with 

resistance against rotation to be proportional to angular 
velocity ωB. B

 
0

0

=−−−+−

=++++

T
B

T
B

TBP
GP

L
GL

ETOBPBL

l
dt

dml
dt

dJkl
r

Ml
r

M
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ωω
ωω

 (5) 

where 
lP  [m]  is distance of the right wheel from point B, 
lL  [m]  is distance of the left wheel from point B, 
lT  [m] is distance of the centre of gravity from point 

B, 
kω  [kg.m2.s-1] is resistance coefficient against rotary 

motion 
JT  [kg.m2]  is moment of inertia with respect to rotation 

axis in centre of gravity and 
ωB  [s-1] is angular speed in point B. 
Resulting moment of inertia JB with respect to rotation axis in 
point B is given by eq. (6) which is parallel axis theorem or 
Huygens-Steiner theorem - see e.g. (Horák et al. 1976) 

B

  (6) 2
TTB mlJJ +=

where 
JT  [kg.m2]  is moment of inertia with respect to centre of 

gravity and 
lT  [m]  is distance between centre of gravity and 

point B. 

2.3 Relationship between rotation speed of the motor and 
centre of gravity chassis movement (kinematics) 

The equation describing the behaviour of the two motors 
(currents and angular velocity) and the behaviour of the 
chassis (the speed of the linear movement and speed of the 
rotation) are connected only through moments of engines. 
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Equations express the law of conservation of energy which is 
conversion of electrical energy to mechanical including one 
type of losses but represent only one relationship between the 
speed of the two motors (peripheral speed of the drive 
wheels) and rates of movement and rotation of the chassis. 
Additional relation is given by design of the drive and 
chassis. We expect that both drive wheels are firmly linked to 
rotors of relevant engines over ideal gearbox with gear ratio 
pG - without nonlinearities and any flexible members. 
Gearbox decreases output angular velocity ωGx with relation 
to the input angular speed ωx according to the transmission 
ratio pG and simultaneously in the same proportion increases 
output torque MGx with relation to the input torque Mx. 

 
G

P
GP

G

L
GL pp

ωωωω ==  (7a) 

  (7b) PGGPLGGL MpMMpM ==

Further we assume that both drive wheels have the same 
radius r and their peripheral speeds vL, vP depend on the angle 
speeds of gearbox output ωGL, ωGP according to relations 
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p
rrv
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ω
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==

==

 (7c) 

To determine the value of the linear speed in point B and the 
angular velocity of rotation let us start from Figure 4. We 
expect that both drive wheels have the same axis of rotation 
and therefore their peripheral speeds are always parallel. The 
illustration shows the positioning where the peripheral speeds 
vL and vP actually operate (driving wheels L and P) and the 
point B. We want to specify such a linear vB and angular ωB B 
speeds that have the same effect as the action of the 
peripheral speed of the driving wheels. By using the 
similarity of triangles depicted in Figure 4 we can recalculate 
the peripheral speeds of the wheels vL, vP to the speed vBB in 
point B according to relation (8a) and the angular velocity of 
rotation ωB according to the relation (8b) B

 ( ) ( PLLP
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B ll
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2.4 Trajectory calculation of the arbitrary chassis points 

We can determine from linear speed of vB and angular speed 
ω

B

B (motion equations) current rotation angle α of the chassis 
and the current position (the coordinates xBB, yB) of point B 
(Šrejtr 1954) according to relations  

B

 Bdt
d

ω
α

=  (9a) 

 )cos(αB
B v

dt
dx

=  (9b) 

 )sin(αB
B v

dt
dy

=  (9c) 

To determine the current position of the contacts of all three 
chassis wheels (points L, P and K) with ground we need to 
know the location of these points in relation to point B. This 
location is shown in Figure 5. From geometric dimensions we 
determine equation describing the relative position of these 
points in relation to point B depending on the angle of 
rotation. 

)  (8b) 

Relative positions ΔxL, ΔyL of the point L and ΔxP, ΔyP of the 
point P depending on angle of rotation α are given by 
  (10a) )cos()sin( αα LLLL lylx −=Δ−=Δ

  (10b) )cos()sin( αα PPPP lylx +=Δ+=Δ

To determine the relative position ΔxK, ΔyK of the 
point K we use an auxiliary right triangle specified by 
cathetus c and hypotenuses a and lK (see Figure 5). 
Then the equations for relative coordinates of the point 
K calculating are 
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Fig. 4 Linear and angular speeds recalculations 

Fig. 5 Arbitrary chassis point recalculation 
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2.5 Overall model and steady-state 

The dynamic part of the model consists from four differential 
equations describing the behaviour of both motors, two 
differential equations describing the dynamics of the chassis 
and two algebraic equations with dependency of linear and 
angular chassis speed on the peripheral speeds of the driving 
wheels. We can find in these equations eight state variables 
describing the current state of the left motor (current iL, 
angular velocity of the rotor ωL, loading moment ML) and the 
right motor (current iP, angular velocity of the rotor ωP, 
loading moment MP) and the movement of the chassis (linear 
speed vB and angular velocity of rotation ωB B). All the state 

variables are dependent on the time courses of the power of 
the left UL and right UP motor. 
Each motor has its own power supply voltage (UL, UP) 
disbranched from the common source of voltage U0. Control 
of the supply voltage of both motors using amplifier with 
control signal ux is shown in Figure 6. Because both engines 
are powered from the common source it will be taken into 
account also effect of the internal resistance Rz. Both motors 
are considered with the same parameters. We can write with 
using the equations (2) and (3) and Figure 6 four differential 
equations describing the behaviour of both engines as 

 ( ) LL
L

PLzL KUu
dt
diLiiRRi ω−=+++ 0  (11a) 

 ( ) PP
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PLzP KUu
dt

diLiiRRi ω−=+++ 0  (11b) 
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Differential equations (4) and (5) describing the behaviour of 
the chassis complete the dynamic model. We can rewrite 
these equations with respect to the equations (7) and 
introduction of the "reduced" radius of the wheel rG and total 
moment of inertia JB (13a) as B
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It is possible to rewrite the last two algebraic equations (8a) a 
(8b) describing the dependence between rotations speed of 
both motors and chassis movement with using the 
substitution (13a) as 
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Fig. 6 Motors wiring 
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These six differential equations (11a,b), (12a,b), (13b,c) and 
two algebraic equations (14a,b) containing eight state 
variables representing a mathematical description of dynamic 
behaviour of ideal differentially steered mobile robot with 
losses linearly dependent on the revolutions or speed. Control 
signals uL and uP that control the supply voltages of the 
motors are input variables and the speed of the movement vB 
and speed of rotation ω

B

BB are output variables. From them 
with using the equations (9a) – (9c) we can determine the 
current coordinates of a point B and the angle of rotation of 
the chassis. 
In the following calculation of steady-state values for 
constant engine power voltages is given. Calculation of 
steady-state is useful both for the checking of derived 
equations and secondly for the experimental determination of 
the values of the unknown parameters. Because the equation 
(11)-(14) are linear with respect to state variables the 
calculation of steady-state leads to a system of eight linear 
equations which we can write in matrix form as 
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2.6 Computational form of the model 

A mathematical model will be used in particular for the 
design and simulation validation of control movement of the 
robot. Model can be divided into three series-involved parts 
as shown in Figure 7. From the control point of view action 
variables are signals uL a uP that control the supply voltage of 
the motors. Momentary speed vB and speed of rotation ωB BB are 
output variables from linear part of the model. These 
variables are the inputs to the consequential non-linear part of 
the model, whose outputs are controlled variables - the 
coordinates of selected point position xB, yB BB and the rotation 

     

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

225



 
 

 

angle of the chassis α. The last part is the calculation of 
coordinates of the position of arbitrary points of the chassis. 
We can modify linear part of the model into simpler form for 
control design purposes – to reduce number of differential 
equations from six to four. If we substitute equations (14a,b) 
into (13b,c) and eliminate moments ML a MP by substitution 

of (12a,b) to (13b,c) we are able to reduce four differential 
equations (12a,b) a (13b,c) into two (17c,d). 
 If we introduce substitution of the parameters according to 
following formulas 
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The reduced linear part of the model consists from set of 
equations 
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and output variables are given by algebraic equations (14a,b). 
It is possible to write reduced linear part of the model as 
standard state-space model in matrix form as 
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Fig. 7 Model partitioning into linear and nonlinear part 

3. EXAMPLE OF THE BEHAVIOUR 

Basic verification of the above derived model was made by 
calculation for situations where we can guess the behaviour 
of the real device. First value of the state variables in steady 
states will be given for some combinations of parameters and 
motor supply voltages. Further time courses of the robot 
trajectory will be determined for some combinations of time 
courses of supply voltages when robot is starting from zero 
speed.  
Values of the parameters listed in the following tables are 
used in all of the calculations. These values are chosen so that 
they at least roughly correspond to the values estimated for 
the robot in Figure 1. The values of the geometrical and other 
parameters of the chassis are listed in Table 1. 

Table 1 Chassis parameters 
Notation Value Dimension Meaning 
lL 0.040 m distance of the left wheel 

from point B 
lP 0.060 m distance of the right wheel 

from point B 
lT 0.020 m distance of centre of gravity 

from join between wheels 
lK 0.040 m distance of caster wheel 

from join between wheels 
r 0.050 m semi-diameter of driving 

wheel 
m 1.250 kg total weight of the robot 
kv 0.100 kg.s-1 coefficient of the resistance 

against robot linear motion  
JT 0.550 kg.m2 moment of inertia of robot 

with respect to centre of 
gravity 

kω 1.350 kg.m2.s-1 coefficient of the resistance 
against robot rotating 

 
Necessary parameters for DC motors with common voltage 
source description are given in Table 2. We consider identical 
motors with identical parameters. 
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Table 2 DC motors parameters 
Notation Value Dimension Meaning 
R 2.000 Ω motor winding resistivity 
L 0.050 H motor inductance 
K 0.100 kg.m2.s-2.A-1 electromotoric constant 
RZ 0.200 Ω source resistance 
U0 10.00 V source voltage 
J 0.025 kg.m2 total moment of inertia of 

rotor and gearbox 
kr 0.002 kg.m2.s-1 coefficient of the 

resistance against rotating 
of rotor and gearbox 

pG 25 --- gearbox transmission ratio 

3.1 Steady state for different positions of point B and motors 
voltages 

The steady states are calculated as a solution of the system of 
eight equations in matrix form (15). Traces of the wheels are 
shown during the first 20 seconds of motion from zero initial 
conditions - calculated from state-space model (18) and from 
the equations for the trajectories calculation (9,10). 
Trajectories are plotted for the situation that the origin of the 
coordinate system is in the centre between the wheels, which 
is on the x-axis and the default orientation of the robot is in 
the direction of the y axis. Starting and final position of the 
robot is displayed using the triangle that connects all three 
wheels. Trajectory of the centre of gravity is displayed in 
addition to the traces of the wheels. 
Steady-state A (Table 3a) corresponds to the geometric 
arrangement - point (B) is midway between the wheels and 
both engines have the same supply voltage. The result is that 
the robot moves only linearly. 
 

Table 3a Steady state A 
 left wheel right wheel  
U 1.000 1.000 V 
l 0.050 0.050 m 
i 0.13514 0.13514 A 
ω 1.07534 1.07534 Hz 
M 0.000001 0.000001 N.m 
vB 0.0013513 m.s-1

ωB 0.0000000 Hz 
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The following three experiments show the influence of centre 
of gravity position. Steady-state B (table 3b) holds again for 
the symmetric geometric arrangement but only one motor is 
powered. Steady state C (table 3c) shows the situation in the 
case that point B is in the extreme position above the left 
wheel and only the left motor is powered. Steady-state D 
(table 3d) corresponds to the same position of the point B 
above the left wheel but is only right motor is powered. In all 
three cases the robot rotates and at the same time the point B 
has some linear speed. Both wheels produce translation 
because of the interactions. 

Table 3b Steady state B 
 left wheel right wheel  

U 0.000 1.000 V 
l 0.050 0.050 m 
i -0.02772 0.16287 A 
ω 0.04523 1.07935 Hz 
M -0.001176 1.03010 N.m 
vB 0.006757 m.s-1

ωB 0.123762 Hz 
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)
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Table 3c Steady state C 

 left wheel right wheel  
U 1.000 0.000 V 
l 0.000 0.100 m 
i 0.16288 -0.02773 A 
ω 1.030062 0.045243 Hz 
M 0.00334400 -0.00334141 N.m 
vB 0.0129441 m.s-1

ωB -0.1237559 Hz 

-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
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Table 3d Steady state D 
 left wheel right wheel  

U 0.000 1.000 V 
l 0.000 0.100 m 
i -0.02773 0.16286 A 
ω 0.045248 1.030120 Hz 
M -0.00334148 0.00334159 N.m 
vB 0.0005686 m.s-1

ωB 0.1237626 Hz 
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3.2 Dynamic behaviour for particular cases 

Dynamic behaviour is demonstrated on the time courses of 
currents and angular speeds of the motors starting from zero 
initial conditions. Graphs in Figure 8 show courses of supply 
voltages, currents and angular speeds for the case that the 
point B is in the middle between both motors with the same 
constant voltage 1 V. Situation corresponds to experiment 
with the parameters in Table 3a. 
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Fig. 8 Dynamic behaviour - constant supply voltage 1 V for 
both motors 
Situation where point B is in the middle between both motors 
with the right motor voltage 1 V only corresponds to 
experiment with the parameters in Table 3b. 
Illustrative example of behaviour in the situation when both 
voltages are periodic and with different amplitudes is in 
figures 10 and 11. On the left motor is a rectangular voltage 
of period 20 s, phase offset 10 s and amplitude 3. On the right 

motor is a rectangular voltage of doubled period 40 s and 
amplitude 4. 
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Fig. 9 Dynamic behaviour - constant supply voltage 1 V for 
right motor 
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Fig. 10 Dynamic behaviour - periodic voltages 
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Fig. 11 Dynamic behaviour - periodic voltages – speeds and 
trajectories 
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4. CONCLUSION 

The behaviour of the dynamic model in simulated situations 
agrees with the expected behaviour of a real device. Position 
of centre of gravity does not affect the behaviour in steady 
state. Immediate linear speed in point B depends on its 
position but the trajectories of the wheels are independent on 
the position of the point B.  
Interaction of the two drives was confirmed. Because of the 
forces of inertia and the forces of resistance also wheel 
without supply voltage rotates by the chassis movement. 
Even change of the meaning of the rotation occurs in the 
transient state. This situation is seen in Figure 9. 
Motor dynamics is negligible compared to the expected 
dynamics of the chassis for estimated motor parameters. 
Because the parameters of the model have physical meaning 
it will be possible to measure directly some parameters on 
real device. Identification of additional parameters will be 
possible experimentally from measured time courses of 
power voltages and the corresponding courses of angular 
speed of the wheels. 
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Identification of nonlinear systems with general output backlash
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Abstract: The paper deals with identification of nonlinear cascade systems with general output backlash,
where instead of the straight lines determining the upward and downward parts of backlash characteristic
general curves are considered. A new form of general backlash description is leading to the mathematical
model, which has all the model parameters separated. The identification based on this model is solved as a
quasi-linear problem using an iterative algorithm with internal variables estimation.

1. INTRODUCTION

One of the most important nonlinearities that limit control
systems performance in many applications is the so-called
backlash (Kalas et al, 1985). Unfortunately, there are only
few contributions in the literature on the identification of
systems with backlash (Bai, 2002), (Cerone and Regruto,
2007), (Dong et al, 2009), (Dong et al, 2010), (Giri et al,
2008), (Hägglund, 2007), (Vörös, 2010a), (Vörös, 2010b).

In control systems it is assumed that the backlash is “linear”,
i.e., straight lines approximate the upward and downward
curves of the characteristic (Tao and Kokotovic, 1993), (Tao
and Canudas de Wit, 1997), (Nordin and Gutman, 2002).
This simplifies the system description, however, in some
cases it may lead to inaccuracies. The components of control
systems may be free from backlash when new, but after some
time in use the wear results in an introduction of backlash in
the systems. In general the form of backlash changes with
time and wear, regardless of what form of backlash was
present when the component was new. Therefore it may be
appropriate to generalize the backlash and consider general
upward and downward curves. The only works dealing with
the identification of systems with general switch and
backlash nonlinearities were published in (Giri et al, 2010),
(Rochdi et al, 2010a), (Rochdi et al, 2010b). The proposed
approach is based on two independent, but structurally
symmetric identification schemes. The first one determines
the points located on the descendent border of general
nonlinearity as well as the parameters of the linear
subsystem. The second identification scheme determines the
points located on the ascendent border of general nonlinearity
and the parameters of the linear subsystem. The key idea is to
use pulse-type periodic input signals so that only the points of
interest are excited on each border.

In this paper an identification method for cascade systems
with output backlash based on a new mathematical model for
general backlash is presented. First, an analytic description of
this hard dynamic nonlinearity is described, which uses

appropriate switching functions and their complements
(Vörös, 2009). Then the identification method for cascade
systems consisting of a linear dynamic system followed by a
general output backlash is proposed. This is based on a
mathematical model, where the parameters of linear dynamic
system and the parameters characterizing the general
backlash are separated, hence their estimation can be solved
as a quasi-linear problem using an iterative method with
internal variable estimation (Vörös, 2001, 2003, 2007).

2. GENERAL BACKLASH MODEL

In the case of “linear” backlash the left and right branches of
the characteristic are considered to be straight lines.
However, in some applications the straight lines are only
advantageous approximations of general curves constituting
the left and right branches of backlash as shown in Fig. 1.

Fig. 1 General backlash characteristic

The general backlash characteristic can be described by the
equation (Vörös, 2009)

     







≥
≤≤−

≤
=

R

RL

L

ztxtxR
ztxz1ty

ztxtxL
ty

)()]([
)()(

)()]([
)(                      (1)

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

230



where the mappings L[x(t)] and R[x(t)] describe the left and
right branches of the characteristic, respectively, the x-axis
values zL and zR are given as follows:

   )()( LzL1ty =−                                   (2)

   )()( RzR1ty =−                                   (3)

Assume the left and right curves can be approximated by the
polynomials
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respectively, where cL > 0, cR > 0 are the intersections of
L[x(t)] and R[x(t)] with the x-axis. Then the general backlash
characteristic can be written as
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After introducing the internal variables
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the following variables based on (7) and (8) can be defined:
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is switching between two sets of values, i.e., (− ∞, s) and (s,
∞). Then the general backlash can be modeled by one
difference equation as follows:
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To include the deadzone parameters cL and cR into the
backlash model, we can separate the first terms of the sums in
(14) and half-substitute from (9) and (10) as follows:
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Now the input/output relation for the generalized backlash
(15) is identical with that of (1). All the model parameters are
separated and the model is linear in the input, output and
internal variables. This model allows the upward and
downward curves to be different provided that the
intersection of the two curves is not in the region of practical
interest.

3. SYSTEMS WITH GENERAL OUTPUT BACKLASH

In many real control systems the backlash appears in a
cascade connection with linear dynamic systems. One of the
simplest cases is the cascade system where a linear dynamic
system is followed by a backlash as shown in Fig. 2. The
linear dynamic system can be described by the difference
equation as

     ∑∑
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i jtxbituatx )()()(               (16)

where u(t) and x(t) are the inputs and outputs, respectively.

Fig. 2 Cascade system with general output backlash

Let the general backlash be described by (15). The output
equation of this cascade system can be constructed by
connecting (15) and (16). However, a direct substitution of
(16) into (15) would lead to a quite complex expression,
therefore the so-called key term separation principle can be
applied (Vörös, 2010c). It means that (16) will be substituted
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only for x(t) in the first term of (15). Moreover, in this
connection of two systems we can assume that mL1 = 1, hence
the model equation for the cascade system with general
output backlash can be written as
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where the parameters of both the linear system and the
general backlash are separated and the equation is quasi-
linear as the variables ξ1(t), ξ2(t), f1(t) and f2(t) depend on the
backlash parameters and the internal variable x(t) depends on
the linear system parameters. Defining the vector of data
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and the vector of parameters
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where

,/,, 1R2R1L1L mcccc1m ===                       (20)

the cascade system with general output backlash can be
written in the vector form as follows:

           θϕ )()]()][()[()( ttf1tf11tyty T
21 =−−−− .        (21)

As the variables ξ1(t), ξ2(t), f1(t), f2(t) and the internal variable
x(t) in (18) are unmeasurable and must be estimated, an
iterative parameter estimation process has to be considered
similarly as in (Vörös, 2007). Assigning the internal variable
x(t) in the s-th step as
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and the estimated variables ξ1(t), ξ2(t),  f1(t) and f2(t) in the s-
th step as
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the error to be minimized in the estimation procedure is
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where sϕ(t) is the data vector with the corresponding
estimates of variables x(t), ξ1(t), ξ2(t), f1(t) and f2(t) according
to (22) − (26) and s+1θ is the (s+1)-th estimate of the
parameter vector.

The steps in the iterative procedure may be now stated as
follows:

a) Minimizing the least squares criterion based on (27)

∑
=

++ =
N

1t

21s1s te
N
1J )(                       (28)

where N is the number of measured input and output samples,
the estimates of parameters s+1θ are computed using sϕ(t) with
the s-th estimates of variables sx(t), sξ1(t), sξ2(t),  sf1(t) and
sf2(t).

  b) Using (22) − (26) the estimates of s+1ϕ(t) are evaluated by
means of the recent estimates of corresponding parameters.

  c) If the estimation criterion is met the procedure ends, else
it continues by repeating steps a) and b).

In the first iteration only the parameters of linear dynamic
system are estimated and the initial values can be chosen
zero. However, nonzero initial values of the general backlash
parameters  mR1, cL and cR have to be considered for
evaluation of 1ϕ(t) to start up the iterative algorithm.

4. CONCLUSIONS

In this paper a new analytic form of general backlash
characteristic description was used in the mathematical model
for cascade systems including this type of dynamic
nonlinearity in the output. Iterative algorithm was proposed
enabling simultaneous estimation of both the backlash
parameters and the parameters of the cascaded linear
dynamic system on the basis of input/output data.
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Abstract: The paper compares abilities of forgetting methods to track time varying parameters of two 
different simulated models with different types of excitation. The observed parameters in simulations are 
the integral sum of the Euclidean norm of a deviation of the parameter estimates from their true values and 
a selected band prediction error count. As supplementary information we observe the eigenvalues of the 
covariance matrix. In the paper we used modified method of Regularized Exponential Forgetting with 
Alternative Covariance Matrix (REFACM or REZAKM) along with Directional Forgetting (DF or SZ) and  
three standard regularized methods. 
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

1. INTRODUCTION 

This paper is devoted to online identification methods and 
their practical application possibilities along with adaptive 
control; while monitoring long-run operation of time variant 
dynamic systems. Emphasis is set on long-run operation and 
therefore the working mechanism with non-informative data. 
The process of algorithm realization is elaborated as well. 
Online identification methods are explored, where non-
informative data which could possibly destabilize numerical 
computation of the identified system parameters, is weighted 
by the chosen method to ensure „forgetting". The 
contribution of this paper lies in two newly created 
algorithms and their modifications for online identification; 
based on the technique utilizing an alternative covariance 
matrix. All algorithms are validated by simulations in Matlab 
Simulink software environment. Finally, the results obtained 
through the simulation algorithms mentioned in the article are 
compared to other commonly used algorithms. 

2. PROBLEM STATEMENT 

The Let as consider a stochastic system on which 
observations are made at discrete time instants k = 1, 2... . A 
directly manipulated input uk and an indirectly affected 
output yk (booth possibly multivariate) can be distinguished 
in the data pair dk = (uk, yk). The collection of all data 
observed on the system up to time t  is denoted by Dt = (d1, 
d2, .... dt). The dependence of a new pair of data (uk, yk) on 
previous observations Dk-1 can be described by a conditional 
probability density function (p.d.f) with the following 
structure 

                 111 ,,,,   kkkkkkkkkk DupDuypDuyp          (1) 

Incomplete knowledge of the system behavior is expressed 
through a vector of unknown, time varying parameters k. 
Note that the input generator described by the second term 
does not depend on these parameters directly, it is expected to 
utilize only prior information and information contained in 
observed data. The first term actually characterizes the 
system. 

3. REF AND SLZ TECHNIQUE 

Suppose that no explicit model of parameter changes is 
known. Yet, we can quantify our prior information (and 
possibly information taken from data already available) by 
introducing an alternative probability density function (p.d.f.) 
p*(k+1/Dk). The problem is then to construct (p.d.f.) 
p(k+1/Dk) based on two hypotheses described by the p.d.f. 
p(k/Dk) (the case of no parameter changes) and the 
alternative p.d.f. p*(k+1/Dk) (the case of worst expected 
changes). For simplicity in this section we use the notation 
p0(), p1() a p*() for the posterior, alternative and resulting 
p.d.f.'s, respectively. In Kulhavý and Kraus (1996), 
formulated the task of choosing p* given p0 and p1 as a 
Bayesian decision making problem. In the next we will make 
a short review of their solutions, let 

                

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P
         (2) 

where 

  and P denote the mean and covariance of a 

particular p.d.f. then the following solutions were shown: 

EF: 
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1
0

1*
0
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Let's consider the model of system with time varying 
parameters k, see Kulhavý and Kraus (1996). In order to be 
able to track parameter variations we complement the 
standard recursive last square (RLS) algorithm by 
exponential or linear forgetting according to (3) or (4) 
respectively. In addition the alternative mean is set equal to 

posterior mean 
 
 k k

alt
k k 1  and for simplicity the 

alternative covariance is set equal to the prior covariance 

P Pk k
alt
  1 1 0, Q . With this choice we can use general 

forgetting algorithm with the following choice of forgetting 
operator  

                          111 1,
  QPQPF kkkk                 (5) 

which construct harmonic mean for REF (or REZ in  tabs) 
and  

                          QPQPF kkkk   1,                     (6) 

which construct arithmetic mean for SLF (or SLZ in tabs). In 
both cases the prior covariance matrix Q isn't forgotten and is 
repetitively taking into account in every step k see in Schmitz 
et al. (2003). 

4. AUGMENTING REF AND SLF WITH ACM 

The involved SLF and REF augmentation considers addition 
and keeping the initial information in the Alternative 
Covariance Matrix (ACM or AKM) form. The augmentation 
is based on the modified Dyadic reduction algorithm, where 
instead of adding a-priori covariance matrix Q, ACM is 
computed at each step. ACM is stabilizing the evolution of 
matrix P(0) after the recursive update. This operation is 
necessary for the SLF and REF algorithms to be augmented 
by the stabilization component in the ACM form. The 
aforementioned stabilization component prevents the 
destabilization of the original algorithms at long running 
employments; when slow time changes are to be expected in 
the observed parameters in relation to the sampling period. 
The modified algorithms have been named as follows: the 
modified and ACM augmented REF algorithm is to be called 
REFACM (or REZAKM in tabs), the modified SLF 
algorithm augmented by ACM will be named SLFACM (or 
SLZAKM in tabs). 

5. SIMULATIONAL ALGORITHM VERIFICATION 
METHODOLOGY 

Two different models were created for the verification of the 
properties of the introduced algorithms in the observation of 
time variant parameters of dynamic systems.. These two 
models (model no. 1. and no. 2.) have a different approach to 
input excitation (input signal generator A and B). Algorithm 
quality has been compared through the use of DF, which is 

considered to be standard in the field. The Praly Forgetting 
(PF or PZ in tabs) algorithm featured in the work Praly 
(1993) has been also used, using the weighted covariance 
matrix P. All algorithms were subject to the same test with 
the identical length using the two featured models.  

All results were graphically evaluated, and analyzed in a 
table where algorithm quality has been shown numerically 
through parameters IS and PE. 

5.1 Description of model no. 1 and no. 2 

In the case of model 1, a second order model is considered 
with external disturbance v(t) according to: 

 

                          (7) 
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The values of constant parameters are given by: a2 = -0.9, b0 
= 0.5, b1 = -0.25, b2 = 0.1, d1 = 0.8, d2 = 0.2 and σ = 0.1. 

The time variant parameter has been chosen as a(1) = 0.98, 
which has been kept constant half of the n simulation steps, 
then at time t = n / 2 changed its value to  a(1) = − 0.98. The 
outside disturbance has been simulated as a square signal 
periodically changing its value from +1 to −1 each hundred 
simulation steps. The identification has been made difficult 
mainly by the rarely occurring disturbances, which contained 
minimal information about the parameter d(i). 

For the needs of the simulation, two input signal generators 
have been assumed: 

•   Input signal generator A: discrete white noise generator 

• Input signal generator B: the input signal has been 

generated using the following equation: , 

where u*k is normally distributed white noise and u*k-1 is the 
previous input value. 

kkk uuu 2.08.0 *
1

*  

 
For model no. 2. only one change has been realized in 
comparison to model no. 1. This has been carried out by 
altering the time variant parameter a(1,k) = 0.98 cos(2π k/250). 
In this case, two different input generators were considered as 
well:  

•   Input signal generator A: discrete white noise generator 

• Input signal generator B: the input signal has been 
generated similarly to model no 1., where u(k) has been only 
chosen from the interval u(k) ~ (0.5, 1). 

6. VERIFICATION – MATLAB SIMULINK  

From the previously mentioned algorithms DF has been 
chosen along with the three regularized methods: REF, SLF 
and PF. For the simulation verification a set of S-Function 
libraries has been created along with a common universal 
user interface. This interface (Figure 1. and Figure 2.) allows 
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the user to select input data, simulated model and the 
observed algorithm. Output of the discussed simulations is a 
graphical representation of the observed parameters along 
with a data file containing the results for the following 
analysis. Integral sum (IS) of the Euclidian norm of 
parameter error and prediction error PE has been shown, 
which is the amount exceeded by the interval ±3σ2. The 
simulation experiments will be marked by the character pair 
XY, where X is the number of the utilized model (no. 1 or no. 
2) and Y represents the generator utilized (A, respectively B). 

 

Fig. 1. User interface with selection of blocks 

 

Fig. 2. Simulation block scheme in Simulink 

7. EVALUATION OF SIMULATION RESULTS 

This section introduces all results in a table form. For the 
detailed description of algorithm behavior during the 
simulations with different lengths, simulations lasting n = 
1200, 6000, 12 000 and 120 000 have been evaluated as 
featured in Tables (1) to (4). It is clear from Table (3); that 
using simulation length n = 12 000 steps the artefacts of long 
lasting runs are already appearing. The result is the 
confirmation of REFACM algorithm quality in comparison to 
REF, which in the case 1A achieved better results then REF. 
Excellent results are achieved by the algorithm PF also. The 
least satisfactory performance is provided by the algorithm 
SLFACM. The data featured in Table (4) fully confirm the 
previous considerations of the REFACM algorithm quality. It 
is clear that using ACM as if a constraint has been enforced 
on parameter trending, which also implies the improvement 
of IS parameters in comparison of the results achieved by 
REF. The convergence of the REF covariance matrix is faster 
and finite in contrast to REFACM, where the convergence is 
slower and also the addition of excited ACM cannot be finite. 
The achieved simulation results and REFACM algorithm 
behaviour at 1200 and 120 000 simulation steps, show that as 
the running length increases the quality improves in contrast 
to REF. In Table (5) we have shown influence of weighting 

factor λ to quality of REFACM algorithms. Best results in 
simulations we observers in settings λ=0.8. 

 

Tab. 1.  Simulation length 1200 steps 

 

Tab. 2.  Simulation length 6000 steps 

 

Tab. 3.  Simulation length 12 000 steps 

 

Tab. 4.  Simulation length 120 000 steps 
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Tab. 5.  Influence of weighing factor λ 

8. CONCLUSTION 

The simulation verification tests featured in the previous 
section, evaluated in the Matlab Simulink environment 
confirm that the quality of the tested algorithms is diverse. 
From the viewpoint of our interest, that is the long running 
simulations, the best results are achieved by the REFACM 
algorithm – the contribution of this paper. The quality of 
REFACM in comparison with the other algorithms confirms 
the advantages of using ACM given the specific conditions 
featured in this work. 

ACKNOWLEDGMENTS 

The investigation reported in the paper was supported by 
Slovak Grant Agency APVV, project ID: APVV-0090-10 
and APVV-0160-07. This research is also supported by the 
grant from Norway through the EEA Financial Mechanism 
and the Norwegian Financial Mechanism. This project is also 
co-financed from the state budget of the Slovak Republic. 
This support is very gratefully acknowledged. 

REFERENCES 

Schmitz, U., Haber R., Bars R. (2003). A predictive On-Off 
controller for nonlinear processes. 14th. Int. Conference 
Process Control 2003, June 8-11, 2003, Štrbské Pleso, 
Slovakia 

 
Vachálek, J. (2004). Priebežná identifikácia laboratórneho 

modelu s využitím dátového úložiska pre množinu 
linearizovaných modelov. Proceedings the 6th  
international scientific-technical conference Process 
control 2004, ŘÍP 2004, 8-11 June 2004, Kouty nad 
Desnou, Czech republic 

 
Kulhavý, R., Kraus, F.J. (1996). On Duality of regularized 

Exponencial and Linear Forgetting. Automatica, 1996, 
vol. 32, No 10, pp. 1403-1415. 

 
Praly, L. (1993). Robustness of model reference adaptive 

control. In 3th Yale WorkShop on application of 
adaptive system theory, 1993, Yale University, USA  

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

237



Simulation of 2D physics of objects captured

by web camera using OpenCV and Box2D

Michal Sedlák
∗

∗ Faculty of Electrical Engineering and Information Technology, Slovak
University of Technology, Ilkovi£ova 3, 812 19 Bratislava, Slovakia

(e-mail: michal.sedlak@stuba.sk)

Abstract: The paper presents one approach to simulation of physics applied on objects
captured by web camera. Introduced approach utilise OpenCV library for image capturing and
contour detection. Objects detected by OpenCV are reconstructed from its outlines in Box2D
environment so the physics can be applied to it. Because of restrictions of Box2D we needed to
do approximation and scaling of outlines and tessellation of objects with Delaunay triangulation
algorithm.
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1. INTRODUCTION

This paper describes applying of Newtonian physics to
objects recognized in image captured from camera. Sim-
ulation of physics is used in many modern applications.
You can �nd it in implementations used by game engines,
there are as well more complex implementation used in
3D drawing and animation programs or exact and precise
simulation in CAE and CAD programs. Paper describes
process of animation of objects, from a capturing phase,
over detection of the object outlines and interpretation of
objects in physical engine, to animation of such objects.
This approach can be applied in education of physics at
elementary schools, with interactive blackboards, or in
computer games.

2. OBJECT DETECTION AND OPEN COMPUTER
VISION LIBRARY

To apply a physics to hand drawn objects we need to
identify and isolate objects from image. We have used
a web camera as a source and Open Computer Vision
(OpenCV) library as processing tool of the images.

2.1 OpenCV

In regards the book of Bradski and Kaehler (2008)
OpenCV is a library for open source programming func-
tions for real time computer vision, with more than �ve
hundred optimized algorithms. It can be used with C++,
C and Python. We chose Python version, which is opti-
mized Python wrapper to C++ functions.

In the beginning we have to capture image to work
with. OpenCV library has implemented methods for image
capture from camera. Simple image capture is shown in
Listing 1.

1 s e l f . camera = cv .CaptureFromCAM(−1)
2 s e l f . image = cv . QueryFrame ( s e l f . camera )

3 s e l f . DetectOut l ine ( s e l f . image )

Listing 1: Query image frame from web camera

In line 1 of Listing 1 we initialize our web camera. In
variable camera is allocated and initialized object that can
query web camera for new image. Then as we see in
Listing 1 line 2 we can get the image from camera and
store it in the variable named image. Captured image is
shown in Fig. 1.

Fig. 1. Image captured form camera

Now when we have image data stored in the variable, we
can process data to �nd outlines.

1 def DetectOut l ine ( s e l f , image ) :
2 image_size = cv . GetSize ( image )
3 g r ay s c a l e = cv . CreateImage ( image_size , 8 ,

1)
4 cv . CvtColor ( image , g raysca l e , cv .CV_BGR2GRAY)
5 cv . Equa l i z eH i s t ( g raysca l e , g r ay s c a l e )
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6 s t o rage = cv . CreateMemStorage (0 )
7 cv . Threshold ( g raysca l e , g raysca l e , 50 , 255 ,

cv .CV_THRESH_BINARY)
8 s e l f . contours = cv . FindContours ( g raysca l e ,
9 cv . CreateMemStorage ( ) ,

10 cv .CV_RETR_TREE,
11 cv .CV_CHAIN_APPROX_SIMPLE)
12 i f l en ( s e l f . contours ) > 0 :
13 s e l f . contours = cv . ApproxPoly

( s e l f . contours ,
14 s torage ,
15 cv .CV_POLY_APPROX_DP,
16 1 . 5 ,
17 1)
18 return s e l f . contours

Listing 2: Outline detection

In function DetectOutline() in Listing 2 is shown how to �nd
outlines of objects in image. First we convert image to grey
scale as seen on Listing 2, line 3.

Then we run histogram equalization (Listing 2, line 5).
Equalization makes objects better visible and gives better
output for thresholding (Listing 2, line: 7) which makes
black and white as you can see in Fig. 2a.

Outline detection is done with function cv.FindContours()

(Listing 2, line: 8). Output of thresholding is shown in
Fig. 2b.

(a) Equalize histogram (b) Thresholding

Fig. 2. E�ects applied on images

After outline detection we have a tree of contours stored in
the variable self .contours. These trees are iterable objects
sorted from outer to inner outline connected by property
h_next and v_next that we will describe in paragraph
about creation of objects from outlines.

Contour can be very complicated and consist of thousands
of points, which would cause objets with thousands of
vertices. It is time demanding to simulate complicated
objects, that is why we use polynomial approximation of
the contour points. (line: 13). Visualisation of outlines is
shown in Fig. 3.

Now we have all outlines stored in the outline tree struc-
ture, so we can create objects and apply a physics.

3. PHYSICS SIMULATION IN BOX2D

There is lot of physics engines that can be used for
simulation of physics. Because we wanted to simulate
physics only in 2D we could code our own implementation
of physics, or use one of commercial or open source engines.

Fig. 3. Visualisation of contours

We chose Box2D [Thorn (2010)], which is open source 2D
physics engine with implementation of rigid body objects
and their collisions.

3.1 World

To create physics simulation we need to create world.
World is object that manages memory, objects and simu-
lation. Creation of world is shown in Listing 3:

1 s e l f . worldAABB=box2d .b2AABB( )
2 s e l f . worldAABB . lowerBound = (−100.0 , −100.0)
3 s e l f . worldAABB . upperBound = ( 600 .0 , 600 . 0 )
4 g rav i ty = ( 0 . 0 , −10.0)
5

6 doSleep = True
7 s e l f . world = box2d . b2World ( s e l f . worldAABB ,

grav i ty , doSleep )

Listing 3: Creation of Box2D world

First we have to create boundaries of the world. We de�ne
them as vectors from bottom left (Listing 3, line: 2) to
top right (Listing 3, line: 3). Objects have to be inside the
boundaries, when an object touch the boundary it gets
stuck. Then we de�ne gravity vector (Listing 3, line: 4).
The last thing before creation of the world we allow objects
to sleep (Listing 3, line: 6). Object that are not moving fall
asleep, then they are ignored by the engine. Last line of
Listing 3 creates the world.

World is created and we are ready to create objects from
outlines.

3.2 Objects

Every object that is simulated in Box2D consists of body
and shapes. Our objects are described by the contour tree.
To create objects we need to iterate through contour tree
to �nd contours that belongs together and create objects
for these contours.
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3.3 Contour tree

Contour tree is object in which are stored points of each
contour. Contours are connected by functions returning
reference to other contours with h_next() and v_next(),
where h_next() is reference to deeper contour, and v_next()

is reference to another object contour. To iterate over
all contours we have created recursive function shown in
Listing: 4.

1 def CreateObjectsFromCountours ( s e l f , cont ,
h=0, v=0) :

2 i f v>0:
3 dens i ty = 10 .0
4 else :
5 dens i ty = 0
6 i f l en ( cont ) >8:
7 s e l f . CreateObject ( cont , h , v )
8

9 i f cont . v_next ( ) :
10 v += 1
11 s e l f . CreateObjectsFromCountours (

cont . v_next ( ) , h , v )
12 v −= 1
13

14 i f cont . h_next ( ) :
15 h += 1
16 s e l f . CreateObjectsFromCountours (

cont . h_next ( ) , h , v )

Listing 4: Function to iterate through contour tree

We iterate through contour tree. First level is outer con-
tour of the image (Listing 4 line: 2), because we do not
want the outer contour to move, we set it as static by
setting density to 0 (Listing 4 line: 5). Every other contour
is dynamic body with density set to 10 (Listing 4 line: 3).

When we know what type of object we will create, we can
create bodies and shapes for our contours.

3.4 Bodies, shapes and collisions

Bodies are backbone used by shapes. One body can contain
more shapes, but one shape could be attached to only one
body. Box2d is rigid body physics engine, that mean that
shapes attached to body can not move against other, or
body. Body have position and velocity. Forces, torques and
impulses can be applied to body [Catto (2010)]. Bodies
just hold the shapes and shapes are elements that collide
together.

Listings 5,6,7 shows process of object creation:

1 def CreateObject ( s e l f , cont , h , v ) :
2 contM = [ ]
3 for point in cont :
4 x = point [ 0 ] / 3 0 . 0
5 y = point [ 1 ] / 3 0 . 0
6 contM . append ( ( x , y ) )
7

8 bd=box2d . b2BodyDef ( )
9 bd . p o s i t i o n = ( 0 . 0 , 0 . 0 )

10

11 edgeDef=box2d . b2EdgeChainDef ( )
12 edgeDef . s e tV e r t i c e s ( contM)
13

14 i f v==0:
15 body = s e l f . world . CreateBody (bd)

16 try :
17 s e l f . contourBodies . append ( body )
18 except :
19 s e l f . contourBodies = [ body ]
20 body . CreateShape ( edgeDef )

Listing 5: Creation of object from outer contour

Image size is measured in pixels and Box2D units are
kilograms, meters, and seconds (KMS) we should scale
images coordinates to �t in 0.1m to 10m. In that scale
is performance of Box2D the best. We are doing it by
dividing of value of pixel coordinates by 30.0 (Listing 5
line: 4)

Then we create a body de�nition that will represent our
contour(Listing 5 line: 8) and set up it initial position in
next line.

After that we create shape of body as chain of edges
(Listing 5 line: 11) and assign the array of vertices to
it (Listing 5 line: 12). Edges are special type of shapes
that have no mass. Edges are represented as lines between
vertices that collide with other non-edge objects. Edges
are easy to create because they do not have to be concave
unlike polygons.

At last we attach this shape to created body Listing 5
20. Because Box2D does not keep track about body
de�nitions, we have to store bodies in to array for later
use (Listing 5 line: 19).

Listing of the function CreateObject() continues in Listing 6.
This part of function creates dynamic objects inside the
outer contour. In this part we prepare list for bodies of
objects, so we can modify objects that are already created
or objects that we want append new shapes.

21 i f v == 1 :
22 try :
23 body = s e l f . ob j ec tBod i e s [ h ]
24 except :
25 body = s e l f . world . CreateBody (bd)
26 s e l f . ob j ec tBod i e s [ h ] = body

Listing 6: Creation of objects

3.5 tessellation

Box2D supports only collisions between convex objects
and contours of objects captured by camera are mostly not
convex. So we have to break outlines to convex polygons.
There is more ways how to break concave objects. We
chose the 2D constrained Delaunay triangulation algo-
rithm implemented by poly2tri Python library[Rognant
et al. (1999)]. Function CreateObject() continuous in List-
ing 7

27 po l y l i n e = [ ]
28 for (x , y ) in cont :
29 po l y l i n e . append ( p2t . Point (x , y ) )
30 cdt = p2t .CDT( po l y l i n e )
31 t r i a n g l e s = cdt . t r i a n gu l a t e ( )
32 for t in t r i a n g l e s :
33 x1 = t . a . x /30 .0
34 y1 = t . a . y /30 .0
35 x2 = t . b . x /30 .0
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36 y2 = t . b . y /30 .0
37 x3 = t . c . x /30 .0
38 y3 = t . c . y /30 .0
39 i f math . hypot ( x2−x1 , y2−y1 ) <0.1:
40 x2 = x2 + math . copys ign ( 0 . 1 , x2−x1 )
41 y2 = y2 + math . copys ign ( 0 . 1 , y2−y1 )
42 i f math . hypot ( x3−x2 , y3−y2 ) <0.1:
43 x3 = x3 + math . copys ign ( 0 . 1 , x3−x2 )
44 y3 = y3 + math . copys ign ( 0 . 1 , y3−y2 )
45 i f math . hypot ( x1−x3 , y1−y3 ) <0.1:
46 x1 = x1 + math . copys ign ( 0 . 1 , x1−x3 )
47 y1 = y1 + math . copys ign ( 0 . 1 , y1−y3 )
48 poly=box2d . b2PolygonDef ( )
49 poly . s e tV e r t i c e s ( ( ( x1 , y1 ) , ( x2 , y2 ) ,

( x3 , y3 ) ) )
50 poly . dens i ty = 1 .0
51 poly . r e s t i t u t i o n = 0 .0
52 poly . f r i c t i o n = 0 .0
53 body . CreateShape ( poly )
54 body . SetMassFromShapes ( )

Listing 7: Creation of objects

The creation of objects continues with tessellation. We
need to assign vertices to structure that could be un-
derstood by poly2tri library (Listing 7 line: 29) and we
initialize the CDT object (Listing 7 line: 30). In next
line we call function that will create triangles from the
vertices assigned before. These triangles are in image pixel
coordinates, so we need to scale them at �rst (Listing 7
lines: 32-38). Now when we have triangles scaled we need
to scale the triangles that are too small to triangles with
size at least 0.1m because of speed optimalization, this
is done in Listing 7 lines: 39-47). Now we have set of
triangular shapes that could be attached to body (Listing 7
line: 53). Because these objects are compound objects,
we need to set the center and amount of mass to this
body. We can let Box2D set this properties based on shape
information with function SetMassFromShapes() (Listing 7
line: 54). Visualisation of objects is in Fig. 4.

Fig. 4. Visualisation of objects after triangulation

After this we can add other objects and start simulation
by function Step(). After few second of simulation are all
objects on the bottom of the screen like is shown in Fig 5.

Fig. 5. Visualisation of simulation

4. FUTURE WORK

This approach can be used in interactive blackboards used
for education of physics on elementary schools, in future
work we plan to implement identi�cation of some special
objects like springs or joints.

We are planning to implement object tracking, and dy-
namic object morphing so we could interact with simu-
lated objects. Because of Box2D is rigid body engine, is
complicated to simulate physics of objects that change
their shape in time. We plan to implement some soft body
elements to make this possible.

The last stage will be usage of captured images as source
of textures of simulated objects. Because this is only
decorative element, we are planning to implement this task
as a last one.
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Abstract: Paper deals with different techniques of nonlinear reactor furnace control. The first part briefly 
describes the real system (reactor furnace), which is a nonlinear system because of different heat transport 
mechanisms. Then different approaches to the system control are described. Firstly standard technique using PID 
controller, and secondly two predictive control strategies (Generalized Predictive Controller and Neural Network 
Predictive Controller). 

 
 
 

1.   INTRODUCTION 
 

Different techniques of the reactor furnace control are 
described and compared in the paper.  

Furnace is made for chemical reactor heating. The reactor 
provides measurements of oxidation and reduction qualities 
of catalyzers in the different temperatures. It is necessary to 
consider a nonlinear furnace behavior, because of huge 
range of reactor temperature (Dušek, et all.,1997). 
 

2.   REACTOR FURNACE DESCRIPTION 
 
The furnace base is a cored cylinder made of insulative 
material.  On the inner surface there are two heating spirals. 
Spirals are powered by the voltage 230 V. In the middle of 
the cylinder there is a reactor. The reactor temperature is 
measured by one platinum thermometer (see Figure 1).  

The system is a thermal process with two inputs (spiral 
power and ambient temperature) and one output (reactor 
temperature). Thus, controlled variable is the reactor 
temperature and manipulated variable is spiral power, 
ambient temperature is measured error. 

Nonlinearity of the system is caused by heat transfer 
mechanism. 

 When the temperature is low, heat transfer is provided 
only by conduction. However, when the temperature is 
high, radiation presents an important transfer principle. 

 

 
Fig. 1. Reactor furnace chart  

 
Nonlinear mathematical model (set of four differential 
equations) and its linearization is described in (Mareš et 
all., 2009) and (Mareš et all., 2010a). 

 
3.   PID CONTROL 

 
The first approach how to control the reactor furnace is the 
simplest way – PID control, where gain and time constants 
were set according to T. method, more in (Kuhn, 1995). 
The method gives the PID control response slow but very 
robustness. Even nonlinear systems are possible to control 
quite satisfactorily. 

The only necessity for the controller parameters estimation 
is to measure the step response of the system. Then we can 
calculate gain and parameter T., see figure 2 and equation 
(1). Constants of the controller are calculated from these 
parameters, according to table 1. 

 

 
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Fig. 2. T method principle 
 
Table 1 – PID parameters calculation 

 r0 TI TD 
PI 0,5/Z 0,5.T 0 

PID 1/Z 0,66.T 0,167.T 
 

The step response was measured (step of the spiral power 0 
– 100 W) and the PI controller parameters were estimated, 
table 2. 
 
Table 2 – PI controller setting 

 r0 TI TD 
PI 3,38 223 0 

 
The control experiment was realized at the system. Results 
are shown in figure 3, where the first chart shows the 
manipulated variable, the second chart shows the set point 
and controlled variable and the third chart shows the error 
between set point and controlled variable.    
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Fig. 3.PID control 
 

4.   GENERALIZED PREDICTIVE CONTROL 
 
Generalized Predictive Control (GPC) belongs to the group 
of complex predictive controllers where model is needed. 
We assume the model in the form of equation (2). 


  )()()1()()()( 111 kezCkuzBkyzA     (2) 

where A, B, C are polynomials, y (k) is model output, u (k) 
is model input e (k) is output error and Δ is described by 
Δ= 1-z -1. It is possible to convert (2) to the form of 
equation (3) 
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where AA . . 

The model is used for the calculation of the future output 
prediction. There are several different methods how to 
calculate it. One of the simplest ways (using the inverse 
matrix) is described in this chapter.  

 The prediction of N steps is possible to rewrite by the set 
of equations (4). 
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In matrix form it is possible to write 
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Future output prediction of the system y(t+i) is possible to 
calculate by multiplying the equation (5) by the inverse 
matrix A -1, equation (6). 
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Last two terms describes only the system history, therefore 
it is possible to put them together to the matrix F and the 
vector of historical output and inputs  Tuyh  . Thus, the 
equation of prediction is possible to write in the form of 
equation (7). 

hFG.uy .       (7) 

The aim of GPC is to calculate the vector of manipulated 
variable by minimizing of the cost function (8). 
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N

T
NJ   (8) 

where e is vector of control errors (length N), u is vector of 
manipulated variables (length N) and λ is weighting 
coefficient. 

The cost function can be modified using output prediction 
(9) and set point vector w. 

.uuF.hG.uwF.hG.uw T.)()(  TJ  (9) 

We can calculate the vector of manipulated variable u 
analytically using the square norm. Then we get equation 
(10). 

F.h).(w.G.I).G(Gu T1T  λ  (10) 

We usually need only one actual value of the manipulated 
variable (the first element of the vector) therefore the final 
form of the control law is equation (11). 
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where K is the first row of matrix  (GT.G+λ.I) -1.GT 

 

GPC theory is formulated for the group of linear systems 
control but in the case of nonlinear systems it is not 
possible to use it because the linear model is not able to 
describe the nonlinear process well. Nonlinear system 
control needs nonlinear model or linearized model (this 
case). 

In the case of piecewise linearized GPC we can do the 
linearization of the model and formulate it in the form of 
(3). Matrices G and F are possible to calculate from this 
form in defined number of linearization points, equation 
(7). Thus, the controller will switch between pre-calculated 
setting during control experiment (according to reactor 
temperature). Moreover, it is possible to interpolate 
between two adjoining settings. Nonlinear behavior of the 
system is substituted by piecewise linearized model. 
Complex description of this approach is in (Mareš et 
all.,2010b). 

 The control experiment was realized too. Results are 
shown in figure 4, where the description of charts is the 
same as in previous example.    
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Fig. 4.Linearized GPC  

 
5. NEURAL NETWORK PREDICTIVE  CONTROL 

 
Another approach to predictive control is described in this 
section. Predictive controller here uses a neural network 
(NN) model of nonlinear plant to predict future plant 
performance. The controller then calculates the control 
input that will optimize plant performance over a specified 
future time horizon. 

The first stage of NN predictive control is to design a 
neural network which represents the dynamics of the plant. 
The prediction error between the plant output and NN 
output is used as the neural network training signal (see 
figure 5). 

 

PLANT

NEURAL NETWORK 
MODEL

LEARNING
ALGORITHM

u(k) y(k)

-ym(k)

PLANT

NEURAL NETWORK 
MODEL

LEARNING
ALGORITHM

u(k) y(k)

-ym(k)

 
Fig. 5. – NN model identification 

This neural network can be trained offline in batch mode, 
using data collected from some experiments with the plant. 
Any backpropagation algorithm can be used for network 
training. Process of neural network model design is 
discussed in detail in (Taufer et all., 2008). 

In this control technique, neural network predicts the plant 
response over a specified time horizon. The predictions are 
used by some search technique to determine the control 
signal that minimizes the following performance criterion 
over the specified horizon N 

uuee ... T
N

T
NJ   (12) 

where eN and u are the same vector as in (8). 

The figure 6 illustrates the NN model predictive control 
process. The controller consists of the neural network plant 
model and the optimization block. The optimization block 
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determines the values of u’(k) that minimize the criterion J, 
and the optimal u’(k) is input to the plant. 

It is obvious, that key part of block diagram below is 
optimization block or used search technique, more 
precisely. Mostly, optimal u’(k) is not found every sample 
time, because only fixed number of iterations is performed 
per one sample time. 

Whole control technique is included in Neural Network 
Toolbox of Matlab. 

OPTIMI-
ZATION

NEURAL 
MODEL

PLANT

ymu'

u
w

y

CONTROLLER

OPTIMI-
ZATION

NEURAL 
MODEL

PLANT

ymu'

u
w

y

CONTROLLER

 
Fig. 6. NN predictive control  

Control experiment with NN predictive controller was 
performed (Prediction horizon N = 20, λ = 0.1, golden 
section search routine). Neural network model was trained 
offline with Levenberg-Marquardt training algorithm and 
its topology is illustrated in figure 7. Control performance 
can be found in figure 8. 

N.S.

z-1

y(k)

z-1

z-1

z-1

u(k)

N.S.

z-1

y(k)

z-1

z-1

z-1

u(k)

 
Fig. 7. NN model  

 

 
Fig. 8. NN predictive control performance  

 
 
 

6.   CONCLUSIONS 
 

Paper deals with different techniques of real system 
(reactor furnace) control. As the introduction there is a 
brief description of the plant, which behavior is nonlinear 
because of the range of the reactor temperature. 

The first part describes the simplest way – PID controller, 
where gain and time constants were set according to T. 
method. The method gives the PID control response very 
slow but robustness. Therefore, nonlinear systems are 
possible to be controlled quite satisfactorily. 

Then, the second part describes the predictive control 
design which uses firstly linearized mathematical model 
and secondly neural network model. 

As conclusion, it is possible to say, that all three 
approaches gives satisfactory results and are able to control 
nonlinear system properly.  
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Abstract: This paper proposes multiple-step active control algorithms based on MPC approach
that approximate persistent system excitation in terms of the increase of the lowest eigenvalue of
the parameter estimate information matrix. It is shown how the persistent excitation condition
is connected with a proposed concept of stability of a system with uncertain parameters. Unlike
similar methods, the proposed algorithms predict the information matrix for more than one step
of control. The problem is formulated as an MPC problem with an additional constraint on the
information matrix. This constraint makes the problem non-convex, thus only locally optimal
solutions are guaranteed.

Keywords: Adaptive systems and control; Input and excitation design; Stochastic control;
Dual control approximation; Model predictive control.

1. INTRODUCTION

Controller design is usually based on some performance
specifications that should be satisfied for a system model.
Thus the controller design is primarily based on some
model that describes the system up to a certain precision.
Various algorithms exist that take into account the model
uncertainty, based on uncertainty model both in time and
frequency domain. Usual algorithms, however, do not take
into account the possibility that the control process itself
may bring some information about the controlled system
and thus improve the model.

The simultaneous optimal control and identification prob-
lem is referred to as a dual control problem Feldbaum
(1960–61) which is known to be analytically solvable for
only very special systems as in Sternby (1976); Åström
and Helmersson (1986) as it requires solving the Bellman
equation (Bertsekas (2005)). Numerical solution faces the
curse of dimensionality problem. There exist approxima-
tions of the optimal solution based on suboptimal solu-
tion of the original problem,(Lee and Lee (2009); Lindoff
et al. (1999, 1998); Wittenmark (1995, 2002); Chen and
Loparo (1991)), or on problem reformulation (Filatov et al.
(1996)). An overview of the state-of-the-art methods is
given in Filatov and Unbehauen (2004), where an algo-
rithm with dual properties is defined as one that actively
gathers information during the control process while sat-
isfying given control performance.

In this paper we propose three algorithms based on the
idea of the persistent system excitation (Goodwin and
Sin (1984)). The persistent excitation condition requires

⋆ This is a preliminary version of the paper Multiple-step active
control with dual properties, which will be presented at the 18th
IFAC World Congress, 2011, in Milan.

that the information about the system in the sense of its
parameter information matrix is increased linearly, i.e.

P−1
t+M − P−1

t ≥ γI (1)

for all t and some given M , where P−1
k denotes the

information matrix (i.e. the inverse of the variance matrix)
after k steps of control, γ is a given real constant and I
denotes the identity matrix of corresponding order. The
inequality symbol > is used in the positive definiteness
meaning, i.e. for two matrices A and B, A > B means
that A − B is a positive definite matrix.

The proposed algorithms are based on a constrained MPC
control design that is adjusted such that the persistent
excitation condition is satisfied. This control problem is
formulated and analysed in section 3. In section 2 we
show a motivation example for such design and propose a
concept of stability of a system with uncertain parameters.
This concept is based on a requirement that the mean
value of a given quadratic criterion is finite over infinite
control horizon. It is shown on the motivation example
that the persistent excitation condition (1) is also sufficient
for stability in this sense.

The proposed algorithms predict the information matrix
over more than one step of control. This prediction is
one of the two major problems of the methods, as the
only practically computable prediction based on certainty
equivalence assumption is used. The second major problem
is the inherent non-convexity, the reason why only local
solution is guaranteed to be found when using numerical
methods for problem solution.

Section 4 contains derivations and descriptions of individ-
ual algorithms. All algorithms are designed for autoregres-
sive systems with external input (ARX), although their
formulation allows for future generalization for ARMAX
systems with known MA part (Havlena (1993); Peterka
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(1986)). Finally, section 5 shows simulations of the pro-
posed methods and we conclude in section 6.

2. PERSISTENT EXCITATION AND STABILITY

In this section we will introduce a concept of stability of
a closed loop system with fixed but unknown parameters
and show how this concept is connected with the persistent
excitation conditions.

2.1 The concept of stability

Let us consider a general ARX system. Such system has a
form

yk =

n∑

i=1

aiyk−i +

m∑

i=0

biuk−i + ek, (2)

where ui and yi are system inputs and outputs, respec-
tively and ei is a discrete-time white noise. Let us as-
sume that the system parameters ai and bi are fixed but
unknown constants. Also let us assume that at the time
k = 0 we have some estimate of the parameter values, that

we will denote âi,0 and b̂i,0. These parameter estimates
can be used for controller design and they are expected
to get more precise during the future control process. If
the estimate is unbiased, the estimate error at time k,

ãi,k = ai − âi,k and b̃i,k = bi − b̂i,k is a random vector
with zero mean and variance matrix Pk.

Because the future estimates of parameters are not avail-
able at the initial time k = 0, it is convenient to model such
situation by a stochastic process, the parameters of which
are random variables ai,k and bi,k with mean âi = âi,0 and

b̂i = b̂i,0 and variance matrix Pk. The advantage is that
properties of the estimate errors remain unchanged. It will
also be supposed for simplicity of computations that ai,k

and bi,k are independent with respect to time k.

Let us now consider a linear quadratic (LQ) controller
for this system. The controller minimizes the following
criterion

JN =

N∑

k=1

{
ru2

k + y2
k

}
, (3)

minimization of which leads to a feedback control law. One
way to cope with unknown system parameters in controller
design is to use the certainty equivalence (CE) approach,
i.e. substitute these parameters with their mean value. In

the previous model, it means to use âi and b̂i instead of
ai,k and bi,k, respectively.

The question now is, whether such control will be stable. If
the real parameters are far from their mean values, the LQ
control based on CE becomes unstable. If the set of param-
eters for which the closed loop system becomes unstable
has a constant nonzero probability, then the criterion mean
E JN will go to infinity as N → ∞. This is the case,
when the parameter estimate is not updated during the
control process and its variance remains unchanged. The
only way to make the criterion mean EJN converge to a
finite value is to make the probability of the unstable set of
parameters decrease sufficiently fast to zero. Based on the
previous analysis, we can define the stability of a closed
loop system in the following way: A closed loop system is
stable, if EJ∞ = lim

N→∞
E JN < ∞.

We will now show on a simple example that if the variance
of the parameters decreases as N−1, or equivalently, if
its inverse (or information) increases linearly, than the
stability is guaranteed for a CE feedback LQ controller.
The condition of a linear information growth is also called
a condition of persistent excitation in identification theory
and guarantees that the parameter estimates converge fast
to the real values.

2.2 Derivation of stability condition

As stated before, we will now show that a linear growth
of information is sufficient to guarantee stability in the
previously defined sense. We will not show a formal proof
but rather use a simple example to demonstrate the idea.

Let us consider the following simple discrete integrator
system

yk = yk−1 + bkuk + ek, (4)
with only one unknown parameter bk, that is modeled
as a random variable in compliance with the previous
subsection. For r = 0 in (3), the CE feedback control law
is

uk = −1

b̂
yk−1, (5)

where b̂ is the parameter mean value. The control law is

defined for all nonzero b̂, which is exactly the condition for
the system to be controllable. The system output is then

yk = yk−1 − bk

b̂
yk−1 + ek =

b̃k

b̂
yk−1 + ek. (6)

The noise ek will be further omitted for simplicity, as it
does not change the result. From (6) it follows that

yk =

∏k
i=1 b̃i

b̂k
y0, (7)

and

JN =

N∑

k=1

{
y2

k

}
=

N∑

k=1

{∏k
i=1 b̃2

i

b̂2k
y2
0

}
. (8)

The mean of the criterion is then

EJN = E
N∑

k=1

{
y2

k

}
=

N∑

k=1

E

{∏k
i=1 b̃2

i

b̂2k
y2
0

}
. (9)

The criterion will only converge to a finite value, if the
elements of the series converge to zero fast enough. But,
using the independence assumption,

E y2
k = E

{∏k
i=1 b̃2

i

b̂2k
y2
0

}
=

∏k
i=1 σ2

i

b̂2k
y2
0 , (10)

where σ2
i is the variance of bi. Now, if the linear growth of

information is guaranteed, i.e. σ2
i =

σ2
1

i , it holds

E y2
k =

(
σi

b̂

)2k
1

k!
y2
0 , (11)

so the series is convergent for any σ1 and any nonzero b̂.

This idea can be even generalized for varying b̂ = b̂k, if it

is guaranteed that |̂bk| > ǫ for all k and some ǫ > 0.

3. PROBLEM FORMULATION AND ANALYSIS

This paper deals primarily with ARX systems that are
usually given in a form of the following equation

yk = zT
k θ + ek = xT

k θx + ukb0 + ek, (12)
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where θ = [b0, a1, b1, . . . , an, bn]T = [b0, θ
T
x ]T is a vector of

parameters and zk = [uk, yk−1, uk−1, . . . , yk−n, uk−n]T =
[uk, xT

k ]T .

The presented algorithms, however, are derived using
state-space descriptions of a linear stochastic discrete-time
system (Aström (1970)), in a usual form

xk+1 = Axk + Buk + Eek (13)

yk = Cxk + Duk + ek,

with the usual meaning of symbols, i.e. A, B, C, D and E
are system matrices of proper dimensions, uk, yk and xk

are the system input, output and state, respectively and
ek is a gaussian white noise sequence with zero mean and
constant finite variance.

Therefore the following nonminimal state-space represen-
tation of an ARX system (12) will be used

A =




a1 b1 . . . bn−1 an bn

0 0 . . . 0 0 0
1 0 . . . 0 0 0
0 1 . . . 0 0 0
. . . . . .
0 0 . . . 1 0 0




B =




b0

1
0
0
...
0




E =




1
0
0
0
...
0




C = [ a1 b1 . . . bn−1 an bn ] D = [ b0 ] (14)

The state in this representation is xk defined above and
is directly measurable, as it is formed by previous inputs
and outputs. The symbol θ has the meaning of the current

estimate θ̂0 from section 2 and will be used for simplicity
of notation.

3.1 Problem formulation

A standard MPC problem is formulated as a minimization
problem

U∗ = arg min
U

JN = arg min
U

N∑

k=1

{
ru2

k + y2
k

}
, (15)

s. t. xk+1 = Axk + Buk

yk = Cxk + Duk

|uk| ≤ umax, |yk| ≤ ymax

where N is the control horizon, r is a positive real tuning
parameter and umax, ymax are hard constraints on inputs
and outputs, respectively. To ensure persistent system
excitation, the criterion must also take into account the
improvement of information gained after some amount
of control inputs, i.e. the persistent excitation condition
(1). In the case of an ARX system (12) it takes the form
(Anderson and Moore (2005))

P−1
t+M − P−1

t =

t+M∑

k=t+1

{
zkzT

k

}
≥ γI, (16)

where zk is the system regressor at time k defined in (12).
We will consider t = 0 for simplicity of notation, the case
of general t is straightforward.

Let us now introduce some notation. It holds that∑M
k=1 zkzT

k = ZMZT
M , where ZM = [z1, . . . , zM ]. The

regressors are columns of the matrix ZM and can be
expressed as a linear function of the initial condition of
the system x0 = [y0, u0, y−1, u−1, . . . , y−n+1, u−n+1]

T and
the input vector U = [u1, . . . , uN ]T as

zk = Fk

[
x0

U

]
, k = 1, . . . ,M, (17)

where Fk is a matrix of appropriate dimensions. Similarly,
the rows of ZM are formed by shifted inputs and out-
puts, particularly [u1, . . . , uM ] to [u−n+1, . . . , uM−n] and
[y0, . . . , yM−1] to [y−n+1, . . . , yM−n]. Let us denote the k-
th row of ZM as wk, k = 1, . . . , 2n + 1. Also wk can be
expressed by

wT
k = Gk

[
x0

U

]
, k = 1, . . . , 2n + 1, (18)

where Gk is a matrix of appropriate dimensions. The
vector Y = [y1, . . . , yN ] can be expressed as

Y = H

[
x0

U

]
, (19)

where H is a matrix of corresponding dimensions. Also let
us call M the excitation horizon. Putting together (15)
and (16) and using the introduced notation (17), (18) and
(19) the problem has the form

U∗ = arg min
U

{
rUT U +

[
xT

0 UT
]
HT H

[
x0

U

]}
(20)

s. t. |uk| < umax, |yk| < ymax

M∑

k=1

{
zkzT

k

}
≥ γI

Because the suitable γ is hard to be stated apriori, it can
be seen as a tuning parameter for the algorithm. We can
see that there is a tradeoff between the criterion value
JN and the minimum eigenvalue γ. In some cases, it is
more natural to reverse the problem – define the maximum
criterion value and maximize γ within these constraints.
Let us denote the optimal criterion value of the MPC
problem (15) as J∗

N . Then the alternative formulation of
the problem is

γ∗ = arg max
U

γ, (21)

s. t.

{
rUT U +

[
xT

0 UT
]
HT H

[
x0

U

]}
≤ J∗

N + ∆J

|uk| ≤ umax, |yk| ≤ ymax

M∑

k=1

{
zkzT

k

}
≥ γI

for a given maximum criterion change ∆J .

3.2 Problem analysis

The problem (20) or its alternative (21) differ from the
original MPC (15) only in the last condition. As the MPC
problem is convex and standard algorithms exist for its
solution, the presented algorithms in fact differ only in
how they cope with the last condition (16).

Because the information matrix (16) consists of quadratic
and bilinear terms, both problems are non-convex in
control inputs, as demonstrated in Figure 1, which shows
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the lowest eigenvalue of the information matrix of a second
order ARX system after two steps of control as a function
of the two inputs u1 and u2. This is a difference from
simple one-step approaches where the solution always lies
on the constraints (Filatov and Unbehauen (2004)) and is
a reason for using numerical methods.

The second problem caused by the extra condition (16)
is that the sum cannot be actually computed precisely,
because it contains future outputs that do not depend only
on future inputs, but also on the parameter values and
input noise. A lower bound of the mean of the variance ma-
trix could be achieved by computing E zk E zT

k ≤ E(zkzT
k )

from Jensen’s inequality. However, even computing E zk

is complicated, as the computation needs higher moments
of the parameter joint distribution. Therefore, the condi-
tional mean Eθ0

zk = E(zk|θk = θ0,∀k = 1, . . . ,M) is used
instead of the mean E zk.

Also note that because the information matrix increment
in (16) is a sum of M dyads, its rank is less or equal to M .
Therefore it is necessary that M ≥ 2n+1 (i.e. the length of
the regressor) to be able to achieve that all its eigenvalues
are positive. On the other hand, N should be significantly
greater than M so that the control criterion can take into
account the future impact of identification procedure on
the control quality. The last observation is that as the
criterion minimization and information maximization are
in contradiction, the persistent excitation condition may
not be possible to satisfy, i.e. the problem may easily be
infeasible for some choice of ∆J and γ.

4. PROBLEM SOLUTION

In the previous section, the problem was formulated as
a non-convex problem. The non-convexity introduced by
(16) can be handled in several ways. This section presents
three different methods to solve the problem (20) and (21).

4.1 Rank 1 algorithm

The rank 1 algorithm is based on a convex relaxation of the
problem and concentrating all non-convexity into a rank
constraint. Using the notation (17), (16) is rewritten as

M∑

k=1

Fk

[
x0

U

] [
xT

0 UT
]
FT

k > γI, (22)

or in a simplified form
M∑

k=1

FkUXFT
k > γI, (23)

using the notation[
x0

U

] [
xT

0 UT
]

=

[
x0x

T
0 x0U

T

UxT
0 UUT

]
= UX . (24)

The matrix UX consists of constant terms x0x
T
0 , terms

x0U
T and UxT

0 linear in U , and the term UUT quadratic in
U . The quadratic term makes the problem (23) unsolvable
as an LMI directly, and therefore the following reformula-
tion is used

UX2 =

[
x0x

T
0 x0U

T

UxT
0 Uq

]
(25)

s. t. rank (UX2) = 1, (26)

where Uq is now a general symmetric, positive definite ma-
trix, replacing the quadratic term UUT . All non-convexity
is now concentrated in the rank constraint (26) and drop-
ping this constraint the task can be solved as a normal
LMI problem (Boyd et al. (1994)) in more variables, known
also as Schor’s relaxation (Vandenberghe and Boyd (1996);
Lasserre (2000)).

Expressing the criterion as a Schur complement (Bernstein
(2005)) this relaxation makes it possible to solve the
original problem as a rank constrained LMI

U∗ = arg min
U

λ (27)

s. t.




λ
[
xT

0 UT
]
HT UT

H

[
x0

U

]
I 0

U 0
1

r
I


 ≥ 0

|uk| < umax, |yk| < ymax

M∑

k=1

FkUX2F
T
k > γI

rank UX2 = 1

Again, two versions corresponding to formulation (20) or
(21) are possible.

4.2 Gershgorin circle algorithm

This algorithm is based on eigenvalue approximation in
terms of Gershgorin circles (Bernstein (2005)). For a real
matrix A with entries aij define Ri =

∑
j 6=i |aij |, i.e.

the sum of absolute values of elements of the i-th row
without the diagonal element. Then each eigenvalue lies in
at least one of the Gershgorin circles defined as intervals
[aii − Ri; aii + Ri] for every i. This idea can be used
to create constraints on the elements of the information
matrix P−1

M . If the diagonal elements aii are greater than
some γ1 and the nondiagonal sum less than γ2, then the
lowest eigenvalue must be greater than γ1 − γ2.

Let us now formulate the above idea as an optimization
problem. The standard MPC part of the algorithm is
formed by the first two lines of (20) and the additional con-
straints are imposed on the elements aij of the information

matrix P−1
M = ZMZT

M . Using the fact that aij = wiw
T
j and

notation (18), it is necessary to ensure that

bij >
[
xT

0 UT
]
GT

i Gj

[
x0

U

]
,∀i, j = 1, . . . , 2n + 1, i < j

bij > −
[
xT

0 UT
]
GT

i Gj

[
x0

U

]
,∀i, j = 1, . . . , 2n + 1, i < j

bij = bji

γ2 >
∑

j 6=i

bij ,∀i = 1, . . . , 2n + 1

γ1 <
[
xT

0 UT
]
GT

i Gi

[
x0

U

]
,∀i = 1, . . . , 2n + 1 (28)

where bij are artificial variables that have the meaning

of absolute values of aij . Because the matrix P−T
M is

symmetrical, the first two constraints in are only required
for i < j.
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4.3 Orthogonal regressors algorithm

This algorithm is based on the idea, that the regres-
sors shape the information ellipsoid, that is the ellipsoid
xT (P−1

M )−1x = xT PMx = 1. The eigenvalues of P−1
M

correspond to the ellipsoid radii. Therefore similarly to
the previous algorithm, it is necessary to ensure that the
regressors’ norms |zi| > γ1 and that the regressors are ’as
much orthogonal as possible’, meaning that for all i 6= j,
zT
i zj < γ2. The problem again consists of the first two

lines of (20) and the following constraints

bij >
[
xT

0 UT
]
FT

i Fj

[
x0

U

]
,∀i, j = 1, . . . ,M, i < j

bij > −
[
xT

0 UT
]
FT

i Fj

[
x0

U

]
,∀i, j = 1, . . . ,M, i < j

bij < γ2,∀i, j = 1, . . . ,M, i < j

γ1 <
[
xT

0 UT
]
FT

i Fi

[
x0

U

]
,∀i = 1, . . . ,M (29)

The structure of the problem is similar to the previous
one, the difference is in the problem dimension. While

the number of constraints is (2n+1)(2n)
2 and the dimension

of the vectors is M in the Gershgorin algorithm, in this
case it is the reverse, i.e. the dimension of regressors is

2n + 1 and the number of constraints is (M)(M−1)
2 . From

this follows that in this case, M should be equal to 2n+1,
as the number of regressors should not be higher than their
dimension.

4.4 Stability

The stability of the proposed algorithms in the usual
(Lyapunov) sense can be guaranteed for the nominal

system, i.e. the system for which ˜ai,k = 0 and ˜bj,k = 0
for all i = 1 . . . n, j = 1 . . . m and all k = 1 . . . N . This
follows from the stability of the MPC controller (Rawlings
and Muske (1993)) and from the fact that the criterion is
bounded, therefore the difference δui = ui − u∗

i is square
summable, u∗

i denoting the MPC optimal solution.

5. SIMULATIONS

Simulations of the previously proposed algorithms are
shown in this section. The following ARX system was used

yk = 1.64yk−1−0.67yk−2+0.2uk+0.22uk−1−0.12uk−2+ek,
(30)

which is obtained by discretization of a system 1/(s +
1)2 with a sampling period Ts = 0.2s and modified in
order to have b0 6= 0. The system is controlled to zero
from the initial state x0 = [10, 0, 0, 0]T , i.e. the initial
output y0 = 10. Note that the nonminimal representation
(14) is used, so the system order is 4. The control was
designed for N = 30, M = 5, r = 1 and ∆J =
0.1J∗

N . Figures 2 and 3 show the inputs and outputs
of a control process for optimal MPC controller and all
three designed controllers, respectively. Figure 4 shows
the development of the variance matrix in the sense of
its greatest eigenvalue.

The Rank 1 algorithm was used in the form of (21) and was
solved by YALMIP (Löfberg (2004)) in MATLAB, with
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Fig. 1. The lowest eigenvalue of the predicted information
matrix after M = 5 steps of control as a function
of the two first inputs u1 and u2 around the optimal
MPC solution for the ARX system (30)

help of the LMIRANK solver (Orsi et al. (2006)). As the
solver only searches for feasible points, the algorithm was
run sequentially with γ varying according to the interval
bisection method to find the maximum information. Both
the Gershgorin and the regressor algorithm were solved by
the MATLAB standard function FMINCON.

6. CONCLUSIONS

This paper proposes three different algorithms for simulta-
neous identification and control, based on a standard MPC
approach with a demand on the parameter information
matrix in a form of the persistent excitation condition. The
paper also shows a motivational example which explains
the connection of the persistent excitation with a presented
concept of stability.

The proposed algorithms are derived from a general for-
mulation and in some cases it is shown that the persistent
excitation may not be satisfied precisely and only approxi-
mations are found. However, simulations show that the the
use of the proposed methods lead to better identification.

The drawback of all three methods is the inherent non-
convexity of the problem that causes convergence to local
optima only. Therefore the performance is not guaranteed
and may vary depending on the algorithms settings such
as the starting point or control and excitation horizon.
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Abstract: Contribution deals with one possible applications of image processing - recognition of moving object 
position. Traced object is robot MINDSTORM NXT, which is described in the first part of the paper. The me-
thodology of image processing and object recognition is discussed in the second part of the paper. The third 
part describes the application example. 

1 INTRODUCTION 

Signals (in the form of pictures or videos) processing is 
popular, interesting and widely discussed branch of research 
which has many applications in praxis: 

- transport engineering 

- biomedicine data processing 

- chemical industry 

Video processing is possible to divide into two groups: 

- offline - the whole set of images is taken and then proc-
essed 

- online - each taken image is immediately processed. 

 Both methods have their advantages and disadvantages. 
Offline images processing is suitable for astronomical or 
medical images processing, pollution image processing ect., 
[Pavelka et all, 2005]. Online image processing is t is rather 
good for tracking, observing and control. 

The contribution describes one of the applications of the 
second (online) way - online tracking of moving robot. 

2 DEVICE DESCRIPTION 

2.1 Robots Mindstorm NXT  

Robots MINDSTORM NXT are products of LEGO group, 
more in [www.eduxe.cz] and [Hlinovský et all, 2010]. It is 
typical LEGO brick box which is equipped by 32-bit micro-
controller with three output connectors and four input con-
nectors see Figure 1. Three servomotors are the outputs of 
the system and inputs are presented by  

 
 
- ultrasonic sensor,  
- sound sensor,  
- light sensor  
- touch sensor.  
Optionally, it is possible to add other sensors as gyroscope, 
compass, or camera.  

 
Fig. 1. MINDSTORM microcontroller  

Lego MINDSOTRM brick box is possible to set as any vari-
ant of mobile robot (see Figure 2). Robots can be absolutely 
autonomous (PC is used only for their programming) or can 
be depending on PC (robots provides only measuring, con-
trol is provided by the computer). Communication to PC is  
realized via USB 2.0 or Bluetooth.   

All programmes were built in MATLAB environment and 
MINDSTORM NXT Toolbox was used for communication 
to robot, [www.mindstorm.rwth-aachen.de]. Toolbox in-
cludes basic communication functions: 

- initialize robot 

- get data from defined sensor 
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- rotate defined servomotor 

 
Fig. 2. Different variants of robot  

 

2.2 Camera DRAGONFLY 

Camera DRAGONFLY is standard digital camera (see Fig-
ure 3). It features on-camera color processing and auto white 
balance, see [Kubíček, 2004]. 

 Specification details are: 

- CS-mount lens with variable focus and auto iris 

- resolution max 1296x964  

- Max 30 frames per second 

- IEEE-1394 ( Fire Ware) connector. 

 

 
Fig. 3. Camera DRAGONFLY  

3 METHODOLOGY OF TRACKING OBJECTS 

Generally, object recognition at any background is nontrivial 
problem. It is necessary to choose the object, find its centre 
and calculate the position. 

If the background has constant colour which is different 
from the colour of the object, only one object is recognized at 
the image and one centre position is found. 

Otherwise, if the background has a difficult structure and the 
background colour is similar to object colour, many object 
are recognized and it is not easy to find out which one is the 
right one. 

One of possible approaches is the frames difference method. 
Firstly, the image of background (without moving object) is 

taken. Then (at every sample time) this image is subtracted 
from the image of moving object. Constant parts of images 
are black (subtracted each other) and only tracked object 
remains.  Images with and without subtracted background 
are shown in Figures 4 and 5. 

 
Fig. 4.Object and background with difficult structure  

 

 
Fig. 5.Image after subtraction of background  

 

After subtraction and the object recognition, it is necessary 
to find the center and calculate the position (in praxis tre-
sholding and filtration is used too). The object center is poss-
ible to find by cutting out the subset bounded by upper, low-
er, left and right points of tracked object from the image. 
Object center is given by the center of this new matrix.  

For calculation of real object position in 2-D coordinate sys-
tem, camera calibration is needed. It is necessary to evaluate 
horizontal and vertical angles of the camera. Using the cali-
bration grid placed in the distance d from camera it is possi-
ble to find both horizontal shorizontal and vertical svertical 
sizes of the figure. These parameters can then be used for 
evaluation of the limits of angles (using rectangular dark 
and light triangles). 
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Figure 6 – Camera calibration 
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 Finally, it is necessary to calculate calibration 
straight-lines for horizontal and vertical directions. 

Moving object tracking algorithm: 

1. Initialize hardware 
2. Calibrate the camera 
3. Take the first frame of background (without moving 

object) 
4. Take frames of moving object in the cycle 

i.  Take the frame 

ii.  Calculate the difference 

iii.  Find the center 

iv.  Calculate the position   

4 APPLICATION EXAMPLE 

Methodology of moving object tracking was applied to rec-
ognition MINDSTORM robot position. 

Robot moved randomly in defined space. Its movement was 
tracked by the camera which was placed above it. Camera 
setting was one frame per second. Each frame was immedi-
ately processed and actual robot position was calculated.  

Important parts of MATLAB code are shown in chapter 4.1 
and the result- moving object trajectory is plotted in Figure 
7. 

 

4.1 MATLAB code 
     

Images acquiring and processing 
obj=videoinput('dcam',1,'Y8_1024x768'); 

set(obj,'FramesPerTrigger',1);  

preview(obj)    

start(obj);                                  

[f_pozadi,t]=getdata(obj);  

 

for i=1:1:5  

start(obj);          

[f_pozice,t]=getdata(obj); 

diff=imabsdiff(f_pozadi,f_pozice); 

tresh=graythresh(diff);    

bw=(diff>=tresh*255);  

L=bwlabel(bw); 

s=regionprops(L,'area','centroid'); 

area_vector=[s.Area]; 

[tmp,idx]=max(area_vector);  

Centroid =s(idx(1)).Centroid; 

X(i)=centroid(1);  

Y(i)=centroid(2);    

alfaXh(i)=ah*X(i)+bh;   

alfaYv(i)=av*Y(i)+bv; 

xposition(i)=alfaXh(i)/alfah*sh*100; 

yposition(i)=alfaYv(i)/alfav*sv*100; 

end 

figure 

plot(xposition,yposition,'o-r',) 
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Fig. 7.Moving robot trajectory 
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5 CONCLUSIONS 

Image processing is popular and widely discussed branch of 
research nowadays. 

Contribution deals with one of possible approaches to image 
processing - moving object tracking (i.e. for control pur-
poses).  

One digital camera was used as a sensor of localization of 
moving robot, thus the trajectory in two-dimensional space 
was calculated. If two or more cameras were used, 3-D re-
construction could be evaluated. 

This methodology of object tracking is usable for one mov-
ing object tracking  at anystatic background. 
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Abstract:Presented paper presents principle of Hough transform on fundamental geometric forms and 

algorithm of its application. Fundamental geometric forms are used to explain core of this method. These 

statements are expanded on more complex simulated image and critical aspects of using Hough transform 

are discussed. Tested methods were applied on microscopic images of Al Alloy which were treated by 

conditions of Vickers indentation test. 

 

 

1. INTRODUCTION 

Field of Hough transform use interferes in many branches 

of practical applications. Line and shape detection is the 

very essence of detection of particles in cryo-electron 

microscopy images (Zhu et al. 2001, Zhu et al. 2003) for 

example. Aerial images are utilized for semi-automatic and 

automatic detection of rectangular structures, such as 

vehicles (Zhao et al. 2001) and buildings (Jaynes et al. 

2003). 

Most reported shape detection techniques are based on edge 

and line primitives. Some of these techniques are briefly 

described in next paragraphs. 

Lagunovsky and Ablameyko (1999) based detection 

algorithm on lines. Lines are extracted first and these 

segments are grouped in straight lines in the next step. The 

length and orientation of these straight lines are compared 

and used to detect quadratangles that are futher 

approximated by rectangles. 

Zhu et al. (2002) used the rectangular Hough transform 

(RHT) approach to detect rectangular particles in cryo-

electron microscopy images. If the sides of rectangle are 

known, the RHT uses a 2D accumulator array to detect the 

center and orientation of rectangle. This method produced 

good results but known rectagle dimensions are required. 

 

In this paper, we explore behaviour of Hough Transform 

(Duda et al. 1972) and its application to microscopic 

images of alloy images treated by Vickers indentation test 

(ČSN ISO 6507-1 1999). 

 

The remainder of this paper is structured as follows. In the 

next Section, the Hough transform is briefly explaned. In 

Section 3, an influence of an edge detection on the Hough 

Transform is described. Section 4 analyse smoothing 

effects on the Hough Transform and its application to 

microscopic images is presented in Section 5. Results are 

concluded in Section 6. 

 

2. HOUGH TRANSFORM 

Hough Transform (HT) is processing method designed for 

line detection in image. Basic principle of HT is finding 

points which are common to one bisector. Polar coordinates 

are used for expressing this line. Usage of this method can 

be expanded to detection of fundamental geometric shapes, 

like square, rectangle or circle. 

Very important is observing a good quality binary image 

which only can be treated by HT to gain equations of lines 

in image. This goal requires an application of edge 

detection methods as necessary pre-processing methods. 

Image filtering should be considered, as well. 

 

Lines in an image can be represented as a subset of points. 

By finding bisector parameters from every pair of points, 

resulting lines can be gained. Because of computational 

demands of this problem, Hough proposed an alternative 

method. The very essence of this approach is a conversion 

of parameters to polar coordinates. 

Consider an image with point (x, y). Through this point can 

be constructed infinity amount of bisectors with general 

equation (1) where a is a slope and b is a bisector 

intersection with y-axis. Both of these parameters go 

toward infinity if the line becomes more vertical. 

Conversion of this system into polar coordinates solves 

this problem efficiently. A presented process converts a 

and b parameters to parameter ρ which represents 

a distance of bisector from origin and parameter θ which 

express an angle of bisector with x-axis.  

 

Fig. 1 Distance ρ and angle θ representation of a bisector 
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According to Fig.1, Eq. (1) can be expressed like Eq. (2). 

 baxy   (1) 

 








sinsin

cos
 xy  (2) 

  sincos yx   (3) 

 

By rearranging of Eq. (2), final Eq. (3) is gained. In contrast 

of a and b parameters, the parameter θ has finite domain of 

definition, θ ϵ <0, π>. Because we handle with image, 

parameter ρ has also finite domain of definition, ρ ϵ <0, D> 

where D is diagonal of the image. The field of ρ and θ 

parameters is called Hough space. 

2.1 Hough Transform of Point 

Consider binary image with several white pixels (Fig. 2). 

This image was treated by Hough transform algorithm, so 

its Hough space was gained (Fig. 3). 

 

 

 

Fig. 2 Test points 

image 

Fig. 3 Hough space of test points 

image (Fig. 2) 

 

 

Set of testing point is presented in Fig. 2. It is obvious that 

points A, B, C, D, E make line and points F and G are out 

of this line. Hough space of this image (see Fig. 2) is shown 

in Fig. 3. Curves A – E intersects in one point which 

represents ρ and θ parameters of Eq. (3). Hough space gives 

information that points A – E lay on line with same 

equation, so they lay on same line. 

Other intersections are present in this Hough space. It 

corresponds to other lines which are created by points 

[A, F], [B, F], [A, G], [B, G] and so on. 

 

2.2 Hough Transform of Circle 

Although HT detects just lines, circles in the image can be 

simply detected, as well. Consider binary image of circle. 

There are no lines to detect, so in Hough space no 

intersections are expected (Fig. 4). This property is typical 

for circle and can be used for its detection. 

 

 
Fig. 4 Hough space of test circle image 

 

2.3 Hough Transform of Square 

HT of square also gives typical result. Square is composed 

from four line segments and four their intersections which 

lay on escribed circle. So Hough space (Fig. 5) looks like 

combination of point case and circle case. 

 
Fig. 5 Hough space of test square image 

 

 

Curves intersections represent four cusps of square and 

curves are HT result of side points (Fig.5). Global shape of 

Hough space curves demonstrate mentioned scripted circle. 

Similar result can be gained for HT of various tetragons. 

 

3. INFLUENCE OF EDGE DETECTION ON HOUGH 

TRANSFORM 

For processing of real images a proper pre-processing 

algorithm should be applied. Input data must be converted 

into intensity image. In the next step edges are detected and 

at first resulting image will be treated by selected threshold 

method to gain binary image. Now, HT can be applied. 

It is obvious, that edge detection is a critical parameter for 

successful line detection. Variuos edge detectors can be 

used - both gradient methods and detection algorithms. 

Prewitt’s and Laplasian of Gaussian (LoG) methods were 

selected for representation gradient method group and 

Canny’s detector was chosen from the second group.  

These methods were applied on simulated testing image 

(Fig. 6) and a quality of edge and line detection was 

observed. 
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Fig. 6 Simulated image for observing of edge and line 

detection quality 

 

Result of gradient method group edge detection is shown in 

Figs. 7, 8, 9 and line detection by HT is presented in 

Figs. 10, 11, 12. 

 

  

Fig. 7 Prewitt’s edge 

detection of simulated 

image (Fig. 6) 

Fig. 10 Line detection of 

Prewitt’s edge detection 

(Fig. 7) 

 

  

Fig. 8 LoG edge detection 

of simulated image (Fig. 6) 

Fig. 11 Line detection of 

LoG edge detection (Fig. 8) 

 

  

Fig. 9 LoG edge detection 

of simulated image (Fig. 6) 

Fig. 12 Line detection of 

LoG edge detection (Fig. 9) 

 

 

Presented binary images of edges in simulated image 

proved that Canny’s edge detection algorithm is the best 

way how to process these data. LoG method was 

successful, as well, but there are some imperfections in 

detection of intersections. Prewitt’s detector wasn’t 

successful because it didn’t recognized less intensive edges. 

Circle in simulated image wasn’t pointed in any images in 

Figs. 10 - 12. This event has simply interpretation. In used 

HT algorithm, just lines were detected. For detection of 

circle, interpretation of Hough space data should be 

changed. Hough space of Canny edge detector image is 

shown in Fig. 13, for example. 

 

Fig. 13 Hough Space of Canny Edge Detector Image with 

Marked Feature Typical for Circle 

 

4. SMOOTHING EFFECTS INFLUENCE ON LINE 

DETECTION QUALITY 

In this part, influence of smooth image will be presented. 

Simulated image (Fig. 6) was smoothed by averaging filter 

of various sizes and effects on quality of line detection were 

observed. For edge detection, the most successful Canny’s 

algorithm was used. Results of edge detection in smoothed 

images are presented in Figs. 14 - 16. 

 

  

Fig. 14 Edge detection of 

5x5 smoothed image 

Fig. 17 Line detection of 

5x5 smoothed image 

 

  

Fig. 15 Edge dection of 

10x10 smoothed image 

Fig. 18 Line detection of 

10x10 smoothed image 

 

  

Fig. 16 Edge detection of 

30x30 smoothed image 

Fig. 19 Line detection of 

30x30 smoothed image 
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Hough Transform was applied to pre-processed images and 

detected lines are shown in Figs. 17 - 19. These results 

show that smoothing hasn’t direct influence on quality of 

line detection. Image smoothed by 5x5 averaging filter gave 

almost the same result as unsmoothed image (Fig. 17). Line 

detection of 10x10 smoothed image was less successful but 

almost all edges in Fig. 15 were detected. Smoothing by 

30x30 averaging filter failed at line detection but the most 

of detected edges was detected as in former case. This 

result demonstrates that a smoothing has no direct effect on 

line detection but defects edge detection, only. 

 

 

5. HOUGH TRANSFORM APPLICATION ON 

MICROSCOPIC ALLOY IMAGES 

The final part of presented paper is focused on the 

application of HT on microscopic images of Al alloy. These 

images were taken by a scanning electron microscope and 

display new Al alloy treated by conditions of Vickers 

indentation test (ČSN ISO 6507-1). 

This standardized method is based on an alloy sample 

treatment by diamond tetragonal pyramid (top angle 

α = 136°) with a known load F to gain standardized 

puncture. The area of incurred puncture is inverse 

proportional to an induration of examined alloy. The 

puncture area is gained by measuring diagonals d1 and d2. 

Vickers induration HV is defined by Eq. (4) 

 

 

 

21

1
189.0

2

1

2
sin

2

dd
F

dg

F
HV 











 (4) 

 

where g is a gravity acceleration. 

 

The goal of presented project is automatic evaluation of this 

puncture and measurement its diagonals by no human 

affection with help of HT. 

Al alloy image was selected for development of processing 

algorithm. Proper pre-processing was necessary first step. A 

histogram of input image was evaluated then it was 

equalized and an image intensity was adjusted. Mathematic 

morphology methods were applied later. Modified image 

was dilated by a rectangle structural element, first, and then 

eroded by a similar element. Edge detection was applied on 

the resulting image. The last step was line detection by HT 

(see Figs. 20 – 23). 

Troublesome effects of alloy sample preparation (long 

scratches in Fig. 20) were taken out by morphological 

methods, so only edges belonging to puncture were 

detected. Resulting image showed that lines in puncture 

image were detected successfully. 

 

 

  

Fig. 20 Al alloy image after 

histogram equalization and 

intensity adjustment 

Fig. 21 Al alloy image after 

mathematical morphology 

 

  

Fig. 22 Edge detection of Al 

alloy image 

Fig. 23 Line detection of Al 

alloy image 

 

Presented algorithm was applied on other images of 

Vickers induration test. A selected result of the algorithm 

examination is displayed at Fig. 24. 

 

 
Fig. 24 Line detection of sample image No. 23 

 

 

6. RESULTS AND CONCLUSION 

Presented results showed that Hough transform is powerful 

tool for detection of shapes in the image. Testing image 

application proposed robustness from smoothing images, so 

it was proved that weak step of HT algorithm is efficiency 

of edge detection. 

Algorithm of HT use on Al alloy images was developed 

and verified on selected set of alloy images. It is necessary 

to pre-processed input images to avoid influence of 

troublesome effects. After this, edge and line detection can 

be implemented successfully. 
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Abstract: In this paper the design of controlling a class of linear systems via state feedback
eigenstructure assignment is investigated. The design aim is to synthesize a state feedback
control law such that for prescribed eigenvalues of the closed-loop control system corresponding
eigenvectors are as close to decoupled ones as possible. The set of parametric vectors and the set
of closed-loop eigenvalues represent the degrees of freedom existing in the control design, and
can be further properly chosen to meet some desired specification requirement, such as mode
decoupling and robustness. An illustrative example and the simulation results show that the
proposed parametric method is effective and simple.

Keywords: Mode decoupling, singular value decomposition, state feedback, linear control
systems, eigenstructure assignment.

1. INTRODUCTION

The static and the dynamic pole placement belongs to the
prominent design problems of modern control theory, and,
although its practical usefulness has been continuously in
dispute, it is one of the most intensively investigated in
control system design. It seems that the state-feedback
pole assignment in control system design is one from the
preferred techniques. In the single-input case the solution
to this problem, when it exists, is unique. In the multi-
input multi output (MIMO) case various solutions may
exist (Filasová (1999), Ipsen (2009)), and to determine a
specific solution additional conditions have to be supplied
in order to eliminate the extra degrees of freedom in design
strategy.

In last significant progress has been achieved in this field,
coming in its formulation closest to the algebraic geometric
nature of the pole placement problem (Kautsky et al.
(1985), Wonham (1985)). The reason for the discrepancy
in opinions about the conditioning of the pole assignment
problem is that one has to distinguish among three as-
pects of the pole placement problem, the computation
of the memoryless feedback control law matrix gain, the
computation of the closed loop system matrix eigenvalues
spectrum and the suppressing of the cross-coupling effect
(Wang (2003)), where one manipulated input variable
cause change in more outputs variables .

Thus, eigenstructure assignment seems to be a powerful
technique concerned with the placing of eigenvalues and
their associated eigenvectors via feedback control laws, to
meet closed-loop design specifications. The eigenvalues are
the principal factors that govern the stability and the rates
of decay or rise of the system dynamic response. The right
and left eigenvectors, on the other hand, are dual factors

that together determine the relative shape of the system
dynamic response (Kocsis and Krokavec (2008), Sobel and
Lallman (1989)).

The general problem of assigning the system matrix eigen-
structure using the state feedback control is considered in
this paper. Based on the classic algebraic methods (Golub
and Van Loan (1989), Datta (2004), Poznyak (2008)),
as well as on the algorithms for pole assignment using
Singular Value Decomposition (SVD) (Filasová (1997),
Krokavec and A. Filasová (2006)) the exposition of the
pole eigenstructure assignment problem is generalized here
to handle the specified structure of the left eigenvector set
in state feedback control design for MIMO linear systems.
Extra freedom, which makes dependent the closed-loop
eigenvalues spectrum, is used for closed-loop state vari-
ables mode decoupling.

The integrated procedure provides a straightforward
methodology usable in linear control system design tech-
niques when the memory-free controller in the state-space
control structures takes the standard form. Presented ap-
plication for closed-loop state variables mode decoupling
is relative simple and its worth can help to disclose the
continuity between eigenstructure assignment and system
variable dominant dynamic specification.

2. PROBLEM STATEMENT

Linear dynamic systems with n degree of freedom can be
modelled by the state-space equations

q̇(t) = Aq(t) + Bu(t) (1)

y(t) = Cq(t) (2)

with constant matrices A ∈ IR n×n, B ∈ IR n×r, and
C ∈ rR m×n. Generally, to the controllable time-invariant
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linear MIMO system (1) a linear state feedback regulator
control law, defined generally as

u(t) = −Kq(t) + Lw(t) (3)

with K ∈ IR r×n, L ∈ IR r×m gives rise to the closed-loop
system

q̇(t) = Acq(t)+BLw(t) (4)

which closed loop poles are eigenvalues of matrix Ac =
(A − BK) and Ac ∈ IR n×n.

Throughout the paper it is assumed the pair (A, B) is
controllable.

3. BASIS PRELIMINARIES

3.1 Orthogonal Complement

Definition 1. (Null space) Let E, E ∈ IR h×h, rank(E) =
k < h be a rank deficient matrix. Then the null space NE
of E is the orthogonal complement of the row space of E.

Proposition 1. Let E, E ∈ IRh×h, rank(E) = k < h be
a rank deficient matrix. Then an orthogonal complement
E⊥ of E is

E⊥ = DUT
2 (5)

where UT
2 is the null space of E and D is an arbitrary

matrix of appropriate dimension.

Proof. (Filasová and Krokavec (2010b)) The SVD of E,
E ∈ IR h×h, rank(E) = k < h gives

UTEV =

[
UT

1

UT
2

]
E[V 1 V 2 ] =

[
Σ1 012

021 022

]
(6)

where UT ∈ IR h×h is the orthogonal matrix of the left
singular vectors, V ∈ IR h×h is the orthogonal matrix of
the right singular vectors of E and Σ1 ∈ IR k×k is the
diagonal positive definite matrix

Σ1 =diag [ σ1 · · · σk ] , σ1 ≥· · ·≥σk >0 (7)

which diagonal elements are the singular values of E.
Using orthogonal properties of U and V , i.e. UTU = Ih,
V T V = Ih, UT

2 U1 = 0, then

E=UΣV T=[U1 U2 ]

[
Σ1 012

021 022

][
V T

1

V T
2

]
=

= [U1 U2 ]

[
S1

02

]
= U1S1

(8)

where S1 = Σ1V
T
1 . Thus, (8) implies

UT
2 E = UT

2 [U1 U2 ]

[
S1

02

]
= 0 (9)

It is evident that for an arbitrary matrix D is

DUT
2 E = E⊥E = 0 (10)

respectively, which implies (5).

3.2 System Model Canonical Form

Proposition 2. If rank(CB) = m then there exists a coor-
dinates change in which (A◦, B◦, C◦) takes the structure

A◦ =

[
A◦

11 A◦
12

A◦
21 A◦

22

]
, B◦ =

[
0

B◦
2

]
, C◦ = [0 Im ] (11)

where A◦
11 ∈ IR(n−m)×(n−m), B◦

2 ∈ IR m×m is a non-
singular matrix, and Im ∈ IR m×m is identity matrix.

Proof. (Filasová and Krokavec (2010a)) Considering the
state-space description of the system (1), (2) with r = m
and defining the transform matrix T −1

1 such that

C1 = CT 1 = [ 0 Im ] , T −1
1 =

[
In−m 0

C

]
(12)

then

B1 = T −1
1 B = T −1

1

[
B1

B2

]
=

[
B1

CB

]
=

[
B11

B12

]
(13)

If CB = B12 is a regular matrix (in opposite case the
pseudoinverse of B12 is possible to use), then the second
transform matrix T −1

2 can be defined as follows

T −1
2 =

[
In−m −B11B

−1
12

0 Im

]
(14)

T2 =

[
In−m B11B

−1
12

0 Im

]
(15)

This results in

B◦ = T −1
2 B1 =

[
0

B◦
2

]
= T −1

2 T −1
1 B = T −1

c B (16)

where

B11 = B1, B◦
2 = B12 = CB, T −1

c = T −1
2 T −1

1 (17)

and analogously

C◦ = C1T 2 = CT c = [ 0 Im ] T2 = [ 0 Im ] (18)

Finally, with it yields

A◦ = T −1
c ATc = T −1

2 T −1
1 AT 1T 2 (19)

Thus, (16), (18), and (19) implies (11). This concludes the
proof.

Note, the structure of T −1
1 is not unique and others can

be obtained by permutations of the first n−m rows in the
structure defined in (12).

3.3 System Modes Properties

Proposition 3. Given system eigenstructure with distinct
eigenvalues then for j, k ∈ {1, 2, . . . n}, l ∈ {1, 2, . . . m},
m = r

i. the k-th mode (s− sk) is unobservable from the l-th
system output if the l-th row of matrix C is orthogonal to
the k-th eigenvector of the closed-loop system matrix Ac,
i.e. with j 6= k

cT
l nk = nT

jnk = 0, CT = [c1 · · · cm ] (20)

ii. the k-th mode (s−sk) is uncontrollable from the l-th
system input if the l-th column of matrix B is orthogonal
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to the k-th eigenvector of the closed-loop system matrix
Ac, i.e. with j 6= k

nT
kbl = nT

k nj = 0, B = [b1 · · · br ] (21)

Proof. (Krokavec and A. Filasová (2006)) Let nk is the
k-th right eigenvector corresponding to the eigenvalue sk,
i.e.

Acnk = (A − BK)nk = sknk (22)

By definition, the closed-loop system resolvent kernel is

Υ = (sIn − Ac)
−1 (23)

If the closed-loop system matrix is with distinct eigenval-
ues, (22) can be written in the compact form

Ac [n1 · · · nn] = [n1 · · · nn]




s1

. . .
sn


 (24)

AcN = NS, N−1 = NT (25)

respectively, where

S = diag [s1 · · · sn ] , N = [n1 · · · nn ] (26)

Using the property of orthogonality given in (25), the
resolvent kernel of the system takes form

Υ =
(
sNN−1−NSN−1

)−1
= N(sI−S)−1NT (27)

Υ = [ n1 · · · nn ]




1

s−s1
. . .

1

s−sn







nT
1
...

nT
n


 (28)

Υ =
n∑

h=1

nhnT
h

s−sh
(29)

respectively. Thus, the closed loop transfer functions ma-
trix takes form

G(s) = C (sI−Ac)
−1

BL =
n∑

h=1

CnhnT
h B

s−sh
L (30)

It is obvious that (30) implies (20), (21). This concludes
the proof.

4. EIGENSTRUCTURE ASSIGNMENT

In the pole assignment problem, a feedback gain matrix K
is sought so that the closed-loop system has a prescribed
eigenvalues spectrum Ω(Ac) = {sh : ℜ(sh) < 0, h =
1, 2, ..., n}. Note, the spectrum Ω(Ac) is closed under com-
plex conjugation, and the observability and controllability
of modes is determined by the closed-loop eigenstructure.

Considering the same assumptions as above then (22) can
be rewritten as

[shI−A B]

[
nh

Knh

]
=Lh

[
nh

Knh

]
=0 (31)

where Lh ∈ IRn×(n+r),

Lh = [ shI−A B ] (32)

Subsequently, the singular value decomposition (SVD) of
Lh gives



uT

h1
...

uT
hn


Lh

[
vh1· · ·vhnvh,(n+1)· · ·vh,(n+r)

]
=

=




σh1

. . .
σhn

0n+1· · ·0n+r




(33)

where {uT
hl, l=1, 2, . . . , n}, {vhk, k=1, 2,. . . , n+r} are sets

of the left and right singular vectors of Lh associated with
the set of singular values {σhl, l = 1, 2, . . . , n}
It is evident that vectors {vhj , j = n+1, n+2, . . . , n+r}
satisfy (31), i.e.

Lvhj = [shI−A B] vhj = 0 (34)

The set of vectors {vhj , j = n + 1, n + 2, . . . , n + r} is a
non-trivial solution of (32), and results the null space of
Lh, h = 1, 2, . . . , n

[
nh

Knh

]
∈ N [ shI−A B ] (35)

The null space (35) consists of the normalized orthogonal
set of vectors. Any combination of these vectors (the span
of null space) will provide a vector nh which used as
an eigenvector produces the desired eigenvalue sh in the
closed-loop system matrix.

Proposition 4. The canonical form eigenstructure opti-
mization provides optimal eigenstructure also for that
model from which the canonical form was derived.

Proof. Using (16), (18), (19) and (22) it can be written

(A−BK)nh = (TcA
◦T −1

c −TcB
◦KTcT

−1
c )nh =

= Tc(A
◦−B◦K◦)T −1

c nh = shnh

(36)

(A◦−B◦K◦)T −1
c nh = shT −1

c nh (37)

(A◦−B◦K◦)n◦
h = A◦

cn
◦
h = shn◦

h (38)

respectively, where K◦ = KTc, nh = Tcn
◦
h. Writing

compactly {nh = Tcn
◦
h, h = 1, 2, . . . n} as follows

N = TcN
◦, N−1 = N◦T T −1

c (39)

then using (27), (30), (39) it yields

G(s) = CΥBL = CN(sI−S)−1N−1BL =

= CTcN
◦(sI−S)−1N◦T T −1

c BL =

= C◦N◦(sI−S)−1N◦T B◦L

(40)

G(s) = C(sI−Ac)
−1BL = C◦(sI−A◦

c)
−1B◦L (41)

G(s) =

n∑

h=1

CnhnT
h B

s−sh
L =

n∑

h=1

C◦n◦
hn◦T

h B◦

s−sh
L (42)

respectively. It is obvious that optimizing C◦n◦
h is opti-

mized Cnh. This concludes the proof.
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Fig. 1. System output response

5. PARAMETER DESIGN

Using eigenvector orthogonal properties, (22) can be
rewritten for h = 1, 2, . . . , n as follows

(shI−A◦)n◦
h = −B◦K◦n◦

h = −B◦r◦
h (43)

n◦
h = −(shI−A◦)−1B◦r◦

h = V ◦
hr◦

h (44)

respectively, where

r◦
h = K◦n◦

h, V ◦
h = −(shI−A◦)−1B◦ (45)

Subsequently, it can be obtained

r◦
h = V ◦ ⊖1

h n◦
h (46)

where

V ◦ ⊖1
h = (V ◦T

h V ◦
h)−1V ◦T

h (47)

is Moore-Penrose pseudoinverse of V ◦
h.

Of interest are the eigenvectors of the closed-loop system
having minimal orthogonal projection to rows of the or-
thogonal complement C◦T⊥ of the output matrix C◦T

and associated with m element eigenvalues subset ρ(A◦)
(m = rank(C◦), ρ(A◦) ⊂ Ω(A◦)) of the desired closed-
loop eigenvalues set Ω(A◦) = {sh, ℜ(sh) < 0, h =
1, 2, . . . , n}, Ω(A◦) = Ω(A). The rest (n−m) eigenvalues
can be associated with rows of the complement matrix
C• obtained in such way that all zero elements in C◦ be
changed to ones, and all ones to zeros. Note, direct use of
C◦ maximize matrix weights of modes.

Let ρ(A◦) = {sh, ℜ(sh) < 0, h = 1, 2, . . . , n}, then

r⋄
h = V ◦ ⊖1

h c◦T⊥T
h , h = 1, 2, . . . , m (48)

r•
h = V ◦ ⊖1

h c•T
h , h = m+1, . . . n (49)

Thus, computing

n⋄
h = V ◦

hr⋄
h, n•

h = V ◦
hr•

h (50)

it is possible to construct and to separate the matrix Q◦

of the form

Q◦ = [v⋄
1 · · · v⋄

mv•
m+1 · · · w•

m ] =

[
P ◦

R◦

]
(51)

with P ◦ ∈ IRn×n, R◦ ∈ IRr×n such that

K◦ = R◦P ◦−1, K = K◦T −1
c (52)
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−30

−20
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10

20

30

time [s]

u(
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Fig. 2. Control actions

6. ILLUSTRATIVE EXAMPLE

The system under consideration was described by (1), (2),
where

A =

[
0 1 0
0 0 1

−5 −9 −5

]
, B =

[
1 3
2 1
2 5

]
, CT =

[
1 1
2 1
1 0

]

Constructing the transformation matrices

T −1
c =

[
4.0 0.5 −2.5
1.0 2.0 1.0
1.0 1.0 0.0

]
, Tc =

[
1.0 2.5 −5.5

−1.0 −2.5 6.5
1.0 3.5 −7.5

]

the system model canonical form parameters were com-
puted as

A◦ =

[ −1 10.5 6
0 −3.0 −2
0 1.0 −1

]
, B◦ =

[
0 0
7 10
3 4

]
, C◦ = [ 0 I2 ]

Thus, considering Ω(A◦) = {−0.5, −1.2, −6} it is

V ◦
1 =

[−37.3846 −54.4615
0.7692 0.9231

−4.4615 −6.1538

]

V ◦
2 =

[−10.0610 −5.4878
4.5122 6.0976

−7.5610 −10.4878

]

V ◦
3 =

[−5.2059 −7.3059
2.4118 3.4118
0.1176 0.0176

]

and with c ◦T⊥ = [1 0 0] , c •T
1 = [1 0 1] it yields

r◦
1 =

[
0.3891

−.0.2854

]
, r◦

2 =

[
−0.1645

0.1194

]
r•

3 =

[
18.4978

−13.2737

]

n◦T
1 = [0.9983 0.0358 0.0205]

n◦T
2 = [0.9997 −0.0144 −0.0082]

n•T
3 = [0.6788 −0.6745 0.6146]

Constructing the matrix Q◦

Q◦=




0.9983 0.9997 0.6788
0.0358 0.0144 − 0.6745
0.0205 − 0.0082 0.6146
0.3891 − 0.1645 18.4978

−0.2854 0.1194 −13.2737


=

[
P ◦

R◦

]
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the control law parameters satisfying (52) are

K◦ =

[
−0.0062 −3.7944 25.9402

0.0036 2.6301 −18.7151

]

K =

[
22.1212 18.3483 −3.7990

−16.0707 −13.4532 2.6211

]

It is possible to verify that closed-loop system matrix
eigenvalues belongs to the desired one.

In the presented Fig. 1, 2 the example is shown of the
unforced closed-loop system output response, as well as
control actions, where nonzero initial state was considered.

7. CONCLUDING REMARKS

This paper provides a design method for memory-free
controllers where the general problem of assigning the
eigenstructure for state variable mode decoupling in state
feedback control design is considered. The method exploits
standard numerical optimization procedures to manipu-
late the system feedback gain matrix as a direct design
variable. The manipulation is accomplished in a manner
that produces desired system global performance by pole
placement and output dynamics by modification of the
mode observability.

With generalization of the known algorithms for pole as-
signment the modified exposition of the problem is pre-
sented here to handle the optimized structure of the left
eigenvector set in state feedback control design. Presented
method makes full use of the freedom provided by eigen-
structure assignment to find a controller which stabilizes
the closed-loop system. Therefore, the feedback control law
has a clear physical meaning and provides a valid design
method of the controller for real systems. It is shown by
appropriately assigning closed-loop eigenstructure in state
feedback control the overall stability is achieved. Finally
the design methodology is illustrated by an example.
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Abstract: Mathematical morphology is a very effective tool on image segmentation. This paper
presents selected methods of mathematical morphology that are applied to the microscopic
images of nanomaterials. The first part briefly describes the mathematical background of
the fundamental morphological methods, including their application on the test image. The
second part contains an application both of binary and grayscale morphological methods on the
nanostructure images. The influence of various structure elements is investigated, as well.

Keywords: binary morphology, nanostructure image processing, grayscale morphology

1. INTRODUCTION

Image processing is applied as an effective tool for various
image analysis in many branches of science, Kuehn (1998),
Wu (1995), Sorzanoa (2004). Presented paper is focused on
analysis of nanomaterial images.

These nanomaterial seems to be one of the options of
surface bioactivation of titanium implants that are used in
medicine, Fojt (2010). Nanomaterial properties assessment
is one of the essential issues in the process of material
development while the tube diameter should be evaluated
as well as a side thickness and other quantities. The mate-
rial properties quantities could be based on the processing
of microscopic images, Hodneland (2006), Bunes (2008),
Kiang (1998), Gommes (2003).

A lot of various methods are used for segmentation
and analysis of given microscopy images, such as a low-
pass filtering, application of watershed transform, adap-
tive thresholding, mathematical morphology Dougherty
(2003), Heijmans (1998), Horgan (1998), convex hull and
others.

Methods of mathematical morphology could be used for
processing both of binary and grayscale images, Gonzalez
(2002), Hlavac (2002), Hanbury (2001). This paper looks
out only a part of the complex algorithm of given data
processing that concerns of an application of binary ma-
thematical morphology methods.

2. MATHEMATICAL BACKGROUND

Mathematical morphology provides a tool for extraction of
those image components that are useful in the representa-
tion and description of a region shape. The most common
use of mathematical morphology is in image enhancement,

(b)(a) (c)

Figure 1. Examples of common structural elements:
(a) B1 = {(−1, 0), (0, 0), (1, 0)},
(b) B2 = {(−1, 0), (0, −1), (0, 0), (1, 0), (0, 1)},
(c) B3 = {(−1, 0), (0,−1), (0, 0), (1, 0), (0, 1),
(1, 1), (1,−1), (−1, −1), (−1, 1)}

segmentation and restoration, edge detection, texture and
component analysis, curve filling, noise reduction etc. A
grayscale digital image generally can be represented as a
set of elements, values of which are vectors of the 3–D
integer space Z3. The first two components represent co-
ordinates (x, y) of the pixel and the third one its discrete
graylevel value. A binary image A can be considered as a
set of n white pixels A = {(x1, y1), (x2, y2), . . . , (xn, yn)}
where vector {(xi, yi) ∈ Z2} corresponds to pixel coordi-
nates.

Morphological operators are given by the relationships
between a set of points of an original image A and another
point set, which is called a structural element B. Various
types of structural elements can be used. Examples of the
most common structural elements are presented in Fig. 1.

Dilation, erosion, opening and closing are the basic mor-
phological transformations.

2.1 Binary Morphology

Morphological operations can be defined with Minkowski
operators, other description can be used, as well, Gonzalez
(2002), Farouki (2001).
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 (a) Original image  (b) Dilation  (c) Erosion

Figure 2. (a) Original image (point set A), (b) Dilation of
A by structure element B1, (c) Erosion of A by B1

A Dilation operator of A by B, denoted A ⊕ B is defined
as

A ⊕ B = {z | (B̂)z ∩ A ̸= ∅} (1)

where A is a set of points of the original image and set B is
a selected structural element. B̂ means a reflection of the
set B. Dilation of A by B is the set of all displacements,
z, such that B̂ and A overlap by at least one element. A
gaps bridging is one of common applications of dilation.
Dilation with a suitable structural element use makes
objects larger and so that it fills gaps in an image.

An Erosion operator of A by B, denoted A ⊖ B is defined
as

A ⊖ B = {z | (B)z ⊆ A} (2)

where A is a set of points of an original image and a set B
is a structural element, again. Erosion of A by B is the set
of all points z such that B, translated by z, is contained
in A.

The simplest application of erosion is an elimination of
small details in an image. Objects smaller than a structural
element are removed. This property forms a base for a
morphological operations. Example of a simple effect of
dilation and erosion on the test image is presented in
Fig. 2. The structural element B1 is used for test. Dilation
expands objects and erosion shrinks them. A combination
both of them changes the image but saves object size.

Opening of an image set point A with a structural element
B, denoted A ◦ B, is defined as an erosion followed by a
dilation with the same structural element use

A ◦ B = (A ⊖ B) ⊕ B. (3)

Closing A with B, denoted A • B, is defined as a dilation
followed by an erosion

A • B = (A ⊕ B) ⊖ B. (4)

Both of these operations smooth the object contours.
Opening separates objects connected with narrow isth-
muses, closing eliminates small gaps and gets through
narrow breaks. An example of simple effect of opening and
closing is presented in Fig. 3. The same structural element
as in the Fig. 2 has been used.

 (a) Original image  (b) Opening  (c) Closing

Figure 3. (a) Original image (point set A), (b) Opening A
by structure element B1, (c) Closing A by B1

2.2 Grayscale Morphology

Basic binary morphological operation can be extended
to grayscale images, Gonzalez (2002), Hanbury (2001).
Operations deal with the input image function f(x, y) and
a structural element b(x, y).

Grayscale dilation of f by b, f ⊕ b, is defined as

(f ⊕ b)(s,t) = max{f(s − x, t − y) + b(x, y) |
| (s − x), (t − y) ∈ Df ; (x, y) ∈ Db} (5)

where Df and Db are the domains of f and b.

After application of dilation on a grayscale image, output
image is brighter than an input one if all the values of the
structural element are positive. Dark details are reduced
or eliminated.

Grayscale erosion is based on the minimum value of (f −b)
choosing in the interval defined by structural element b.
The Erosion of f by b, f ⊖ b, is defined as

(f ⊖ b)(s,t) = min{f(s + x, t + y) − b(x, y) |
| (s + x), (t + y) ∈ Df ; (x, y) ∈ Db} (6)

where Df and Db are the domains of f and b.

Output image after grayscale erosion application is darker
than input one if all elements of the structural element
are positive. The bright details that are smaller than the
structural element are reduced.

Grayscale opening and closing have the same form as their
binary alternates. The opening of grayscale image f by the
structural element b, f ◦ b, is defined as

f ◦ b = (f ⊖ b) ⊕ b (7)

The grayscale closing of f by b, f ◦ b, is defined as

f • b = (f ⊕ b) ⊖ b (8)

Top-hat transformation h of an image f is defined as

h = f − (f ◦ b) (9)

where f is an original image and b is a structural element.
This transformation is useful for enhancing detail in back-
ground.

Morphological gradient, denoted g, highlight sharp grey-
level transitions in the input image. It is defined as

g = (f ⊕ b) − (f ⊖ b) (10)

3. NANOSTRUCTURE IMAGE PROCESSING

Nanostructure image processing features a very important
part of classification process of nanomaterials quality.
There is presented a selected cut of image of titanium
dioxide tubes, Fojt (2010), in Fig. 4a. One of the important
factor representing the material quality is an inner tube
diameter. Methods of image processing seems to be a
suitable tool to obtain the desired value. The essential step
of the nanomaterial image processing is a separation of the
inner area of tubes from the background. Preprocessing
of these images based on digital filters application is
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 (a)  Original image  (b)  Afer filtering − average filtr [11,11]

 (c)  Watershed segmentationd (red line)  (d)  Adaptive thresholding in each segment

Figure 4. Image preprocessing before morphology use: (a)
An original image, (b) Lowpass filter application, (c)
Watershed segmentation, (d) Adaptive thresholding
result

necessary, as well. The filter size and cutoff frequency of
lowpass filter used dependent on image character. The
filtration reduces a level of noise in the image and it
improves results of segmentation in the following step,
Fig. 4b.

In the next step the image is divided into segments by
means of watershed transform Eq. (10), Fig. 4c. After
that, an adaptive thresholding is performed inside of each
segment. Adaptive thresholding is used because of very
different grayscale level in each part of the image. Setting
of one thresholding value for whole the image is unsuitable
in this case. Although the adaptive thresholding applica-
tion provides satisfying results, there are still undesired
artifacts in the resulting image, Fig. 4d. Some of them

 (a) Thresholded image  (b) Closing by disk 1  (c) Closing by disk 3

 (d) Closing by square[2,2]  (e) Closing by square[4,4]  (f) Closing by diamond 3

Figure 5. Selected results of closing operation by means of
various types of structural element in zoomed cut of
an image: (a) Part of thresholded image, (b) Closing
by disk size 1, (b) Closing by disk size 3, (d) Closing
by square size [2,2], (e) Closing by square size [4,4],
(f) Closing by diamond size 3

 (a)  Adaptive thresholding in each segment  (b)  Closing of thresholded image by SE disk

 (c)  Closing of thresholded image by SE square[2,2]  (d)  Closing of thresholded image by SE square[4,4]

Figure 6. Closing of thresholded image cut by various
structural element: (a) Thresholded image, (b) Clos-
ing by disk 1, (b) Closing by structural element type
disk size 1, (c) Closing by structural element type
square size [2,2], (d) Closing by structural element
type square size [4,4]

imply from the inner area selection only, without segments
border. Application of mathematical morphology seems

Figure 7. Convex area (red) and non-convex area (blue)
detected by various SE: (a) without morphology, (b)
SE disk size 1, (c) SE square size [2,2], (d) SE square
size [4,4]
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to be an effectual tool for elimination of these undesired
effects, Fig. 6. Closing operation can remove small holes
inside the objects and it smooths out the objects con-
tours. The result of this operation depends on the shape
of structural element used, of course. Various structural
elements B were tested on the real image set. A selected
zoom cut processed by mean of various structural element
is presented in Fig 5. Only the symmetric structural ele-
ments have been considered, as it is possible to suppose
an isotropic material properties.

As the tubes are supposed to have a convex crosscut, non-
convex areas are excluded from the next processing and
the area of convex segment is considered only, Fig. 7.

Results obtained with the application of various SE are
presented in Tab. 1. Sample of selected structural element
is Disk1={(−1, 0), (0,−1), (0, 0), (1, 0), (0, 1)} or
Square[2,2]={(0, 0), (0, 1), (1, 0), (1, 1)}.

The application of mathematical morphology methods
implicates reduction of a number of objects found in
the image, see Tab. 1. Results obtained by application
of various structural elements are comparable. It’s not
possible to appoint the best structural element explicitly.
The elements in form of disk and square seems to be useful
for this type of images.

Table 1. Results obtained with various structural elements
use

Structural

Element

The

Number of

Tubes

Tube Area

Percent-

age of the

Image

Average

Tube Area

(px)

Standard

Deviation

– 248 32,21 85,11 147,33

disk 1 100 27,95 183,16 254,08

disk 3 50 21,27 278,84 304,34

square [2,2] 83 27,49 217,06 262,94

square [4,4] 58 25,52 288,34 294,39

diamond 3 61 21,51 231,13 293,58

4. CONCLUSION

Nanostructure image processing is a very important part of
classification process of nanomaterials quality. Application
of mathematical morphology methods can improve object
detection in these images. The best structural element
for this detection cannot be exactly defined, as the image
resolution seems to be a basic factor for structural element
size and shape selection, too. Obtained results depend
on an original image quality, as well. Based on testing,
structural element in the form disk and square seems to
suitable for processing of the given images.

Used images originate from electron microscope TESCAN
VEGA 3 SBU. The algorithm was developed in MATLAB
environment, ver. 2010a, and it was tested on computer
with following parameters: processor Intel(R) Core(T2)
2CPU, 2,40 GHz, RAM 4GB, OS Win7 32bit.

Application of various type of a structural element has
similar demands concerning a runtime. There is a compa-
rison of runtime values for selected structural elements use,
Tab. 2.

Table 2. Runtime obtained with an application of various
structural elements

Disk 1 Disk 3 Square[2,2] Square[4,4] Diamond3

Runtime[s] 0,118 0,234 0,031 0,027 0,066
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Abstract: This paper proposes how to transform a control algorithm, written in MATLAB,
into a hybrid system in order to verify its stability properties. The procedure first converts
the code into a corresponding HYSDEL equivalent, which is then used to generate a suitable
mathematical model. Safety verification is then formulated as a mixed integer linear program
with feasibility objective.

Keywords: hybrid systems, safety verification, reachability analysis, MATLAB, HYSDEL

1. INTRODUCTION

Processes that evolve according to dynamic equations and
logic rules can be described by hybrid models (Bemporad
and Morari, 1999). Typical examples are real-time sys-
tems, where physical plants are governed by embedded
rule-based controllers. When such systems are designed, it
is important to provide a certificate that they will always
operate in a safe manner, e.g. that the control rules never
drive the plant into an “unsafe” area. Such a certificate can
be provided by performing reachability analysis (Lygeros
et al., 1999; Torrisi, 2003), which answers the following
question: given a set of initial conditions X0, find the
initial condition x(0) ∈ X0 for which the plant enters a
set of unsafe states Xf in a finite number of steps T . If the
reachability problem is infeasible, there is a guarantee that
no such “unsafe” initial condition exists, hence providing
the required safety certificate.

In this paper we propose how to solve the reachabil-
ity problem when the control rules are implemented as
a standard MATLAB function, composed of several IF-
THEN-ELSE logic rules. First, the code of the function
is converted into the HYSDEL (Torrisi, 2002) language,
which is a high-level language tailored for describing be-
havior of hybrid systems. The translation process creates
a one-to-one equivalent of the MATLAB control loop from
which a suitable mathematical description is derived. The
model then captures all interconnections between continu-
ous plant dynamics and logic-based control rules. Once the
model is available, the reachability problem is formulated
as a mixed-integer linear program (MILP) with a pure
feasibility objective.

The paper is structured as follows. First we introduce basic
notion of hybrid systems and review most popular math-
ematical abstractions of such systems. Then, in Section 3
we describe the translation process in details. Reachability
problems are then formulated in Section 4 and illustrated

on a concrete example in Section 5. The paper is wrapped
up by concluding remarks.

2. HYBRID SYSTEMS

Hybrid systems represent a compact framework which
captures behavior of systems where continuous dynamics is
coupled with discrete logic. Examples include, but are not
limited to, systems with discrete-valued actuators (such as
on/off switches), piecewise linear nonlinearities, and finite
state machines. Mathematically, hybrid systems can be de-
scribed by Piecewise Affine (PWA) models (Sontag, 1981),
Mixed Logical Dynamical (MLD) systems (Bemporad and
Morari, 1999), Linear Complementarity systems (Heemels
et al., 2000) and max-min-plus-scaling models (De Schut-
ter and Van den Boom, 2001). Under mild assumptions,
all these frameworks are equivalent to each other (Heemels
et al., 2001). In the sequel we review PWA and MLD
approaches to modeling of hybrid systems. Since the aim
of the paper is on verifying safety properties of closed-
loop systems where the plant is governed by a set of
internal IF-THEN-ELSE rules, only autonomous systems
are considered.

2.1 Piecewise Affine (PWA) Systems

Autonomous PWA systems are defined by partitioning the
space into polyhedral regions,and associating each region
with a different linear (or affine) state-update equation:

x(k + 1) =





A1x(k) + f1 if x(k) ∈ R1

...

Anx(k) + fn if x(k) ∈ Rn.

(1)

Here, x(k) ∈ Rnx is the state vector at time instance
k, x(k + 1) is the successor state at the next sampling
instance, Ri ⊆ Rnx , i = 1, . . . , n are polyhedral regions
of the joint state-input space, and n is the number of
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individual affine dynamics. PWA systems arise naturally
when nonlinear plants are approximated by the technique
of multiple linearizations.

2.2 Mixed Logical Dynamical (MLD) Systems

MLD systems represent systems governed by discrete
logic by a system of linear inequalities involving binary
variables, which can be derived using so-called big-M
formulation (Williams, 1993). To illustrate the procedure,
consider a logic statement of the following form

δ =

{
1 if aT x ≤ b

0 if otherwise
(2)

which connects the truth value of binary variable δ to sat-
isfaction of the linear inequality aT x ≤ b (which involves
a real-valued variable x ∈ Rnx) via a logic equivalence
relation. Let M and m denote, respectively, the maximum
and minimum values which the linear expression aT x − b
attains over the domain X ⊆ Rnx , i.e.

M = max
x∈X

aT x − b, (3a)

m = min
x∈X

aT x − b. (3b)

Then the IF-THEN-ELSE rule (2) is equivalent to satis-
faction of the following system of linear inequalities:

aT x − b ≤ M(1 − δ), (4a)

aT x − b ≥ ǫ + mδ. (4b)

Here, ǫ is a small constant, typically the machine precision,
used to convert a strict inequality into a non-strict form.
More complex logic expressions involving e.g. one-way
implications (⇐ or ⇒) and logic operations (and, or,
negation) can be translated in a similar fashion, see
e.g. (Williams, 1993; Bemporad and Morari, 1999).

In the most general form, autonomous MLD systems are
described by

x(k + 1) = Ax(k) + Bδδ(k) + Bzz(k) + B0, (5a)

Exx(k) + Eδδ(k) + Ezz(k) ≤ E0, (5b)

where x ∈ Rnx is the vector of states, δ ∈ {0, 1}nδ is the
vector of binary variables, z ∈ Rnz is the vector of auxiliary
real variables, and A, Bδ, Bz, B0, Ex, Eδ, Ez, E0 are
matrices (or vectors) of appropriate dimensions. Given a
value of x(k), the state update x(k+1) can be computed by
solving a feasibility problem, i.e. by finding a compatible
combination of binary δ(k) and real z(k) variables which
satisfy constraints (5b).

2.3 HYSDEL

Modeling of hybrid systems involves finding parameters
of the corresponding mathematical model. In the PWA
case (1), this boils down to finding matrices Ai, Bi, and
the regions Ri. In the MLD case (5), one needs to apply the
big-M procedure to find matrices A, Bδ, Bz, B0, Ex, Eδ,
Ez, and E0. Clearly, as the system to be described becomes
more complex, such a “manual” approach to modeling can
become cumbersome and error prone.

To accelerate development of hybrid models, HYSDEL
(Hybrid Systems Description Language) was developed (Tor-
risi, 2002). It features a high-level modeling language
which allows to describe behavior of hybrid systems using

q

hmax

href

h1h1

h2

k1

k2

Fig. 1. The two-tanks arrangement.

a custom syntax, which is similar to the C language. Once
the system is described, the HYSDEL compiler parses the
model and converts it into the MLD description (5) using
the big-M technique. The MLD model can subsequently
be converted into the PWA form.

Although HYSDEL significantly simplifies synthesis of
mathematical representations of hybrid systems, it re-
quires the user to learn its syntax. Therefore it is not
directly applicable to verify control algorithms written
in standard languages, such as in MATLAB or in C. To
bridge this gap between standard control engineering tools
and HYSDEL, we have developed a novel tool which auto-
matically translates a MATLAB code to a corresponding
HYSDEL model.

3. THE MATLAB-TO-HYSDEL TRANSLATOR

This section describes the process of translating a control
algorithm written in MATLAB into the HYSDEL form.
The translator consists of a lexer, which cleans the MAT-
LAB code and identifies its key components. Operation of
this phase is reported as Algorithm 1. Following compo-
nents are being identified:

• operators: +, -, *, ˆ, /, &, |, ∼, =, >, <
• keywords: if, else, end, function, global
• names of variables

The cleaned-up code is subsequently processed by a parser,
which operates according to Algorithm 2. The parser first
creates declarations of state, input and output variables,
which serve as an interface between the control algorithm
and the outside world. Subsequently, each line of the MAT-
LAB source file is converted into its HYSDEL equivalent.
Since HYSDEL only supports linear expressions, only a
subset of valid MATLAB expressions can be converted.

To illustrate the translation, consider the following ex-
ample. Given is a system composed of two liquid tanks,
situated above each other, as shown in Figure 1. The
linearized mathematical model of such a system is given
by
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h1(k + ∆t) = h1(k) + ∆t/F1(q(k) − s1h1(k)), (6a)

h2(k + ∆t) = h2(k) + ∆t/F2(s1h1(k) − s2h2(k)), (6b)

where h1 and h2 are the liquid levels in the corresponding
tanks, ∆t is the sampling period, F1, F2 are the tanks’
cross-section areas, q(k) is the liquid inflow to the first tank
(which is the control input), and s1 and s2 are linearization
coefficients. The system is to be controlled by a rule-based
controller:

q(k) =

{
qmax if h2(k) ≤ href and h1(k) ≤ hmax

0 otherwise.
(7)

The rules are such that the liquid inflow is set to a non-
zero value qmax whenever the liquid level in the bottom
tank is below its reference href and the upper tank is not
overflowing. Otherwise the control input is set to zero.
Important to notice is that due to accumulation of the
liquid in the upper tank, liquid in the lower tank may
continue to rise even after the control input is set to zero.
In the next section we will show how to verify suitability
of such a control scheme (i.e. that it guarantees a safe
operation of the equipment where none of the tanks will
overflow) by employing reachability analysis.

To illustrate the automatic code translator, suppose that
the closed-loop system is described by the following MAT-
LAB code:

1 function closed_loop

2

3 % declaration of internal states

4 global h1 h2

5

6 % declaration of parameters

7 F1 = 31.8319;

8 F2 = 31.8319;

9 s1 = 1;

10 s2 = 0.9;

11 dT = 5;

12 href = 76; % reference level in centimeters

13 hmax = 100; % safety limit for the upper tank

14 qmax = 100; % default flow rate to upper tank

15

16 % control rules

17 if ( h2 <= href ) & ( h1 <= hmax )

18 q = qmax;

19 else

20 q = 0;

21 end

22

23 % dynamical system

24 h1 = h1 + dT/F1*( q - s1*h1 );

25 h2 = h2 + dT/F2*( s1*h1 - s2*h2 );

The code supported by the translator is structured as
follows. First line always contains definition of the MAT-
LAB function. State variables are represented as global
variables, since they constitute an internal storage which
needs to be updated between consecutive executions of
the code. Concrete numerical values of parameters are
provided next, followed by definition of switching control
rules (7). The rules can contains logic operators such as
and (&), or (|), and negation (∼). Multiple rules can
be used and they can be interconnected using ELSEIF
statements. The computed control action (denoted by the
q variable in the code), is then used to update the internal
state variables according to (6).

Applying the translator to such a MATLAB code produces
its HYSDEL equivalent, reported next.

1 SYSTEM closed_loop {

2 INTERFACE {

3 STATE {

4 REAL h1, h2;

5 }

6 PARAMETER {

7 REAL F1 = 31.8319, F2 = 31.8319;

8 REAL s1 = 1, s2 = 0.9;

9 REAL dT = 5, href = 76;

10 REAL hmax = 100, qmax = 100;

11 }

12 }

13 IMPLEMENTATION {

14 AUX {

15 REAL q;

16 BOOL delta1, delta2;

17 }

18 AD {

19 delta1 = (h2 <= href);

20 delta2 = (h1 <= hmax);

21 }

22 DA {

23 q = {IF (delta1 & delta2) THEN qmax ELSE 0};

24 }

25 CONTINUOUS {

26 h1 = h1 + dT/F1*( q - s1*h1 );

27 h2 = h2 + dT/F2*( s1*h1 - s2*h2 );

28 }

29 }

30 }

Applying the HYSDEL compiler to the generated model,
matrices of the MLD model (5) will be generated and
saved to MATLAB. The MLD model can be subsequently
converted to the PWA model (1) e.g. by using the mpt sys
function of the Multi-Parametric Toolbox (Kvasnica et al.,
2004). The translator implements Algorithms 1 and 2 in
the PHP language and is provided as a free web-based
service available at http://necron.sk/xant/. Notice that
the translator is under an active development and is
subject to frequent changes in the following months.

4. SAFETY VERIFICATION VIA REACHABILITY
ANALYSIS

To verify safety properties of closed-loop systems described
as hybrid systems, one can solve the following problem.

Problem 4.1. Given is a hybrid system either in PWA or
MLD form, a polyhedral set of initial conditions X0, a time
horizon T , and a polyhedral set of “unsafe” states Xf . Find
an initial condition x(0) ∈ X0 for which the evolution of
states reaches Xf in, at most, T steps, or determine that
no such initial condition exists.

A feasible solution to Problem 4.1 constitutes at least one
“unsafe” initial condition for which the control rules fail
to meet a given safety goal. Infeasibility of Problem 4.1,
on the other hand, provides a certificate that the system
will always evolve in a safe manner.

Remark 4.2. Problem 4.1 can be easily extended to cover
cases where the set of “unsafe” states Xf is a non-convex
set represented by a finite number of polyhedra. Moreover,
instead of verifying safety with respect to a fixed horizon
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Algorithm 1 Lexer algorithm

INPUT: MATLAB code
OUTPUT: Cleaned MATLAB code with identified to-

kens
1: take MATLAB code as string
2: for each operator OR keyword in string do
3: if operator then
4: put space before and after operator
5: end if
6: if keyword then
7: put semicolon before and after keyword
8: end if
9: end for

10: for each character in string do
11: if it is TAB then
12: replace it with space
13: end if
14: if it is carriage return OR line feed then
15: replace it with semicolon
16: end if
17: if it is per cent sign then
18: while it is NOT (semicolon OR carriage return

OR line feed) do
19: shift to the next character
20: end while
21: end if
22: if it is space as previous character then
23: shift to the next character
24: end if
25: if it is semicolon as previous character then
26: shift to the next character
27: end if
28: end for
29: for each semicolon do
30: break the rest of the string into new line
31: end for

T , one can look for the minimal value of T for which the
system violates safety conditions. This can be achieved e.g.
by employing bisection in conjunction with Problem 4.1.

If the hybrid system to be verified is given in the MLD
form (5), Problem 4.1 can be approached by solving a
feasibility mixed-integer linear program:

find x(0) (8a)

s.t. x(0) ∈ X0, (8b)

x(k + 1) = Ax(k) + Bδδ(k) + Bzz(k) + B0, (8c)

Exx(k) + Eδδ(k) + Ezz(k) ≤ E0, (8d)

x(T ) ∈ Xf . (8e)

Here, constraints (8c)–(8d), which are defined for k =
0, . . . , T − 1, describe evolution of the MLD system on
horizon T , cf. (5). Under the assumption that X0 and Xf

are polyhedral sets, they can be described by

X0 = {x | H0x ≤ K0}, (9a)

Xf = {x | Hfx ≤ Kf}, (9b)

where H0, Hf , K0, Kf are matrices which represent
the half-space representation of such sets. Therefore all
constraints in (8) are linear in the decision variables
x(k), δ(k), and z(k), for k = 0, . . . , T . Since δ(k) are
vectors of binary variables while x(k) and z(k) are real-
valued vectors, it follows that problem (8) is a mixed-
integer linear program (MILP) with a pure feasibility

Algorithm 2 Parser algorithm

INPUT: MATLAB tokens
OUTPUT: HYSDEL code
1: declare state, input and output variables
2: for each line do
3: if ”if” found then
4: parse next line
5: store condition(s)
6: parse next line
7: store ”if” value
8: parse next line
9: if ”else” found then

10: store ”else” value
11: parse next line
12: end if
13: else
14: store parameter
15: end if
16: end for
17: for each condition do
18: store auxiliary variable
19: negate condition
20: if negated condition found then
21: store negated aux var
22: end if
23: end for
24: create HYSDEL pattern
25: fill pattern with stored strings
26: generate HYSDEL code

objective. Such MILP problems can be formulated e.g. by
YALMIP (Löfberg, 2004) and solved efficiently using state-
of-the-art solvers, such as with GLPK (Makhorin, 2001) or
CPLEX (ILOG, Inc., 2003).

If the hybrid system is given in its PWA form (1), the cor-
responding reachability problem is formulated as follows

find x(0) (10a)

s.t. x(0) ∈ X0, (10b)

δi(k) ⇔ x(k) ∈ Ri, i = 1, . . . , n, (10c)

δi(k) ⇔ x(k + 1) = Aix(k) + fi, i = 1, . . . , n, (10d)
n∑

i=1

δi(k) = 1, (10e)

x(T ) ∈ Xf . (10f)

Here, δi(k), i = 1, . . . , n (where n is the number of PWA re-
gions) are binary selectors which take the value of 1 if and
only if the state x(k) is contained in the i-th polyhedral
region Ri, cf. (10c). The truth value of the corresponding
binary selector then activates a particular state-update
equation in (10d). The logic equivalence (⇔) rules can
again be translated into mixed-integer inequalities using
the big-M method, as shown in Section 2.2. Finally, (10e)
is an exclusive-or condition which only allows the state to
reside in a single polyhedral region. Again, problem (10)
can be readily cast as a feasibility MILP with binary
variables δi(k), and real variables x(k), k = 0, . . . , T .

Due to equivalence between PWA and MLD systems (Heemels
et al., 2001), Problem 4.1 can be answered either by
solving (8) or (10). The particular selection depends on
the number of binary variables induced by a particular
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choice of the hybrid model (either PWA or MLD). In
the next section we apply the described safety verification
procedure to an illustrative example.

5. EXAMPLE

We revisit the two-tanks example discussed in the previous
section. We reiterate that the aim is to verify that the
rules-based controller (7), connected with the system (6),
always meets a certain safety goal. In this example we
want to verify that the liquid level in the bottom tank
(h2) stays below a pre-defined threshold, say hunsafe. The
set of unsafe states is hence Xf = {h2 | h2 > hunsafe} with
hunsafe = 84 (all levels are expressed in centimeters). The
set of initial states is X0 = {h1, h2 | 0 ≤ h1 ≤ a, 0 ≤ h2 ≤
a}. Two scenarios were considered: one with a = 30 and
the other one with a = 70.

To formulate the verification problem, the HYSDEL model
of the closed-loop system is first compiled by the HYS-
DEL compiler, which generates the corresponding MLD
model description. This model was subsequently used to
formulate the MILP problem (8) using YALMIP (Löfberg,
2004):

1 % definition of decision variables

2 x = {}; d = {}; z = {};

3 for k = 1:T+1

4 x{k} = sdpvar(nx, 1);

5 z{k} = sdpvar(nz, 1);

6 d{k} = binvar(nd, 1);

7 end

8

9 % constraint on the initial condition

10 CON = [ 0 <= x{1}(1) <= a; 0 <= x{1}(2) <= a ];

11

12 % constraint on the final state in the unsafe set

13 CON = CON + [ x{end}(2) > 84 ];

14

15 % time evolution of the MLD model

16 for k = 1:T

17 CON = CON + [ x{k+1} == A*x{k}+Bd*d{k}+Bz*z{k}+B0 ];

18 CON = CON + [ Ex*x{k} + Ed*d{k} + Ez*z{k} <= E0 ];

19 end

20

21 % solve the fesibility problem

22 solution = solvesdp(CON, []);

23

24 % return the "unsafe" initial condition if it exists

25 if solution.problem == 0

26 xunsafe = double(x{1});

27 end

Here, the decision variables x(t), δ(t), z(t) are first defined
on lines 2–7 for t = 0, . . . , T . Notice that variables δ(t)
are declared as binary variables on Line 6. Line 10 then
specifies the set of initial conditions for both state variables
(the index in {·} denotes the time step k, while the index
in (·) specifies position of the particular element in the
state vector). Similarly, the set of unsafe states is defined
on Line 13. Then, constraints (8c)–(8d) are repeated for
k = 0, . . . , T −1 on Lines 17 and 18. Finally, the formulated
verification problem is solved by calling the solvesdp
command. If the problem is feasible for some value of T ,
(cf. Lines 25–27), value of the “unsafe” initial condition
is returned. If the problem is infeasible for all T ≤ Tmax,
then there is no such unsafe starting point and therefore
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Fig. 2. Simulation scenario for an unsafe initial condition.

the controller always operates in a safe manner within of
Tmax time steps.

For a = 30 we have solved problem (8) for T = 0, . . . , 50
(which corresponds to 250 seconds) using the GLPK
MILP solver. The problem was infeasible for any value
of T ≤ Tmax, which certifies a safe behavior of the control
system (7) for any initial condition bounded by 0 ≤ hi ≤ a,
i = 1, 2. However, for a = 70 the safety verification
problem was feasible for T = 12, which resulted into
the unsafe initial condition h1(0) = 70 and h2(0) =
17.2606. Simulation of the closed-loop system starting
from this initial condition is shown in Figure 2, which
indeed confirms that the safety barrier h2 > 84 is violated
after 12 sampling instances.

6. CONCLUSIONS

In this paper we have proposed how to verify safety prop-
erties of logic-based control laws written in MATLAB.
First, the MATLAB code was converted into its HYSDEL
equivalent by means of an automated lexing and parsing
procedure. The HYSDEL model was subsequently con-
verted into a mathematical form, represented either by a
PWA or by an MLD model. Finally, the verification was
performed by solving a mixed-integer linear program. A
motivating example was provided to illustrate individual
steps. The main benefit of this work is that it allows
theoretical verification algorithms to be applied to a subset
of ordinary computer code, in this case represented by
MATLAB. However, the translator can be easily modi-
fied to support other programming languages as well, for
instance the C language or Java.
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Abstract: The paper devotes analysis of environmental time series by using the on-line empirical mode 
decomposition (OEMD). The environmental data were measured by meteorological stations which are 
deployed in the southern part of Czech Republic. The EMD algorithm was modified for the possibility 
of the on-line analysis of environmental time series.  

 

1. INTRODUCTION 

During processing of environmental data to consider the state 
of the ecosystem, the stationarity or periodicity of the 
measured data is usually assumed. In fact, the observed data 
reflect the characteristics of the ecosystem, which is generally 
nonlinear, stochastic and nonstationary. The results obtained, 
given the very simplistic assumptions might therefore lead to 
incorrect conclusions and to obtain distorted characteristics 
either in time or frequency domain. Since similar problems 
encountered at each analyzing nonstationary stochastic 
systems, the EMD (Empirical Mode Decomposition) 
algorithm, developed by N. E. Huang in 1998 for NASA 
(Huang, et al. 1998), attracted much attention. Huang 
combined EMD algorithm with the algorithm for the Hilbert 
spectral analysis and created the so-called Hilbert-Huang 
Transformation (HHT), which is applicable for analysis of 
nonlinear, stochastic and nonstationary processes.  

 

2. EMPIRICAL MODE DECOMPOSITION 

An EMD algorithm decomposes adaptively the signal x(t) 
into intrinsic mode functions ci(t), i = 1, 2, …, n and into 
residue r(t): 

( ) ( ) ( )∑
=

+=
n

i
i trtctx

1

, (1) 

where n means the number of IMF functions. Residue r(t) 
reflects the average trend of a signal x(t) or a constant value.  
Intrinsic mode functions (IMF) are signals with following 
characteristics: 

In the whole dataset, the number of extremes (minima and 
maxima) and the number of zero-crossings must either equal 
or must differ by a maximum of one. 

Each point, that is defined as mean value of envelopes 
defined by local maxima and local minima is zero. 

The algorithm for searching of intrinsic mode functions is 
based on a procedure called “sifting”, described e.g. in 
(Zhaohua 2009) and (Zhaohua 2010).  

 

 

Fig 1.Flowchart of Empirical Mode Decomposition algorithm 
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The algorithm proceeds in the following steps (see Fig. 1): 

1. Create upper envelope Eu(t) by local maxima and lower 
envelope El(t) by local minima of data x(t). 

2. Calculate the mean of upper and lower envelope  

( ) ( ) ( )
2

11
1

tEtE
tm lu +

= . (2) 

3. Subtract the mean from original data  
( ) ( ) ( )tmtxth 11 −= . (3) 

4. Verify that h1(t) satisfies conditions for IMFs. Repeat 
steps 1 to 4 with h1(t), until it is an IMF. 

5. Get first IMF (after k iterations)  
( ) ( ) ( ) ( )tmthtc kk 1111 −= − . (4) 

6. Calculate first residue  
( ) ( ) ( )tctxtr 11 −=  (5) 

7. Repeat whole algorithm with r1(t), r2(t), … until residue 
is monotonic function. 

8. After n iterations x(t) is decomposed according 
to equation (1). 

 

3. ON-LINE ANALYSIS 

The algorithm described in chapter 2. is calculated off-line 
over the entire measured data range. Since the dataset can be 
very large, the sifting process can be time-consuming and 
computationally very demanding. Therefore, an algorithm 
that processes the data gradually, by moving time windows, 
was created. The advantage of floating time windows is 
mainly significant in accelerating of decomposition into IMF 
functions. 

For off-line decomposition, the computation time is not so 
much restricted and the interval edges, that might be 
distorted, can be omitted from the analysis. But these two 
problems become serious, when the EMD algorithm for on-
line analysis is used. The following procedure was used to 
overcome these problems: 

• The floating time window is created. The window range:  

( ) ;wt T t− , (6) 

where t is actual time point and a Tw is length of window. 
The decomposition process is at any point of time 
evaluated only in the appropriate window range. So the 
time needed for compute IMFs does not grow with 
simulation time. 

• To reduce distortion of decomposition at the end of 
measurement interval, the currently known courses of 
IMFs are used to estimate their future course and to 
estimate their future local extremes needed for EMD 
algorithm. 

The size of the time window affects frequencies, which ones 
will be detected during sifting in the IMFs and which ones 
will be included within residue. Generally, the longer the 
window, the lower frequencies (and therefore the longer 
periods) will appear in IMFs. 

 

The practical realization of algorithm is implemented in the 
software MATLAB and its simulation toolbox SIMULINK. 
As a basis for the algorithm is used modified Zhaohua 
MATLAB function „eemd()“ – see (Zhaohua 2010). The 
modification consists in replacing the interpolation functions 
for creating of envelopes with functions that allow also 
interpolation. The modified eemd() function is built into the 
s-function „s-emd()“.  The main tasks of the s-function are: 

• To create and to maintain moving time window during 
simulation. 

• To maintain dynamic global variables of type one-, two- 
and three-dimensional array of variable length. These 
variables store the source data, residue and IMFs with 
their variances. 

 

4. IMPLEMENTATION 

Modified On-line Empirical Mode Decomposition (OEMD) 
algorithm described in chapter 3 is demonstrated on soil 
temperature measurements from the meteorological station 
by the environmental project TOKENELEK. (Fig. 2) shows 
the temperature ϑ during September 2010, the sampling 
period is 10 minutes.  
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Fig. 2  The time range of temperature ϑ. 
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Fig. 3  Intrinsic Mode Functions (IMF) and Residue obtained 
off-line once around a course. Pay attention to changing 
scale of vertical axis. The residue is compared to measured 
data ϑ. 
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Fig. 4  Comparison of variances of (off-line) IMF. The larger 
variance, the more important component it represents. 

 

 

The experimental analysis has been divided into two parts. 
An off-line EMD analysis was carried out in the first part. 
The resulting functions are shown in the graph (Fig. 3) and 
serve as reference samples of IMF functions. Variance was 
also found for every IMF. Variances were used as a simple 
benchmark to determine how significant component of the 
initial data each IMF represents. As shown in (Fig. 4), the 
most important component is c4.  

(Fig. 5) compares original data ϑ with filtered temperature ϑf, 
that is declared by formula: 

( ) ( ) ( )trtct
i

if +=∑
=

9

2

ϑ . (6) 

 
 
The same source data (Fig. 2) has been processed by on-line 
EMD algorithm in the second part of the experiment. The 
size of the time window has been set at 1008, which given the 
sampling density represented 7 days.  

The rectangle shown in graph (Fig. 6) represents the time 
window during the simulation. One set of IMF functions that 
has been generated inside the time window is shown in the 
graph (Fig. 7). It is obvious that the residue is more curved 
in comparison to off-line decomposition and also some IMFs 
have higher variance. This phenomenon is a necessary and 
expected consequence of a shorter time range of analyzed 
data.  

Along with finding the IMF functions their variance were 
estimated. On the basis of the variances it was decided which 
IMFs will be included into partial filtered function ϑf(t). 
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Fig. 5  Comparison of temperature trends ϑ and ϑf. The thick 
line represents the original measured data; the thin line 
represents the filtered function obtained by adding the 
selected major IMFs and residue. 

 

 

 (Fig. 8) shows the course of several partial filtered functions 
compared to the original source data. Thick light line 
represents the source data; thin gray scaled lines show partial 
filtered functions from selected time windows. 
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Fig. 6  The symbolic representation of moving time window. 
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Fig. 7  Comparison  of on-line IMF  obtained by on-line 
EMD analysis for one time point t and offline IMF (see 
Fig. 3). The number of on-line and off-line IMF differs, so the 
comparison mainly illustrates how sifting process depends on 
window size. 
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Fig. 8  Comparison of measured temperature ϑ and (on-line) 
partial filtered functions ϑfi. The measured temperature is 
represented by thick light line; the courses of filtered 
temperatures for selected time windows are represented by 
thin lines with varying greyscales. The intervals between 
displayed partial functions are 1 day; the length of time 
window is Tw=7 days. 

 

 

5. CONCLUSION 

Empirical Mode Decomposition (EMD) is a progressive 
method that combines the signal analysis in time even in 
frequency domain. In field of environmental non-stationary 
data streams, almost repetitive sequences with very various 
periodicities often appear, but exact repetition of events 
occurs rarely. For this reason, the EMD analysis of these 
systems is very convenient. Real-time data processing 
provides results qualitatively similar to the offline analysis. 
Comparing of both methods shows that on-line analysis with 
a moving time window is much faster and significantly 
reduces the computational complexity. Off-line analysis on 
the contrary provides a slightly more detailed decomposition 
because it captures even very low frequencies. Data obtained 
from the experiments provided a number of suggestions for 
further work, with a wide range stems mainly from the short-
term prediction of the internal mode functions for more 
precise decomposition in real time. 
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Abstract: The laboratory helicopter simulator is a nonlinear two inputs - two outputs system with 

significant cross-coupling. The papers deals with control of vertical angle, where the controlled 

variable was the position angle and the manipulated variable was main motor voltage. The 

methods of control with PID controller, IMC controller and self-tuning adaptive controller were 

designed and tested. The control algorithms were used for tracking of the reference values and 

rejection of disturbances (moving of the tail rotor). 

Keywords: Helicopter simulator, PID controller, IMC controller, self-tuning controller  

 

1 INTRODUCTION 

The real laboratory physical models are significant 
part of control engineering education. Control of real 
physical models opens many problems, which are 
hidden by computer simulation (static and dynamic 
properties sensors or actuators, immeasurable 
disturbances, hardware and software tools for the 
connection between system and computer, problems 
with sampling by real-time experiments, etc). Those 
real physical models are then closer to real industrial 
systems.  

Laboratory system with twin rotor (helicopter 
simulator) is often used for laboratory education. 
This laboratory equipment produce e.g. firms 
Humusoft, Feedback or Bytronic. The system 
described in this paper was designed and realized in 
the Department of Process Control, University of 
Pardubice.  

The helicopter is a nonlinear two inputs - two outputs 
system with significant cross-coupling. Many tasks 
may be realized on this system from the easy 
measurement of both static and dynamic 
characteristics to the multivariable control. 

The aim of this paper is to give some suggestions for 
simple student’s laboratory tasks on the one-
dimensional control of vertical angle with fixed 
horizontal position. The paper includes the 

measurement of both step and frequency responses, 
the model building from identification results and 
controller design. The system was controlled by PID, 
IMC and adaptive discrete STC controllers. 

2.  SYSTEM DESCRIPTION 

The system consists of two propellers driven by DC 
motors (Fig.1). The movable part has two degrees of 
freedom. The axes of rotation are perpendicular. The 
position angles (elevation and azimuth) are 
influenced by the rotation of propellers. The system 
can freely rotate around the vertical axis by about 
215 degrees and the horizontal axis about 90 degrees.  
Both angles are measured by sensors and the angular 
velocities of the rotors by tacho-generators. DC 
motors are driven by power amplifiers with voltage 
in the range from 0 to 5 V. The main motor rotation 
is possible in one direction only, whereas the tail 
rotor may rotate in both directions. The model is 
connected with computer by NI USB – 6009 data 
acquisition device. The PC is equipped with the 
MATLAB and SIMULINK software along with the 
tools to perform measurements on the system and to 
implement controllers in real-time. Detailed 
description of the system can be found in Havlíček 
(2010). The paper deals with the control of vertical 
angle, where the controlled variables was the position 
angle and the manipulated variable was main motor 
voltage. 
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3.  PROPERTIES OF MAIN ROTOR SYSTEM  

Input of the main rotor system is the voltage on 
motor in range from 0 to 5 V and output is vertical 
angel in range from 0 to  90˚. The voltage  2.5 V was 
taken as a nominal input which corresponds to 
nominal output angle 29˚. Next the values of the 
input and output variables were taken as deviations 
from these nominal points. The disturbance variable 
is presented by the rotation of  the tail propeller. 
Following measurements on the system were 
performed: Static characteristic, step responses, 
frequency characteristic and experimental 
identification.  

3.1 Static characteristic 

The course of the measured static characteristic is 
given in  Fig. 2. The system is nonlinear and its gain 
increase with input voltage. 

Fig. 2.  Static characteristic 

 

3.2 Step responses 

The response on step voltage change was measured 
in three operating points – round about nominal value 
(step from 2 to 3 V), step for small voltage (from 1 to 
2 V) and step for higher voltage (from 3 to 4 V). The 
all responses are shown in Fig. 3. The step responses 
change with operating points in accordance with 
course of the static characteristic. 

3.3 Frequency response 

The frequency response was measured for the 
nominal operating point and it is presented in Fig. 4.  
Maximum gain occurs by the frequency 18.1 −= sω  
where phase angle is –π. 
 

Fig. 3.  Comparison of step responses (without time 
delay 1 s) 

(red – step from 1 to 2 V, green – step from 2 to 3 V, 
blue – step from 3 to 4 V) 
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Fig. 4.  Amplitude frequency response 

 

3.4 Model from experimental identification 

The sampling period was proposed with regard to 
speed of the data acquisition device during 
connection with MATLAB – Simulink. The model of 
STC controller is relatively complicated and the 
sampling period was hence chosen T = 1 s.  

Structure of the model was proposed as the system of 
the second order with time delay 1 s. It is the 
simplest model which can ensures the overshoot of 
step response. The difference equation has the form 

        
[ ])2()1(

)2()1()(

21
1

21

−+−=

=−+−+
− kubkubz

kyakyaky
               (1) 

and its parameters were computed by the least-
squares method, see e.g. Drábek et al. (1987). 
Several step responses close to the nominal values 
were evaluated and the following parameters were 
obtained: 

6645.0
3608.6
5460.0
2784.1

2
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2
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−=
=
=
−=

b
b
a
a

           (2) 

 

The model (1) with these parameters is the good 
approximation of dynamic behaviour of the identified 
system in given area. 

   

4. SYSTEM CONTROL 
 

Several methods were used for controller design. The 
controllers were realized in MATLAB – Simulink. 
All controllers were verified for reference tracking 
and rejection of disturbances (moving of the tail 
rotor). 
 
4.1 PID controller 
  
The PID controller in continuous form has transfer 
function  

    ⎥
⎦

⎤
⎢
⎣

⎡
++= d

i
R sT

sT
rsG 11)( 0            (3) 

and its parameters were designed according to 
frequency Ziegler-Nichols method - Ziegler et all. 
(1942). The ultimate  (critical) values were first 
measured for the sampling period T = 0.1 s: 

0172.00 =kr  and .5.3 sTk =  Hence controller 
parameters are

 

sTT
sTT

rr
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Response on the step changes of reference and on the 
influence of tail rotor moving (voltage 4.5 V in time 
220 s) is given in Fig. 5. 

The ultimate values changed when the sampling 
period is increased. For example the ultimate gain 
was kr0 = 0.0455 for T = 1 s and the ultimate period 
was .6 sTk =  But the PID controller designed from 
this values was not acceptable, as output variable 
oscillated. It was caused the nonlinear behaviour of 
plant. The ultimate values for the other operating 
point (u = 3.5 V; kr0 = 0.0212; Tk =5 s) gave good 
response (see Fig.6).  

 

4.2 IMC controller 
 
Internal Model Control (IMC) is an effective method 
of controller design, which requires limited 
computation - Morari et al. (1998), Macháček et al. 
(2004). The block diagram of IMC is shown in Fig. 
7, where G is controlled process, GM is process model 
and GRI is controller. 

 
The process model must be factorized on invertible 

−G  and noninvertible +G  part: 
 

+−= GGsGM )(             (4) 

Fig. 5.  Control process with PID controller 
 (T = 0.1 s) 

10-1 100 101
0

5

10

15

20

25

30

35

40

w [1/s]

A
 [d

B
]

0 50 100 150 200 250
-20

-10

0

10

20

30

40

t [s]

an
gl

e 
[o

]

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

292



GRI GS 
w u d y

+ - 

+ 

+ 

GM 
+

- 

0 50 100 150 200 250
-20

-10

0

10

20

30

40

50

t [s]

an
gl

e 
[o

]

Fig. 6.  Control process with PID controller  
(T = 1 s) 

 
The controller includes the invertible part of process 
model. The noninvertible parts are time delay and the 
factors with right-half-plane zeros, which stay in 
closed loop transfer function. A linear filter can be 
added to make possible the controller realization: 
 

r
f

f s
sG

)1(
1)(
+

=
τ

 
         (5) 

where fτ  is the select parameter for adjustment of 
the closed-loop dynamics and r is chosen according 
to model order. The controller is then in the form: 

)(

)(
)(
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sG
sG f

RI −
=                           (6) 

The all models with the exception of time delay may 
be inverted in our case. The filter (5) of second order 
with sf 2=τ was chosen and its discrete transfer 
function for T = 1 s was 
 

3679.0213.1
06446.00902.0)(

2 +−

+
=

zz
zzG f

                 (7) 
 
The course of experiment was the same as for the 
PID controller. The measured response is given in 
Fig. 8. 

 
 

Fig. 7.  Block diagram of IMC 
 

Fig. 8. Control process with IMC controller  
(T = 1 s) 

 
The IMC controller is sensitive on the accuracy of 
model and control process quality was worse for 
great reference steps. 

 
4.3 Self-tuning controller  
 
Controllers with fixed parameters are often unsuited 
to nonlinear processes because their parameters 
change with operating conditions. One possible 
alternative for improving the quality of control for 
such processes is the use of adaptive control system. 
The approach to adaptive control, called self-tuning 
controller (STC), is based on the recursive 
identification of controlled system and subsequently 
on the design of optimal controller from identified 
parameters. The controller is digital and works with 
fixed sampling period T. More information about 
STC can be found e.g. in Bobál et al. (2005).  
 
The recursive least squares method together with a 
forgetting strategy is used to estimate the process 
model parameters, as the part of the general control 
algorithm. The parameter vector Θ for (k+1)-th time 
interval is estimated using the following recursive 
equations: 
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where ϕ is the forgetting factor ϕ ≤ 1.  
 
The data vector Φ has for the model of second order 
with time delay and offset form  
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and the parameter vector is then 
 

c]  [)1( 2121 bbaakT =+Θ  
 
The algorithm begins with diagonal matrix C, which 
has the same values on its main diagonal (chosen 
100) and an arbitrary initial parameter vector (chosen 
all 1).  
 
The IMC controller was chosen as the control part of 
the adaptive algorithm. The on-line identification and 
IMC controller design are repeated in every sampling 
time. The model from experimental identification is 
used for controller design. The transfer functions of 
model GM (from Eq. 1), controller GRI (Eq. 6) and 
filter Gf  (Eq. 7) are taken in discrete form with 
sampling period T = 1 s.  

The controller was realized directly in Simulink, 
which can to work (from the version 4) with signals 
type matrix - Dušek et al. (2004). Real time toolbox 
was then not need to use. The blocks from Simulink 
Library as Selector (selects or reorders specified 
elements of multidimensional signal) or Reshape 
(changes the dimensions of a vector or matrix signal) 
were used for modelling identification and control 

algorithms. Block scheme of the whole adaptive 
controller is in Fig.9.  

Response of the system with STC IMC regulator on 
the same signals as for the PID and IMC controllers 
is given in Fig. 10. 
 

5. CONCLUSIONS 

The control of the vertical angle was realised with 
several controllers. The control algorithms were used 
for tracking of the reference values and rejection of 
disturbances (moving of the tail rotor). Direct 
comparison of used methods by some numerical 
criterion is not suitable. Firstly the controlled system 
is nonlinear and control process quality depends on 
operating point. The STC controller is the best 
method from this objective. In the second place the 
disturbances are larger then differences among 
methods.  

All controllers gave relatively good control process. 
The influence of the tail rotor moving on the process 
control was small. Self tuning controller had better 
tracking of reference, but worse rejection of 
disturbances. The results of this work will be used for 
laboratory education. 

 

 

Fig. 9.  Block scheme the whole adaptive controller 
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Fig. 10.  Control process with STC controller 
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Abstract:  There is introduced an algorithm which provides piecewise-linear model of nonlinear plant 
using artificial neural networks, in this paper. That piecewise-linear model is precise and each linear 
submodel is valid in some neighbourhood of actual plant state. This model can be used for plant control 
design. There is presented an example at the end of this paper, where defined nonlinear plant is controlled 
via Pole Assignment technique using piecewise-linear neural model and control response is compared to 
data obtained by common PID controller. 

 

1. INTRODUCTION 

Artificial Neural Network (ANN) is a popular methodology 
nowadays with lots of practical and industrial applications. 
As introduction it is necessary to mention applications as 
mathematical modelling of bioprocesses in Montague et al. 
(1994), Teixeira et al. (2005), prediction models and control 
of boilers, furnaces and turbines in Lichota et al. (2010) or 
industrial ANN control of calcinations processes and iron ore 
processes in Dwarapudi, et al. (2007). 

Therefore, the aim of the contribution is to explain how to 
use ANN with piecewise-linear activation functions in hidden 
layer in process control. To be more specific, there is 
described technique of controlled plant linearization using 
ANN nonlinear model. Obtained linearized model is in a 
shape of linear difference equation. 

2. ANN FOR APPROXIMATION 

According to Kolmogorov's Superposition Theorem, any real 
continuous multidimensional function can be evaluated by 
sum of real continuous one-dimensional functions, see Hecht-
Nielsen (1987). If the theorem is applied to ANN, it can be 
said that any real continuous multidimensional function can 
be approximated by certain three-layered ANN with arbitrary 
precision. Topology of that ANN is depictured in Fig. 1. 
Input layer brings external inputs x1, x2, …, xP  into ANN. 
Hidden layer contains S neurons, which process sums of 
weighted inputs using continuous, bounded and monotonic 
activation function. Output layer contains one neuron, which 
processes sum of weighted outputs from hidden neurons. Its 
activation function has to be continuous and monotonic. 

So ANN in Fig. 1 takes P inputs, those inputs are processed 
by S neurons in hidden layer and then by one output neuron. 
Dataflow between input i and hidden neuron j is gained by 
weight w1

j,i. Dataflow between hidden neuron k and output 
neuron is gained by weight w2

1,k. Output of the network can 
be expressed by following equations. 

∑
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Fig. 1. Three-layered ANN 
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ayy ϕ=  (4) 

In equations above, φ1(.) means activation functions of 
hidden neurons and φ2(.) means output neuron activation 
function. 

As it is mentioned above, there are some conditions 
applicable for activation functions. To satisfy those 
conditions, there is used mostly hyperbolic tangent activation 
function (eq. 5) for neurons in hidden layer and identical 
activation function (eq. 6) for output neuron. 

( )jaj yy 11 tanh=  (5) 

1
2

ayy =  (6) 

Mentioned theorem does not define how to set number of 
hidden neurons or how to tune weights. However, there have 
been published many papers which are focused especially on 
gradient training methods (Back-Propagation Gradient 
Descend Alg.) or derived methods (Levenberg-Marquardt 
Alg.) – see Haykin (1994). 

3. SYSTEM IDENTIFICATION BY ANN 

System identification means especially a procedure which 
leads to dynamic model of the system. ANN has traditionally 
enjoyed considerable attention in system identification 
because of its outstanding approximation qualities. There are 
several ways to use ANN for system identification. One of 
them assumes that the system to be identified (with input u 
and output yS) is determined by the following nonlinear 
discrete-time difference equation. 

nmmkuku

nkykyky SSS

≤−−
−−=

)],(,),1(

),(,),1([)(

K

Kψ  (7) 

In equation above, ψ(.) is nonlinear function, k is discrete 
time and n is difference equation order. 

The aim of the identification is to design ANN which 
approximates nonlinear function ψ(.). Then, neural model can 
be expressed by (eq. 8). 

nmmkuku

nkykyky MMM

≤−−
−−=

)],(,),1(

),(,),1([ˆ)(

K

Kψ  (8) 

In (eq. 8), ψ̂  represents well trained ANN and yM is its 

output. Formal scheme of neural model is shown in Fig. 2. It 
is obvious that ANN in Fig. 2 has to be trained to provide yM 
as close to yS as possible. Existence of such a neural network 
is guaranteed by Kolmogorov's Superposition Theorem and 
whole process of neural model design is described in detail in 
Haykin (1994) or Taufer et al. (2008). 

4. PIECEWISE-LINEAR MODEL 

As mentioned in section 2, there is recommended to use 
hyperbolic tangent activation function for neurons in hidden 
layer and identical activation function for output neuron in 
ANN used in neural model. However, if linear saturated 
activation function (eq. 9) is used instead, ANN features stay 
similar because of resembling courses of both activation 
functions (see Fig. 3). 

=jy1

      1for1

11for
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 (9) 

The output of linear saturated activation function is either 
constant or equal to input so neural model which uses ANN 
with linear saturated activation functions in hidden neurons 
acts as piecewise-linear model. One linear submodel turns to 
another when any hidden neuron becomes saturated or 
becomes not saturated. 

Let us presume an existence of some dynamic neural model 
which uses ANN with linear saturated activation functions in 
hidden neurons and identic activation function in output 
neuron – see Fig. 4. Let us also presume m = n = 2 for 
making process easier. ANN output can be computed using 
eqs. (1), (2), (3), (4). However, another way for ANN output 
computing is useful. Let us define saturation vector z of S 
elements. This vector indicates saturation states of hidden 
neurons – see (eq. 10). 
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Then, ANN output can be expressed by (eq. 11). 
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Fig. 3. Activation functions comparison 
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Fig. 2. Neural model 
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Thus, difference equation (11) defines ANN output and it is 
linear in some neighbourhood of actual state (in that 
neighbourhood, where saturation vector z stays constant). 
Difference equation (11) can be clearly extended into any 
order. 

In other words, if it is designed neural model of any nonlinear 
system in form of Fig. 4, then it is simple to determine 
parameters of linear difference equation which approximates 
system behaviour in some neighbourhood of actual state. 
This difference equation can be used then to the actual 
control action setting due to any of classical or modern 
control techniques. 

If chosen control technique requires model in form of 
difference equation with no constant term (c = 0), (eq. 11) 
can be transformed in following way. Let us define 

0)()(~ ukuku −=  (12) 

where u0 is constant. Then, (eq. 11) turns into 

021
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)2()1()(

ubb

ckubkub

kyakyaky MMM

⋅++
++−⋅+−⋅+
+−⋅−−⋅−=

 (13) 

Equation (13) becomes constant term free, if (eq. 14) will be 
satisfied. 

21
0 bb

c
u

+
−=  (14) 

It is obvious that mentioned procedure can be extended into 
any order of difference equation. 

Whole algorithm of piecewise-linear neural model usage in 
process control is summarized in following terms. 

1. Create neural model of controlled plant in form of 
Fig. 4. 

2. Set k = 0. 

3. Measure plant output yS(k). 

4. Determine parameters ai, bi and c of difference equation 
(11). 

5. Transform (eq. 11) into (eq. 13). 

6. Determine )(~ ku  according to some chosen control 

technique using linear plant model in form (eq. 13). 

7. Transform )(~ ku  into u(k) using (eq. 12) and perform 

control action. 

8. k = k + 1, go to 3. 

5. EXAMPLE 

Demonstrative nonlinear controlled system is defined by 
difference equation (15). 
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There are defined the boundaries of input u(k) to interval 
<0;3>. Static characteristic of the system is figured below 
(Fig. 5). 
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Fig. 4. Piecewise-linear neural model 
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Fig. 5. Static characteristic of the system 
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Firstly, system is controlled with PID controller tuned by trial 
and error – more sophisticated tuning methods fail to bring 
better performances because of significant nonlinearity of the 
plant. Control response (Fig. 6) shows serious lack of quality. 
For lower values of controlled variable yS(k), control 
performance oscillates unacceptably, while for higher values 
of yS(k), control performance is too damped. 

Then, piecewise-linear neural model is used for control. 
Neural model is designed according to information described 
in section 4. Detailed description of the process is not 
referred here, because it is standard well-known procedure. 
Certain control technique, which can use system model in 
form of (eq. 13), has to be determined. In this demonstration, 
Pole Assignment control technique (PA) of Algebraic 
Control Theory is used. 

In simple words, this control technique determines controller 
parameters so that whole closed control loop behaves as some 
defined standard. In one its version, PA uses control loop 
shown in Fig. 7. Controlled system should be described by 
polynomials A(z-1), B(z-1), where polynomial parameters are 
equal to difference equation parameters used for linear model 
of the controlled system. Both feedforward and feedback part 
of controller are defined by polynomials P(z-1), Q(z-1), R(z-1), 
which can be determined by solving of several diophantine 
equations. Standard for control loop behaviour has to be 
chosen. Whole procedure of PA is described in detail in book 
edited by K. J. Hunt (1993). 

Standard for this demonstration is defined as discrete first 
order system with unit gain and denominator (1 -0.6065z-1). 

Control performance is shown in Fig. 8. Compared to Fig. 6, 
there comes clear improvement. 

6. CONCLUSIONS 

The paper is focused on usage of neural network with linear 
saturated activation functions in process control. Neural 
model with such a neural network within is suitable for 
controller design using any of huge set of classical or modern 
control techniques. As example, there is presented control of 
nonlinear discrete plant using Pole Assignment technique. 
Comparison to control performance provided by PID 
controller proves great improvement. 
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Abstract: We present the PI/PID controller settings for the first order systems with dead time, based on the modulus 
optimum criterion. The settings provide fast closed-loop response to changes of the reference input. Unlike most other 
tuning methods, the parameters are obtained without approximation of the delay term, so they remain valid for long 
dead time. Besides the performance indices, quality of the settings is also evaluated by the stability margin. Although 
optimal values of the parameters are valid for the reference tracking problem, a compensation of the disturbance lag 
that preserves the stability margin is proposed for the disturbance rejection problem. 

 

1. INTRODUCTION 

Many industrial processes are modelled by the stable first-
order plus dead time (FOPDT) transfer function: 

 ( )
1

sKS s e
Ts

τ−=
+

 (1) 

where K is the system gain, 0T >  is the time constant and τ  
is the dead time parameter. The model (1) allows simple 
experimental identification from the step response, which can 
be in most cases easily measured. Simple methods based on 
coincidence in one or more points and more complex 
methods suitable for noisy data are described in (Åström and 
Hägglund 1995) and (Kiong et al. 1999).  

For tuning PID controllers based on the model (1) many 
approaches exist, see e.g. (Åström and Hägglund 1995) for 
description of the most important methods. A comprehensive 
survey of known formulas is available in (O´Dwyer 2003). 
Early methods were derived from empirical requirements on 
the step response, such as one-quarter decay ratio (Cohen and 
Coon 1953), (Ziegler and Nichols 1942), step-response 
overshoot (Chien at al. 1952) or from integral criterions in 
time domain with approximation of the dead-time dynamics 
(Lopez et al. 1967), (Wang et al. 1995). These methods, 
however, usually work well only for a rather limited range of 
the ratio /Tτ .  

Among methods for the model of type (1) without 
approximation of the delay term the design with given gain 
and phase margins (Ho et al. 1995) and LQR design (Kiong 
et al. 1999) should be mentioned. Alternative ways for 
systems with long time delay include internal model control 
(Rivera et al. 1986), Smith predictor and λ -tuning (Åström 
and Hägglund 1995). These approaches, however, require 
implementation of delay in the control system.  

The method for setting up PI controller parameters based on 
cancellation of the factor ( 1)Ts +  was proposed in (Haalman 
1965). In this method the dead-time dynamics is manipulated 

without approximation. Good reference tracking performance 
is achieved, but on the other hand, poor results may be 
observed for rejection of load disturbances (Åström and 
Hägglund 1995). In a similar way it is possible to compensate 
dynamics of the second order plus dead time system by a PID 
controller. 

In this paper we utilize Haalman’s idea of pole compensation 
for designing optimal PI and PID controller parameters for 
the model (1). The pole compensation fixes the value of one 
parameter of the controller. We adjust the remaining 
controller parameters to meet analytic design criteria. We 
show that in this case especially the modulus optimum 
criterion leads to a simple choice of the parameters and to a 
control loop with very good practical properties. In this case, 
derivative term of the controller increases both the 
performance and the stability margin. The results presented 
here appeared in full context in the journal paper (Cvejn 
2009), where also the settings based on the minimum ISE 
criterion were analyzed.  

The modulus optimum criterion introduced in (Oldenbourg 
and Sartorius 1956) requires that the amplitude of the closed-
loop frequency response is close to one for low frequencies. 
If the closed-loop frequency response is decreasing, this 
condition is analogous to the requirement that the frequencies 
in the reference input are passed in the broadest possible 
range. Such a behaviour is desirable for the reference 
tracking cases, because then the closed-loop system is able to 
respond quickly to changes of the reference input.  

Let us write the closed-loop frequency response in the form  

 ( ) 1( )
1 ( ) 1 1/ ( )

L iT
L i L i

ωω
ω ω

= =
+ +

 (2) 

where ( )L s  is the open-loop transfer function in Laplace 
transform. If ( )L s  contains a pole in the origin, which is 
necessary to achieve asymptotically zero regulation error, for 
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0ω →  holds ( )L iω → ∞  and thus 2

0
lim ( ) 1T
ω

ω
→

= . 

Therefore, it is possible to write 2( )T ω  as  

 2( ) 1 ( )T Hω ω= +  (3) 

where ( )H Cω ∞∈ . Maximal flatness of the closed-loop 
frequency-response modulus is then equivalent to the 
requirement that   

 ( )0 ( ) maxn H ω →  (4)   

where ( )0 ( )n H ω  denotes the index of the first nonzero 
coefficient in the Taylor expansion of ( )H ω .  

Besides performance objectives, the design has to respect 
stability requirements. As the stability margin we consider 
the distance of the open-loop Nyquist plot from the critical 
point [ ]-1, 0 , i.e. the value  

 
( )

{ }
0,

inf 1 ( )L i
ω

γ ω
∈ ∞

= + ,  [ ]0, 1γ ∈ . (5) 

The reciprocal value of γ  is known as the sensitivity 
function. In general case it is recommended that the 
sensitivity is in the range from 1.3 to 2 (Åström and 
Hägglund 1995).  

2. THE CONTROLLER DESIGN 

 
 
 
 
 

 

Fig. 1. Control scheme for reference tracking 

At first, consider the PI controller case. Consider the 
reference tracking control problem in Fig. 1. If we 
compensate the factor ( 1)Ts +  by the PI controller  

 1( ) 1C
I

R s K
T s

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (6) 

where    

 C
TK

K
κ

τ
= ,  IT T=  (7) 

the open-loop transfer function is  

 ( ) sL s e
s

τκ
τ

−=  (8) 

where κ  is a tuning parameter. The corresponding frequency 
response can be written as  

 ( / 2) sin cos( ) i iL e e i
i

ξ ξ πκ κ ξ ξξ κ
ξ ξ ξ ξ

− − + ⎛ ⎞
= = = − +⎜ ⎟

⎝ ⎠
 (9) 

where ξ τω=  is normalized frequency.  

The corresponding Nyquist plot is dependent only on a single 
parameter κ , which can be adjusted so that sufficient 
stability margin is guaranteed and performance objectives are 
fulfilled.  

In the case of serial PID controller we can put analogously  

 
( )

( )

1( ) 1 1

11 1

C D
I

D

R s K T s
T s

T T s
K Ts

κ
τ

⎛ ⎞
= + + =⎜ ⎟

⎝ ⎠
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (10) 

and we easily obtain the corresponding open-loop transfer 
function  

 1( ) sDT
L s e

s
τκ

τ τ
−⎛ ⎞= +⎜ ⎟

⎝ ⎠
 (11) 

and the frequency response in the form   

 1( ) iL i e ξξ κ δ
ξ

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (12) 

where ξ τω=  is normalized frequency and /DTδ τ= .  

 
Proposition 1. The modulus-optimum settings for the PID 
controller (10) are: 

 * 1/ 3δ =  and * 3 / 4κ = . (13) 
and for the PI controller (6): 

  * 1/ 2κ = . (14) 
Proof: The closed-loop frequency response (2) square 
modulus is   

 
( )

2

2

1 1( )
1 1 ( )1 1 2Re

T
QL

L

ξ
ξ

= =
++ +

. (15) 

It can be easily verified (Cvejn 2009) that if  

 11 ( )
1 ( )

H
Q

ξ
ξ

+ =
+

 (16) 

where ( )Q Cξ ∞∈ , it holds  

 ( ) ( )0 0( ) ( )n H n Qξ ξ= . (17) 

Since  

 2 2 2
2

1( )L ξ κ δ
ξ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (18) 

it is  

 ( ) ( ) ( )0 0 0( ) 1 2Re ( ) 2 ( ) 1n Q n L n Gξ ξ ξ= + + = +  (19) 

where 

 ( )( ) 1 2 Re ( )G Lξ ξ ξ= + . (20) 

1

sKe
Ts

τ−

+
 ( )R s  +

-

w  ye  
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To achieve maximal ( )0 ( )n Q ξ  and thus maximal ( )0 ( )n H ξ  
we require that the derivatives of ( )G ξ  are zero for 0ξ →  
up to maximal order. After substitution, it is easily found that  

 

( )

( )

( )

0

3

30

5

50

lim 1 2 1

lim 2 1 3

lim 2 5 1

dG
d
d G
d
d G
d

ξ

ξ

ξ

κ δ
ξ

κ δ
ξ

κ δ
ξ

→

→

→

= + −

= −

= −

 (21) 

 and   
( )

( )0
lim 0, 0, 2,4,...

k

k

d G k
dξ ξ→

= =   (22) 

Putting (21) equal to zero yields * 1/ 3δ =  and * 3 / 4κ = . For 
PI controller, where 0δ = , it follows that the optimal setting 
is * 1/ 2κ = .     
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Fig. 2. Open-loop Nyquist plots of proposed settings (solid 
line – PID controller, dashed line – PI controller) 
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Fig. 3. Step responses (solid line – PID controller, dashed 
line – PI controller)   

Figures 2 and 3 show the Nyquist plots and corresponding 
step responses for the proposed settings (the ideal open-loop 
transfer function (11) with 1sτ = is considered). Obtained 
settings obviously have very good quality for most practical 

purposes – the time response is fast and nearly not 
oscillating. The overshoot is of about 6 % in the case of PID 
controller. Figure 4 shows the corresponding dependence of 

( )T ξ  on ξ .  
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Fig. 4. Dependence ( )Tζ ξ→  (solid line – PID controller, 
dashed line – PI controller)  

The resulting parameters of PI, serial PID and the parallel 
PID controller  

 1( ) 1C D
I

R s K T s
T s

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 (23) 

are summarized in Tab. 1. 

 

Controller CK  IT  DT  

PI  
1
2

T
Kτ

 T  - 

PID 
(serial) 

3
4

T
Kτ

 T  
1
3

τ  

PID 
(parallel) 

1 31
4

T
K τ

⎛ ⎞+⎜ ⎟
⎝ ⎠

 
3

T τ
+  

3 /T
τ
τ+

 

 Tab. 1. PI/PID controller settings for reference tracking  

For the ultimate normalized frequency, where 
arg ( )cL ξ π= − , we easily obtain the equation  

 1arctgc
c

ξ π
δξ

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (24) 

which can be solved iteratively. Denote ψ  the angle between 
negative real axis and the Nyquist plot of ( )L ξ  at the 
ultimate frequency cξ ξ= . Geometrical shape of the curve 
(Fig. 2) enables to construct a lower bound of the stability 
margin γ  using the angle ψ :   

 11 sinγ γ ψ
α

⎛ ⎞≥ = −⎜ ⎟
⎝ ⎠

 (25) 

[ ]t s  

ξ

( )T ξ  

Im  
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where α  is the amplitude margin. 0.54γ ≈  was obtained for 
PID controller and 0.57γ =  for PI controller.  

3. THE DISTURBANCE REJECTION PROBLEM 

In most practical cases the reference input is held constant, 
but the system is excited by external disturbances. We 
consider that the disturbance influences output through the 
FOPDT transfer function (see Fig. 5). 

 
 
 
 
 
 
 
 
 

Fig. 5. Control scheme for disturbance rejection 

It is well known that good tracking performance does not 
imply efficient disturbance rejection (Åström and Hägglund 
1995). The closed-loop transfer function between d and y is  

 1( )
1 1 ( )

d s

d
d

eS s
T s L s

τ−

=
+ +

 (26) 

and thus the factor ( )1/ 1dT s +  will be present in the response 
regardless of the controller settings, unless it is compensated 
by a closed-loop zero.  

Since the rise time in the optimal configuration including 
dead time is not shorter than about 2τ  in all the 
configurations, if 2dT τ≤ , total dynamics is not affected 
much adversely by the term ( )1/ 1dT s +  in the input. On the 

other hand, if 2dT τ , the factor ( )1/ 1dT s +  can slow down 
the response significantly.  

The term on the right in (26) corresponds to the transfer 
function of the regulation error at the reference tracking 
problem and thus the optimal disturbance rejection problem 
is analogous to the problem of optimal tracking reference 
signal with L-transform  

 1( )
1

d s

d

eW s
T s s

τ−

=
+

. (27)  

Therefore, one way how to achieve good performance is to 
sufficiently decrease dT , while keeping the other parts of the 
closed-loop transfer function unchanged. If d is not 
measured, both these objectives probably cannot be fulfilled. 
Below a compensation that reduces dT  to dT ′  and 
simultaneously approximately preserves the stability margin 
is proposed. It is possible to assume that in this case the 
performance will not be much degraded.  

If we choose the controller in the form  

 
1

( ) ( )
1

d d
d

d d

T T s
R s R s

T T s
′ +

=
′ +

 (28)   

where ( )R s  is the controller tuned for the reference tracking 
and d dT T′ < , the closed-loop transfer function is 

 

1( )
11 1 ( )
1

1 .
11 ( )
1

d

d

s

d
d dd

d d

s
d

d dd d

d d

eS s
T T sT s L s
T T s

T e
T T sT T s L s
T T s

τ

τ

−

−

= =′ ++ +
′ +

′
= ′ +′ + +

′ +

 (29) 

However, such a reduction of dT  at the same time decreases 
the stability margin. Denote ( )dL ξ  the open-loop frequency 
response if the controller (28) is used. If we assume that 

( )/ 1dTτ ξ′  and d dT T ′≥ , holds  

 
/ 1 1( ) ( ) 1 ( )
/ 1

d d
d

d d d

T iT
L L i L

T iT r
ξ τ

ξ ξ ξ
ξ τ ξ
′ ⎛ ⎞+

= ≈ −⎜ ⎟′ + ⎝ ⎠
 (30) 

where  

 
1

1 1 1
d

d d

r
T Tτ

−
⎛ ⎞

= −⎜ ⎟′⎝ ⎠
. (32) 

We determine the parameter dr  from the condition  

 d h
γ γ

γ
−

=  (33) 

where γ , dγ  are the lower estimates of the stability margin 
given by formula (25) for the original controller and the 
modified controller (28), respectively, and h is a sufficiently 
small chosen constant.  Equation (33) is solved iteratively, 
see (Cvejn 2009) for complete explanation. dT ′  is then 
obtained from 

 
1

1 1
d

d d

T
r Tτ

−
⎛ ⎞

′ = +⎜ ⎟
⎝ ⎠

.  (34) 

The value h  should be chosen so that the stability margin be 
approximately preserved, but since small h  leads to large 

dT ′ , a  compromise has to be looked for. A good choice 
seems to lie in the range [ ]0.05, 0.08h ∈ . The results 
corresponding to 1/16h =  are 5.92dr =  for PI controller and  

3.91dr =  for PID controller. Note that for / 0dT τ →  we 
obtain ( ) ( )dR s R s→  and the controller is the same as for the 
reference tracking problem.   

Figure 6 shows the open-loop Nyquist plots after the 
compensation for PID controller, for dT → ∞ , 5dT τ= , 

dT τ=  and 0dT =  (i.e. without compensation).  

1

sKe
Ts

τ−

+
 ( )R s+w  ye  

d  
1

d s

d

e
T s

τ−

+

+
+
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A disadvantage of the proposed compensation is that 
additional term ( 1) /( 1)d dT s T s′ + +  is needed. However, if 

dT T=  (this is also the case when the disturbance influences 
the system input), the factor ( )1/ 1Ts +  of the system need 
not be directly compensated. Instead, the PID controller takes 
the form  

 

( )

( )

1 1( ) 1 1
1

11 1

d
d D

d

D

d

T sT TR s T s
T Ts K Ts

T T s
K T s

κ
τ

κ
τ

′ + ⎛ ⎞= + + =⎜ ⎟′ + ⎝ ⎠

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟′⎝ ⎠

 (35) 

which is similar to (10). Note that the integral term of the 
controller, which is needed to achieve zero regulation error, 
here plays the additional role of compensating the 
disturbance lag.  

The corresponding settings of PI and PID controllers for 
input disturbance rejection, 1/16h = , are summarized in 
Tab. 2.  

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

I

 
Fig. 6. Open-loop Nyquist plots after compensation, PID 
controller for dT → ∞  (solid line), 5dT τ=  (dashed), dT τ=  
(dash-dotted) and 0dT =  (dotted) 

 

Ctrl. CK  IT  DT  

PI  
1
2

T
Kτ

 
11 1

5.9 Tτ

−
⎛ ⎞+⎜ ⎟
⎝ ⎠

 - 

PID 
serial 

3
4

T
Kτ

 
11 1

3.9 Tτ

−
⎛ ⎞+⎜ ⎟
⎝ ⎠

 1
3

τ  

PID 
parallel 

1 1 3.26
4

T
K τ

⎛ ⎞+⎜ ⎟
⎝ ⎠

 

11 1 1
3.9 3T

τ
τ

−
⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 

13.26 1
Tτ

−
⎛ ⎞+⎜ ⎟
⎝ ⎠
 

Tab. 2. PI/PID controller settings for input disturbance 
rejection  

4. EXPERIMENTAL COMPARISONS 

At first, we consider the reference tracking problem, where 
the reference signal is not known in advance. Although many 
of PID tuning formulas for the model (1) are available, most 
of them are applicable only for a limited range of the ratio 

/Tθ τ= . Usually, it is required that 0.1θ ≥  and 1θ ≤  or 
2θ ≤ . The minimum ISE, IAE and ITAE tuning rules in 

(Wang et al. 1995), where the recommended range of θ  is 
[ ]0.05, 6θ ∈ , are among the exceptions. Note that the 

modulus-optimum (MO) settings we propose admit any 
positive value of θ . 
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Fig. 7. 1( )F s reference tracking, step response. Settings: MO-
PID (solid line), MO-PI (dash-dotted), Chien (dashed), Wang 
(dotted)   
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Fig. 8. 2 ( )F s reference tracking, step response. Settings: MO-
PID (solid line), MO-PI (dash-dotted), Chien (dashed), Wang 
(dotted)   

Figures 7 and 8 show the reference signal step responses for 
the plants   

 0.3
1

1( )
1

sF s e
s

−=
+

,   5
2

1( )
1

sF s e
s

−=
+

 (36) 

and parallel (ideal) PID controller tuned by using Wang IAE 
formulas (Wang et al. 1995), well known formulas by Chien 
et al. (Chien et al. 1952) for 20% step-response overshoot and 

[ ]t s  

[ ]t s  

Im  
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MO settings of PI and PID controller. Chien settings for large 
θ  result in too slow response, which could be expected, since 
recommended range of θ  is ( )0.11, 1θ ∈ . We also tested 
well known Ziegler-Nichols formula (Ziegler and Nichols 
1942), which for 1( )F s  give a rather oscillating response with 
about 75% overshoot and for 2 ( )F s  slow and overdamped 
response.  

For the disturbance rejection problem we consider that the 
disturbance influences the system input, i.e. dT T= . Figures 
9 an 10 show the load disturbance step responses for the 
plants 1( )F s  and 2 ( )F s  and parallel PID controller tuned 
according to the minimum IAE formulas in (Lopez et al. 
1967), disturbance rejection formulas with 20% overshoot in 
(Chien et al. 1952) and MO-tuned PI and PID controllers 
with the input disturbance compensation. Obviously, Lopez 
and Chien formulas, recommended for [ ]0.1, 1θ ∈ , are not 
suitable for large θ . Ziegler-Nichols settings give responses 
very similar to Chien settings, in both the cases. In all the 
cases the proposed settings give very satisfactory results.  
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Fig. 9. 1( )F s  load disturbance, step response. Settings: MO 
(solid line), Chien (dashed), Lopez (dash-dotted), Haalman 
(PI) (dotted)       
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Fig. 10. 2 ( )F s load disturbance, step response. Settings: MO 
(solid line), Chien (dashed), Lopez (dash-dotted), Haalman 
(PI) (dotted)           
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Abstract: This article shows results related to application of impulse signal shapers (ZV, ZVD, EI), applied on reference signal 

as a feed-forward vibration compensator for pilot commands incorporated with feedback control system (FCS) design for 

blended-wing-body aircraft (ACFA 2020). The results are nicely indicating ability of connection feed-forward approach for 

reducing vibration cooperation with active damping.  Other goals are study signal shapers design for hard nonlinearities in 

elevator and ailerons like saturation and rate limiters, induce by finite rates and deflection of servomechanism of control surface. 

Standard design can’t be directly used for higher deflection of elevator and ailerons, because nonlinearities deform shaped 

command. Two efficient modifications used as alternatives to standard shapers configuration, suggested in the article, permit 

application of the feed-forward compensation in respect of this setup.  

 



This is preliminary papers for EUCASS conference in Petrohrad 2011

1. INTRODUCTION 

Impulse shapers (PosiCast, ZV, ZVD, EI, ...) have been in the 

centre of attention for last two decades, [1, 2, 3], as an 

efficient feed-forward approach for vibration control of 

flexible systems, like cranes, manipulators or flexible 

mechanical structures [4, 5, 6]. Realisation is based on 

convolution of a sequence of impulses, an input shaper sets, 

with desired references. The shaped command cancels 

vibration which is responsible for excitation of the flexible 

modes of the aircraft. If the impulses, which is defined the 

shaper behaviour are chosen correctly, then the system will 

respond for desired reference without undesirable vibration.  

Input shaper as a feed-forward controller can be regarded as a 

smart filter of the reference signal, an add-on to a functional 

reference-tracking feedback control system. If the controlled 

system is flexible, such our aircraft typically features are 

bending of the hull and wing behavior during pitching 

maneuver due to excitation of underlying flexible modes by 

set point changes (step commands), is shaper appropriate 

alternatives to classic low-pass filters. Therefore, posicast 

control can be regarded as a complementary measure in a 

two-degree-offreedom control scheme, when the feedback 

loop is closed first to guarantee robust stability, disturbance 

rejection and positioning, and then the input command pre-

filter shapes the reference signal such that the transient 

response is less oscillatory.  

 

 2. SIGNAL SHAPERS FOR FLEXIBLE AIRCRAFT 

Apparently, signal shapers are clear candidates for inclusion 

into an efficient FCS for flexible aircraft on figure 1, like the 

ACFA 2020 blended-wing-body design (www.acfa2020.eu). 

 

Figure 1 The ACFA 2020 blended-wing-body aircraft 

 
For some reason though, signal shapers are not commonly 

known in the flight controls area and some more traditional 

solutions, like „structural filters“ are routinely used – 

basically low-pass Chebyshev or other-type filters included 

in the FCS so as not to excite flexible modes. In comparison, 

properly tuned signal shapers, targeted at the most prominent 

flexible modes of the aircraft, lead to superior responsiveness 

and more efficient vibrations suppression.    

 

The role and placement of a properly designed PosiCast 

shaper in a traditional feedback SAS (stability augmentation 

system) or CAS (control augmentation system) is depicted in 

the following scheme on figure 2(inputs: El-elevator, Ai- 

aileron, R-rudder). SAS/CAS is not supposed to act as 

flexible modes damper in the following figure. For a 

SAS/CAS augmented by (or integrated with) feedback active 

damping system, the scheme changes as figure 3 (for a 

particular case of roll autopilot). 
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Figure 4 PosiCast and longitudinal NACRE model. Stick 

to NZ law wings (bode) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. RESULTS FOR ACFA 2020 BWB AIRCRAFT 

First, for the purpose of this extended abstract, a very simple 

SAS (SISO, stabilizing unstable longitudinal dynamics) is 

considered and classical PosiCast signal shaper is included in 

the stick-input channel. The aircraft dynamics is left as 

unchanged as possible obviously. 

Transfer function from stick input to the wings modal sensor 

(accelerometer-based, Nz Law) is in the figure 4, 5, showing 

significant damping of wings first two flexible symmetric 

modes (red), compared to a free aircraft (green) and also to 

the Chebyshev-type structural low-pass filter (blue). Note 

that a two-modes (four sub-steps) version of PosiCast was 

designed to cover both modes simultaneously for all 18 mass 

cases (6 for fuel, 3 for passengers). 
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    … PosiCast & CAS 

CTR

Ls 
(El, 

Ai,R
) 

long/lat 
dynamics 

CAS  
(LON/LAT AP) 

PosiCast 

CTR

Ls 
(EL,

AI,R
D) 

ATT CMD 

(pitch/roll 

setpoint) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Step Response

Time (sec)

A
m

p
lit

u
d
e

Response to CTRLs/CMDs 

free aircraft, SAS/CAS in action, 
SAS/CAS & PosiCast engaged 

LAT 
DYNAMICS 

CAS  
(ROLL AP) 

CTR

Ls 

(AS 

FLAP

S) 

ATT CMD 

(ROLL SETPOINT) 

DAMP 

NZ LAW AS 

(β, φ, φ’, ψ’) 
PosiCast 

Figure 2 Placement and function of PosiCast input command shaper in a feedback SAS/CAS systems 

Figure 3 Posicast and active-damping-augmented lateral CAS 

 

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

308



 

 

     

 

 

Figure 5 PosiCast and longitudinal control. Stick to 

modal sensor (step). 

 
The PosiCast shaper certainly affects responsiveness of the 

aircraft (see the close coupling of flexible and SP modes). In 

any case nevertheless, it does not affect it more negatively 

than the structural filter. See the following figure: 

 

Figure 6 PosiCast and longitudinal NACRE model. Stick 

to q  (step). 

 
In this case, PosiCast is acting directly on the control surface 

signals where the rate limiters need to be taken into account. 

All effects described in section 4 are evidenced (posicast out 

of the game for step stick command and elevator deflection 

above 5 degrees) and the measures proposed in the next 

sections (like ramp split-up for higher amplitudes) lead to 

exactly the same results. Refer to section 4 for detailed 

description. 

In the full paper, further results shall be reported for both 

longitudinal and lateral ACFA 2020 BWB controls, also in 

combination with active damping feedback system, figure 7. 

 

Figure 7 BWB LAT AP (blue,) augmented with active FB 

damper (red), and with PosiCast on top of that (black). 

ROLL SP to NZ LAW WINGS antisymmetric (step). 

Selected passangers-fuel combination (2-5) 

Compare the modal sensor reading (LAT CAS, step for roll-

angle setpoint), for FCS only (red), FCS+feedback active 

damper (blue), and with PosiCAST shaper on top of that all. 

Contribution of the signal shaper in this setup, for reduction 

of vibrations caused by the automatically engaged maneuver, 

is obvious. In addition, responses of the aircraft in all cases 

are almost identical: 

 

 

Figure 8 BWB  LAT AP (blue,) augmented with active FB 

damper (red), and with PosiCast on top of that (black). 

ROLL SP to ROLL ANGLE (step). Selected passangers-

fuel combination (2-5, all cases (sub-figure)) 

 

 

4. SIGNAL SHAPERS AND RATE LIMITERS 

As shown, delay-based input shaper, like zero vibration and 

extra insensitive (ZV, EI), can be effectively used as a feed-

forward reference filter applied to pilot command in order to 

reduce wing bending and vertical bending of hull during a 

maneuver. This strategy is nevertheless strongly limited by 

the rate limiter nonlinearity (standing for finite servos rates), 

having substantial, amplitude-dependent filtering effect on 

the input signal. This observation can be interpreted both in 

the frequency and time domain terms. Speaking in frequency-
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domain words, rate limiter acts as a low-pass filter, with cut-

off frequency strongly dependent on the amplitude of the 

input signal on figure 9.  

The higher the amplitude is, the stronger filtering effect 

arises. By inspection of the dependency on figure 9, for 

elevator commands greater than five degrees (cut-off approx. 

15 rad/s for five degrees amplitude), the influence of the 

delay-based filters on the command signal is strongly 

weakened by the rate limiter at the higher frequency of the 

HBM Considering these facts, filters cannot in principle be 

successful for all cases 

10
1
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2

-60

-50

-40

-30

-20
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0

frequency response of rate limiter block

ga
in[

dB
]

frequency[rad/s]  

Figure 9 Frequency responses of a 30deg/s rate limiter for 

varying signal amplitude. 

By inspection of the dependency on figure 9, for elevator 

commands greater than five degrees (cut-off approx. 15 rad/s 

for five degrees amplitude), the influence of the delay-based 

filters on the command signal is strongly weakened by the 

rate limiter, figure 11, at the higher frequency of the HBM 

Considering these facts, filters cannot in principle be 

successful for all cases.  
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Figure 10 Configuration 
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Figure 11 Effect of rate limiter 

For this reason, two approaches are suggested. In both cases, 

the shaped signal is modified in such a way that it becomes 

tractable through the subsequent rate-limiter block without 

distortion (unlike the pure signal shaper output itself. 

The first approach is based on splitting the ramp signal, 

coming out from a rate-limiter block as a response to step, 

artificially, for a time-delay slightly smaller than the ZV 

shaper-suggested value. This leads to a fair reduction of the 

HBM peak, figure 12. In this particular case, the shaped 

reference in the figure 12 for the 20 deg. elevator command, 

which has transfer function (1), 

 

                                   

                   (1) 

 

where spoint is set point, rate is setting of rate limiter and 

delay is value from posicast approach.   
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Figure 12 Modified reference shaper and effect on hull 

bending mode 

This command is fully accepted by rate limiters without any 

distortion. The filter  is, unfortunately, parameterized 

by the amplitude of the step, so it is not a constant, or time-

invariant system. 

 

Alternatively, the following procedure can be applied. The 

main idea is to attach an additional rate limiter, with the same 

setting as the one representing servos, in front delay-based 

shaper, figure 10. The modified filtered command is 

obviously accepted by (passed-through) the finite-rate servos 

without any distortion, the red line on figure 13, and it does 

not contain frequencies corresponding to flexible modes of 

aircraft (as the signal shaper is in the command line). The 

results of the hull bending sensors on figure 14 show power 
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of this method, where the green line isn’t treat by new 

approach and blue(ZV) and red(EI) line is for different used 

shapers with naturally adaptive rate limiter before.   
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Figure 13 Effect of Rate limiter on shaped reference 

Hull bending mode for 20 degree of pilot command
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Figure 14 Bending of hull for 20 degree of reference 

command 

 

CONCLUSIONS 

Results will be further developed and applied for the case 

study of large flexible blended-wing-body aircraft, similarly 

to section 3 (for the classical signal shapers designs). Data 

come from the ongoing European project ACFA 2020. 

ACFA 2020 (Active Control for Flexible Aircraft, 

www.acfa2020.eu) is a collaborative research project funded 

by the European Commission under the seventh research 

framework programme (FP7). The project deals with 

innovative active control concepts for ultra-efficient 2020 

aircraft configurations like the blended wing body (BWB) 

aircraft. 
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Abstract: The time sub-optimal control is studied in this paper. The nonlinear controller that respects 
input saturations is derived for the simple linear system represented by the triple integrator. In comparison 
with the pure time optimal controller the designed sub-optimal controller changes its limit values smoothly 
with exponential behaviour. Similarly to the time optimal control the design is based on switching surfaces 
but these are shifted and modified according to the original ones in the time optimal control. This can 
assure the decrease of high sensitivity of time optimal control. New parameters introduced during the 
design correspond in linear cases to the poles of the closed loop system. They enable to tune the control 
changes. The time sub-optimal control is compared with model predictive control. The resulting formulas 
for the control value are complicated but they have an explicit form so they can be evaluated fast enough 
to be used in real time systems. 

Keywords: time optimal control, input constraints, smooth switching, triple integrator. 

 

1. INTRODUCTION 

The optimality principle played an always an important role 
in the design of control circuits. In the previous century the 
optimal control was studied heavily in 50-ties and 60-ties 
(Athans and Falb, 1996). The real applications have shown 
that it is very sensitive to unmodelled dynamics, parametric 
variations, disturbances and noise. Therefore it was in the 
main-stream control strategies replaced by other techniques, 
e.g. pole assignment control. This allowed to choose the 
position of poles and so influence the speed of changes what 
enabled to decrease the sensitivity of a control circuit. This 
paper shows how it is possible to combine “fast” time 
optimal control with “slow” pole assignment control.  

Generally the time optimal control can be solved by 
computation of switching surfaces. There are several ways 
how to derive them. They can result from the Pontryagin’s 
maximum principle. Pavlov solved switching surfaces for the 
systems up to the third order from the phase trajectories 
(Pavlov, 1966). Switching surfaces can also be expressed by 
the set of algebraic equations (Walther et al., 2001) that 
results from the time solution in the phase space. Of course, 
for higher order systems it can be rather complicated to find 
the exact solution of such a set. This paper shows how it is 
possible for a simple linear system represented by the triple 
integrator to derive and solve a set of polynomial equations in 
order to get the control value in the exact form. 

The controller proposed in this paper is not pure time optimal 
control. As it has been mentioned above it tries to combine 
qualities of both time optimal and pole assignment control 
(Huba, 2006). The time optimal control belongs to the 
nonlinear class of controllers whereas the pole assignment 
control is typically linear type of control. Switching between 
these two classes of control is assured by the saturation 

function that is applied individually to each mode of control. 
In this paper a set of additional parameters is introduced that 
corresponds to the set of poles of the closed loop in the linear 
case. These parameters specify exponential changes from one 
limit control value to the opposite one. By introducing such 
parameters in the control design the original switching 
surfaces valid for the time optimal control are modified. They 
are not smooth and consist of several regions. Then it is 
difficult to identify the corresponding region for an initial 
state. After deciding for the right region the control law is 
calculated according to the position of the representative 
point expressing the actual state with respect to the 
corresponding region of the switching surface.  

The paper is organized in five chapters. After introduction 
and problem statement chapters there is the main chapter 
where the design of the sub-optimal controller is described in 
details. This chapter discusses the nonlinear dynamics 
decomposition and regions of the switching surface. There is 
a corresponding control law derived for each region. The 
fourth chapter shows time responses of the designed 
controller and compares it to the time optimal controller and 
model predictive controller. The paper is finished with short 
conclusions. 

2. PROBLEM STATMENT 

Let us consider the linear system given in the state space 
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that represents the triple integrator. The control input signal is 
constrained 

21 UUu =  (2) 
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The task is to design the time sub-optimal controller what 
means to drive the system from an initial state [ ]tzyx=x

mint

x

 
to the desired state  in a minimum time  under the 
additional condition that limits the changes of the control 
action between two opposite values. When it is required that 
these changes should have an exponential behaviour the 
additional condition can be expressed by a scalar function 

 representing the distance of the current state  
from the switching surface (curve, point) and it holds 

wx

RRn
i →:ς

3,2,1,, =∈= − iR
dt

d
iii

i αςας  (3) 

For the sake of simplicity we should admit that using a 
coordinate transformation it is always possible to set the 
desired state equal to the origin . 0x =w

3. TIME SUB-OPTIMAL CONTROLLER DESIGN 

It is well known that minimum time optimal control with 
saturated input leads to the control action with at most n 
intervals switching between limit values where n represents 
the order of the system. Usually the control algorithm results 
in deriving switching surfaces as functions of states which 
signs determine the switching times. It can be very hard task 
to express these functions exactly and there is no general 
solution for higher order systems ( ). Bang-bang control 
in practice is not desirable because of chattering and noise 
effects but there are techniques have to cope with them (Pao 
and Franklin, 1993, Bistak et al. 2005).  

3>n

The presented sub-optimal controller design belongs to one 
of them. This time the control action will not be calculated as 
the sign of the switching surface but will result from (3). If 
we apply the condition (3) also for the switching curve and 
switching point this will influence the construction of the 
switching surface itself. We will explain it with the help of a 
state vector nonlinear decomposition. 

3.1 Nonlinear Decomposition 

Let us consider ordered coefficients  

0123 <<< ααα  (4) 

Then the eigenvectors 
t
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form a base of the state space. In the linear case any point of 
the state space can be expressed as 

Rqqqqqq ∈++= 321332211 ,,,vvvx  (6) 

Because the control signal is limited only the points where 

 fulfils (2) are covered by (6). In order to express 

the whole space we have to introduce the nonlinear 
decomposition of the state  

∑
=

=
3

1i
iqu

321 xxxx ++=  (7) 

where each mode  ix

( ) ( ) τττ dqeqe i

t t
ii

t
i

i
i bvx AA ∫ −+=

0
 (8) 

consists of  a linear part given by the parameter  iq
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and a nonlinear part specified by the parameter  it
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After substituting (1) and (5) into (8) one gets 
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If we take the subsystem  it represents a one-dimensional 
variety that corresponds to the switching curve. Points from 
the linear part of  where (9) is fulfilled satisfy (3), i.e. they 
are decreasing the distance 

1x

1x

1ς  from the origin. In this case 
the system is moving along the line. The other points of the 
subsystem  given by (10) could not fulfil (3) because of 
the limited control value (2). They are approaching the linear 
part of  with the limit control value so they are moving 
along the trajectory in the form of a curve. In this case (3) is 
superimposed by (2).  

1x

1x

 

Fig. 1. Subsystem  representing the switching curve 1x

Similarly we can create a two-dimensional variety that will 
express the switching surface. We simply add to the 
subsystem   the subsystem . The points of the 
subsystem  become the target points for the second 
subsystem .  

1x

1

2

2x
x

x
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This time we define the distance 2ς  in the direction of the 
second eigenvector . The points of the  try to reach the 

 points according to (3) if it does not break (2). Otherwise 
they are moving with the limit control value  given by 
(10).  

2v 2x

1x

2q

Again there exist a linear and a nonlinear parts of the 
subsystem . In combination with the previous subsystem 

 we get four possibilities, i.e. four regions of the switching 
surface with respect to the limit and nonzero values of 

, , ,  (Fig. 2). If we take into account the parameter 
 the number of the regions doubles. Later on we will 

describe these regions in details and derive for each of them 
the corresponding control value. 

2x

2

1x

1q
=j

2q
2,1

1t t

 

Fig. 2. Regions of the switching surface (denoted for j=1) 

To cover the whole space we should realize also the third 
subsystem  but in the presented control algorithm design it 
is not necessary. To give reasonable results that can be 
applied in real time applications we simplified the third 
subsystem to following one  

3x
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= 333 ,
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It represents the unit vector in the direction of the x-axis 
multiplied by the quotient . Thus the quotient expresses 
the distance 

3q 3q

3ς  between the current state and the switching 
surface that is measured in the direction of the x-axis. This 
simplification enables easier localization of the initial state 
with respect to the regions of the switching surface because it 
represents the projection of the switching surface to the (y,z)- 
plane where the borders between regions are parabolic curves 
or lines.  

In (Ťapák et al., 2006) one can find the solution of the control 
algorithm when the third subsystem was given by the third 
eigenvector  multiplied by the quotient  3v 3q

Rqq ∈= 3333 ,vx  (14) 

but this was not in the form suitable for real time systems. 

After completely decomposing the system to the three 
subsystems (7) it is necessary to derive the formula of the 
corresponding region of the switching surface. This comes 
from the set of equations (12) when the parameters  or 

are evaluated from the last two equations and replaced in 
the first one. Then one gets the formula for the corresponding 
switching surface in the form 

it

iq

RRfzyfx →= 2:;),(  (15) 

Now the resulting control value can be computed from (3) 
when we realize that the distance 33 q=ς  can be expressed as 
the difference between the x-coordinate of the initial point 
and the x-coordinate of the switching surface given by (15) in 
the form  ),( zyf

),(3 zyfx −=ς  (16) 

After substituting (16) into (3) and taking into account (1) it 
results in 
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Finally the control value u  can be isolated 
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The resulting control value u  must be limited by (2). 

As one can see from (18) the only one term not evaluated yet 
is  representing the switching trajectory. Because it 
differs according to the regions of the switching trajectory we 
will evaluate it individually. 

),( zyf

3.2 Control for Region QQ 

The region QQ denotes the subset of (12) where both 
subsystems  and  are in the linear cases, i.e. (9) is 
fulfilled for  and . The parameters   and  can be 
evaluated from the last two equations of the set (12). After 
using (11) and substituting  into (12) one gets 
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And for parameters  and  it yields 1q 2q
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By the substitution of  (20) and (21) into the first equation of 
(19) we derive the analytical expression for the region QQ 
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According to (18) the control value u  results in the form 

zyy
xzzyu
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 (23) 

This is the well-known linear pole assignment controller for 
the triple integrator. 

3.3 Control for Region TQ 

By TQ we denote the region of the switching surface when 
the subsystem  is in the nonlinear cases, i.e. for its states 
(10) is valid and the subsystem  is in the linear cases, i.e. 
(9) comes true. The procedure how to derive the control value 
is very similar to that one performed in the previous region 
QQ. First we express (12) when  and  

1x

2x

q =1 jU 02 =t

 (24) 

For this and following calculations we have used the Maple 
computer algebra system and because of the complexity of 
several expressions we have used the Maple outputs.  

Now it is necessary to solve the last two equations of the set 
(24). The difference consists in  that the second equation of 
the set (24) is now the quadratic equation. From its two 
solutions we have chosen such one that assures the positive 
value of . Then after introducing the notation for the 
discriminant DTQ  

2t

 (25) 
the parameters  and  it can be expressed 2q 1t

 (26) 

 (27) 

Again we substitute (26) and (27) into the first equation of 
(24) and get the expression for the region TQ 

 (28) 
From (18) the control value  is u

 (29) 

3.4 Control for Region TT 

The region TT denotes the subset of (12) where both 
subsystems  and  are in the nonlinear cases, i.e. (10) is 
fulfilled for  and . Again the parameters   and  can 
be computed from the last two equations of the (12). This 
time we substitute 

1x

1t
2x

2t

q

1t 2t

jU=1  and  into (12) jj UUq −= −32

 (30) 
and when solving the last two equations again the criterion 
for the choice of the right solution is that the times   and  
must be positive.  

1t 2t

 (31) 
 (32) 

 (33) 
After using (32) and (33) in the first equation of the set (30) 
the points of the region TT can be expressed 
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 (34) 
In this case the resulting control value resulting from (18) is 
the most complicated one 

 (35) 

3.5 Control for Region QT 

The last region of the switching surface denoted QT is very 
similar to the second one denoted TQ. As the name says the 
combination of parameters   and  values is opposite to 
the region TQ. Here the first subsystem  is in the linear 
case, i.e. its states comply with (9) and the second subsystem 

 fulfils (10) that means  is nonzero. Therefore we 
substitute   and  in (12)  

iq

2t

3 j−

it

1x

2x

21 tt = 12 qUq = −

 (36) 
First we solve parameters  and  from the last two 
equations of the set (36). From the solution of the quadratic 
equation we choose that one that gives the positive solution 
of . After introducing discriminant DQT 

1q 2t

2t

 (37) 

we get  

 (38) 

 (39) 

To express the points of the region QT we substitute (38) and 
(39) into the first equation of the (36) 

 (39) 
The control value results from (18) 

 (40) 

3.6 Control Algorithm 

The control algorithm consists in the localization of the initial 
state to one of the above mentioned regions and then of the 
control value calculation. But before we have to specify the 
parameter . Then we can calculate the parameters . 
According their values we can find the region to which the 
initial point belongs and finally evaluate the control value. 

j iq

START 
1. Evaluate 1q according (20) and 2q according (21) 
2. IF 1q  fulfils (9) AND 2q  fulfils (9) THEN calculate 

u  according (23) – Region QQ 
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3. IF 1q  fulfils (9) AND 2q  NOT fulfils (9) THEN 

calculate 
2

)( 2qsign−  AND GOTO 8 3j =

4. Calculate 
2

)(3 1qsignj +
= , jUq =1  and  

according (26) 

2q

5. IF 2q  fulfils (9) THEN calculate u  according (29) – 
Region TQ 

6. IF 02 <jUq  THEN calculate u  according (35) – 1st 
part of the region TT 

7. Calculate 
2

)(3 1qsignj −
=  

8. Evaluate 1q  according (38) 
9. IF 1q  fulfils (9) THEN calculate u  according (40) - 

Region QT 
10. Evaluate u  according (35) – 2nd  part of the region 

TT 
END 

It is important to notice that at the end the control value 
computed according this algorithm must be limited by (2). 

4. EVALUATION OF DESIGNED CONTROLLER 

To show the performance of the designed controller we have 
carried out several simulations that differ from the starting 
point, parameters of the controller, and constraints. In the Fig. 
3 one can see the time responses from the initial state 

 under nonsymmetrical control value 
constraints 

[ t00200=x ]
21−=u .  
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Fig. 3. Time responses of state and control variables. Sub-
optimal controller with nonsymmetrical constraints. 

All three pulses of the time optimal control can be mentioned 
but the control value switches from one limit value to the 
other one smoothly. The change rate is given by the choice of 
parameters iα . In this case the values of iα  were 

3,2,1 321 −=−= −= ααα . 

The comparison of the time sub-optimal control with the 
optimal one is shown in the Fig. 4. This time the starting 
point was [ ]t125.47916.15 −=x

6,3,5.1 32 −=
. The other parameters 

were 1 −=−= ααα  and 11−=u . 
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Fig. 4. Comparison of time optimal and sub-optimal control. 

There are not big differences in the time responses of the 
state variable x . But one can see the difference in the 
behaviour of the control variables. The time sub-optimal 
control variable uses limits for a shorter period because it 
needs a certain time to switch to the opposite value. The time 
optimal control variable switches immediately that can cause 
problems when the dynamics of a controlled system is not 
precisely identified. The time sub-optimal controller switches 
in advance and it finishes later but it is not so sensitive to the 
uncertain parameters or unmodelled dynamics. By moving 
the negative values of parameter is α  towards a zero we 
could get behaviour similar to the linear pole assignment 
controller. To get the exact linear behaviour we have to 
higher the control value limits. 

Fig. 5 shows the comparison of the time sub-optimal control 
with the model predictive control (MPC). The example for 
comparison is taken from (Glattfelder and Schaufelberger, 
2003). The parameters of MPC controller were following: 
prediction horizon 50=N , sampling period 050.0=sT , 
weights of linear quadratic controller 

, corresponding bandwidth 
⎥
⎥
⎥

⎦

⎤

3175.0
0
0

⎢
⎢
⎢

⎣

⎡
=

00
345.30
078.11

Q

25.3=Ω  for  01.0=r . Higher Ω -values result in 
overshooting responses. Parameters of the time sub-optimal 
controller have been chosen in order to get similar response 
of control action. They are 100, 320,31 2 −=−−= = ααα . 
There are time responses from the initial state 

[ ]t001−=x  under control value constraints 11−=u . 
One can see that the output response (state value x) is for 
both controllers almost identical. Very small differences can 
be shown in the time responses of the control action. This  
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Decreasing Ω  to the value 1.575 would cause the second 
interval of control does not reach the limit value and would 
have linear behaviour too. Thus decreasing the parameter Ω  
assures the linear character of the control action in the last 
intervals of control. Choosing the  parameter it is not 
possible to influence the behaviour of switches between the 
limit control values separately.  Opposite to this the sub-
optimal controller has three parameters 

Ω

321 ,, ααα  that 
directly influence the exponential behaviour of switches. So it 
offers to design the control action response more specifically. 
In this example the values of iα  were 

10,8,3 31 2 −=−=−= ααα . 

 

5. CONCLUSIONS 

Presented controller design relies on switching surfaces. 
Because our aim was to decrease the sensitivity of controller 
we introduced new parameters into the design. In linear cases 
these parameters are identical with the poles of the closed 
loop. Of course, the switching surfaces are more complicated 
by additional parameters. In this paper we derived the 
solution with explicit mathematical formulas that is fast 
enough to be used in real time applications. The designed 
time sub-optimal controller has been compared with pure 
time optimal controller and model predictive controller. 

Fig. 5. Comparison of sub-optimal and model predictive 
control with similar behaviours. 

example shows that it is possible to set the parameters of the 
sub-optimal controller to get equal results with the MPC 
controller. 

Two different responses of the MPC and sub-optimal 
controllers are shown in the Fig. 6.  This time the parameters 
of both controllers have been decreased. The MPC controller 
parameters were: prediction horizon , sampling 
period , weights of linear quadratic controller 

, corresponding bandwidth 

 for  . The decrease of parameter values 
caused that the control action did not reach the control 
constraint in the last (third) interval of control. One can 
mention that the switch between the limit values in the first 
and the second interval of control is almost time optimal. The 
end of the response (third interval of control) corresponds to 
the linear controller behaviour.  

50=N
050.0=sT

00
175.10
04413.

5 0=r
⎥
⎥
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⎦

⎤

⎢
⎢
⎢

⎣

⎡
=
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0
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Q

.2=Ω 01.
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Abstract: The paper presents an innovation of the robust decentralized controller design for 
multivariable uncertain systems within the setting of the Equivalent Subsystems Method (ESM). The aim 
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terms of maximum overshoot achieved through phase margins specified for equivalent subsystems. The 
developed design procedure is illustrated by an example.  
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1. INTRODUCTION 

When designing decentralized control (DC), performance 
objectives can be of two basic types: a) achieving required 
performance in different subsystems; or b) achieving plant-
wide desired performance. The Nyquist-based frequency 
domain decentralized controller design technique for 
performance called “Equivalent Subsystems Method” (ESM) 
(Kozáková et al., 2009a, b) belongs to the latter group. 
According to it, the DC design for plants described by 
transfer function matrices is performed through independent 
designs for equivalent subsystems that are actually Nyquist 
plots of decoupled subsystems shaped by a selected 
characteristic locus of the interactions matrix. It has been 
proved that local controllers independently tuned for stability 
and specified feasible performance in terms of degree of 
stability in equivalent subsystems provide a decentralized 
controller guaranteeing the very degree of stability of the full 
system. In (Kozáková et al., 2010), the ESM design 
technique has been used to design digital decentralized 
controller for specified phase margin thus guaranteeing plant-
wide maximum overshoot by applying discrete Bode plots of 
equivalent subsystems,.  
Application of the ESM in the design for robust stability and 
nominal performance can be found in (Kozáková and Veselý, 
2007; 2008; 2009), (Kozáková et al., 2009a) always in a two-
stage design methodology: first, the DC for nominal 
performance is designed according to ESM, and afterwards, 
fulfillment of the robust stability conditions is examined; if 
robust stability is not achieved either controller parameters 
are to be modified, or the redesign is to be carried out with 
modified performance requirements.   
This paper presents a robust DC design methodology based 
on direct integrating of robust stability conditions in the 
ESM. In this way, local controllers of equivalent subsystems 
are designed with regard to robust stability, and nominal 
performance in terms of maximum peak of the 

complementary sensitivity (or sensitivity, depending on 
uncertainty type) that provides information about the 
maximum overshoot and is transformable into lower bound 
for the phase margin of equivalent subsystems.  
The paper is organized as follows: Preliminaries and problem 
formulation are in Section 2, principles of the Equivalent 
Subsystems Method (ESM) are revisited in Section 3. Section 
4 presents the direct robust DC design procedure in the ESM 
setting. Theoretical results are demonstrated on an example 
in Section 5.  

2. PRELIMINARIES AND PROBLEM FORMULATION 

Consider a MIMO system described by a transfer function 

matrix mmR)s(G ×∈ , and a controller mm
R)s(R

×∈  in the 
standard feedback loop (Fig. 1); Necessary and sufficient 
closed-loop stability conditions are stipulated by the 
Generalized Nyquist Stability Theorem applied to the closed-
loop characteristic polynomial (CLCP) 
 

)]s(QIdet[)s(Fdet +=  (1) 

where )s(R)s(G)s(Q = mmR ×∈ .  

w e y u 

d 

R(s) G(s) 

 

Fig. 1. Standard feedback configuration 

 
In the sequel, D denotes the standard Nyquist D-contour in 
the complex plane; Nyquist plot of )s(g is the image of the 

Nyquist contour under g(s); )]s(g,k[N  is the number of 

anticlockwise encirclements of (k, j0) by the Nyquist plot of 
g(s). Characteristic functions of )s(Q  are the set of m 

algebraic functions m...,,1i),s(qi =  given as 
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m...,,1i0)]s(QI)s(qdet[ mi ==−  (2) 
 

Characteristic loci (CL) are the set of loci in the complex 
plane traced out by the characteristic functions of 
Q(s), Ds ∈∀ . The CLCP (1) expressed in terms of 
characteristic functions of  )s(Q  reads as follows 

∏ +=+=
=

m

1i
i )]s(q1[)]s(QIdet[)s(Fdet  (3) 

Theorem 1. (Generalized Nyquist Stability Theorem) 
The closed-loop system in Fig. 1 is stable if and only if 

a. Ds)s(Fdet ∈∀≠ 0  

b. ∑ =+=
=

m

1i
qi n)]}s(q1[,0{N)]s(Fdet,0[N  (4) 

where ))s(QI()s(F +=  and nq is the number of unstable 

poles of  Q(s).  
Let the uncertain plant be specified as a set Π of N transfer 
function matrices 

N,...,2,1k)},s(G{ k ==Π  where  { }
mm

k
ij

k )s(G)s(G
×

=

 (5) 
The set of unstructured perturbations DU is defined as follows 

)]}j(E[max)(

),()]j(E[:)j(E{:D

max
k

maxU

ωσω

ωωσω

=

≤=

l

l

 (6) 

where )(ωl  is a scalar weight function on the norm-bounded 

perturbation ( ) mmRs ×∈∆ , 1ω∆σ ≤)]j([max  over the given 

frequency range, )(max ⋅σ  is the maximum singular value of 

(.); hence )j()()j(E ω∆ωω l= . 

For unstructured uncertainty, the set Π  can be generated by 
either additive (Ea), multiplicative input (Ei) or output (Eo) 
uncertainties, or their inverse counterparts (Eia Eii Eio) used 
for uncertainty associated with plant poles located in the 
closed right half-plane. Only the additive and inverse additive 
uncertainties will be addressed in detail; relations for other 
uncertainty forms can be derived by analogy. 
Denote )s(G any member of Π , )s(G0 the nominal model, 

and )(j ωl  the scalar weight on a normalized perturbation. 

Individual uncertainty forms generate the related sets jΠ for 

j=a, ia.  
 
Additive uncertainty: 

N,,,k)],j(G)j(G[max)(

)}j()()j(E

),s(E)s(G)s(G:)s(G{:

k
max

k
a

aa

aa

Kl

l

21ωωσω

ω∆ωω

Π

0

0

=−=

≤

+==

 (7) 

Inverse additive uncertainty 

N,,,k

},)]j(G[)]j(G{[max)(

)}j()()j(E

,)]j(G)s(EI)[s(G)s(G:)s(G{:

k
max

k
ia

iaia

iaia

K

l

l

21

ωωσω

ω∆ωω

ωΠ

11
0

1
00

=

−=

≤

−==

−−

−

 (8) 

The standard feedback loop with uncertain plant can be recast 

into the ∆−M  structure (Fig. 2) where ( ) mmRs ×∈∆ is the 

norm-bounded complex perturbation. For the uncertainty 
forms (7), (8) the corresponding M(s) are respectively  
 

1
0a )]s(R)s(GI)[s(R)s()s(M −+= l  (9) 

)s(G)]s(R)s(GI[)s()s(M 0
1

0ia
−+= l  (10) 

 
 

 

 

 

Fig. 2. ∆−M  structure  

 
According to (Skogestad and Postlethwaite, 2005) if M(s) is 
stable (nominal stability) and the perturbation )s(∆  is stable, 

then the ∆−M  system is stable for all )s(∆ : 1)(max ≤∆σ  if 

and only if   

ωωσ ∀< ,1)]j(M[max  (11) 

Conservatism of the robust stability condition (19) can be 
relaxed by “structuring” the additive uncertainty to yield the 
additive affine-type uncertainty )s(Eaf  (Kozáková and 

Veselý, 2007; 2008)  

∑=
=

p

1i
iiaf q)s(G)s(E  (12) 

where mm
i R)s(G

×∈ , i=0,1, …, p are stable matrices, p is 

the number of uncertainties defining p
2 polytope vertices that 

correspond to individual perturbed models; qi are polytope   
parameters. The related afΠ is  

}qq,q,qq

,q)s(GE

,E)s(G)s(G:)s(G{:

maximinimaximinii

p

i
iiaf

afaf

0

Π

1

0

=+>∈<

∑=

+==

=

 (13) 

 

where )s(G0  is the „affine“ nominal model. In the matrix 

form, individual plants from the set afΠ  can be expressed as 

follows 

)s(QG)s(G)s(G u0 +=  (14) 

where )pm(mT
qq R]II[Q

p1

××∈= K , mmiq IqI
i ×= ,  

m)pm(T
p1u R]GG[)s(G

××∈= K   . 

Similarly to previous uncertainty forms, the feedback loop 
with uncertain plant modeled using the additive affine type 
uncertainty in Fig. 3, can be recast into the QM af −  

structure with R)RGI(G)RGI(RGM
1

0u
1

0uaf
−− +=+= . 

Stability condition for the QM af −  system is   

1)QM(
afmax <σ , (15) 

u∆ 

M(s) 

y∆ 

∆(s) 
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under the assumption maximini qqq ==0 , (14) can further be 

modified to yield  

1pq)M( 0afmax <σ   (16) 

w e y 

u∆ 

y∆ 

- 
G0(s) R(s) 

Gu(s) Q 

 
Fig. 3. Standard feedback loop with additive affine-type 
additive uncertainty  

2.1 Problem Formulation  

Consider an uncertain system with m subsystems given as a 
set of N transfer function matrices obtained as a result of 
identification in N working points of the plant operation 
range. Assume that the uncertain system be described by a 
nominal model )s(G0  and any unstructured uncertainty 

form (7), (8) or (12) where )s(G0 can be split as follows 

)s(G)s(G)s(G md0 +=   (17) 

where Ds ∈∀  

0≠= × )s(Gdet,)}s(G{diag)s(G dmmid  
)s(G)s(G)s(G dm −= 0    

A decentralized controller (DC) 

mmi )}s(R{diag)s(R ×= , 0)s(Rdet ≠  (18)  

is to be designed to guarantee stability over the whole 
operating range of the plant specified by either (7), (8) or (13) 
(robust stability) and a specified performance of the nominal 
model (nominal performance), Fig. 4.  
To solve the this problem, a frequency domain robust 
decentralized controller design technique has been developed 
(Kozáková and Veselý, 2009; Kozáková et. al., 2009b); the 
core of it is the Equivalent Subsystems Method (ESM).  
 

3. EQUIVALENT SUBSYSTEMS METHOD  

The Equivalent Subsystems Method (ESM) is a Nyquist-
based DC design method for stability and guaranteed 
performance of the full system. According to it, independent 
local controller designs are carried out for the so-called 
equivalent subsystems that are actually Nyquist plots of 
decoupled subsystems, shaped by one selected characteristic 
locus of the interactions matrix. If local controllers of 
equivalent subsystems are independently tuned for stability 
and specified feasible performance, the resulting 
decentralized controller guarantees for the full system the 
same performance as specified for equivalent subsystems. 
ESM used in the design for robustness (Kozáková et al., 
2009b) allows to consider the full nominal model, thus 
reducing conservatism of resulting robust stability conditions.  
 
The key idea behind the method is factorization of the CLCP 
(1) in terms of the split nominal system (17) under the 
decentralized controller (18)  

)s(Rdet)]s(G)s(G)s(Rdet[)s(Fdet md ++= −1   (19) 

Denote the sum of diagonal matrices in the first bracketed 
term as follows   

)s(P)s(G)s(R d
1 =+−  (20) 

where mmi )}s(p{diag)s(P ×= .  

 

w e u y + 
+ 

- 

G0(s)  

Gd(s) 

Gm(s) 

R(s) 

R1   0     …   0 

0     R2    …   0 

……………….. 

0     0   …   Rm 

G11  0     …  0 

0     G22   …  0 

………………... 

0     0  …  Gmm 

0  G12  … G1m 

G21  0 …  G2m 

……………….… 

Gm1 Gm2 …  0 

 

 Fig. 4. Standard feedback loop under decentralized controller 

 
If choosing the diagonal matrix mmk )}s(p{diag)s(P ×=  

with identical entries so as to „counterbalance” interactions 
)s(Gm  then, according to (2), the characteristic equation 

corresponding to the first r.h.s. term in (19) defines the k-th 
of the m characteristic functions of )]s(G[ m− denoted 

m,...,2,1i),s(gi = ; thus 

 

m,...2,1k,0])s(g)s(g[

]GIpdet[)]s(G)s(Pdet[

m

1i
ik

mkm

==∏ +−=

=+=+

=

 (21) 

According to the Cayley-Hamilton theorem from the 
viewpoint of stability, the interactions matrix )s(Gm  can be 

replaced by [-P(s)] yielding the important relationship 
 

)]s(R)s(GIdet[

)s(Rdet)]s(P)s(G)s(Rdet[

)}s(R)]s(G)s(G[Idet{)]s(R)s(GIdet[

eq

d
1

md

+=

=−+=

=++=+

− (22) 

where  

mm
eq
i

eq
)}s(G{diag)s(G ×=  (23) 

is a diagonal matrix of m equivalent subsystems  

m,,2,1i),s(g)s(G)s(G ki
eq
i K=+= ;  (24) 

As all matrices are diagonal, on subsystems level (22) breaks 
down into m equivalent characteristic polynomials 

m,...,,i)s(G)s(R)s(CLCP
eq
ii

eq
i 211 =+=  (25) 

Considering (21)-(25), stability conditions of Theorem 1 
modify as follows: 
 
Corollary 1. 
The closed-loop in Fig. 4 comprising the system (17) and the 
decentralized controller (18) is stable if and only if there 
exists a diagonal matrix mmi )}s(p{diag)s(P ×=  such that 

 1. ,0]GI)s(pdet[ mk =+  for fixed }m,...,{k 1∈ ; 
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2. all equivalent characteristic polynomials (25) have roots 
with 0}s{Re < ; 

3. qn)]s(Fdet,0[N =  

where )s(R)s(GI)s(Fdet += and qn  is number of open 

loop poles with 0}s{Re > . 

The design technique resulting from Corollary 1 enables to 
design the decentralized controller through designing local 
controllers for independent equivalent subsystems using any 
SISO frequency-domain design method, e.g. the Neymark D-
partition method (Kozáková et al. 2009b), standard Bode 
diagram design (Bucz et al., 2010) etc.  
 

In the originally developed ESM version (Kozáková et. al. 
2009a; 2009b) it was proved that local controllers 
independently tuned for stability and a specified feasible 
degree of stability of equivalent subsystems constitute the 
decentralized controller guaranteeing the same degree of 
stability plant-wide. In (Kozáková et al. 2010) the 
performance specification applied in ESM was based on the 
relationship between phase margins of equivalent subsystems 
and the maximum overshoot. This performance specification 
is further developed towards robust stability. 
 

4. ROBUST DECENTRALIZED CONTROLLER DESIGN 

This section deals with implementation of the ESM in the 
decentralized controller design for robust stability and 
nominal performance applicable for uncertain systems 
described as a set of transfer function matrices. The nominal 
model can be calculated either as the mean value parameter 
model (Skogestad and Postlethwaite, 2005), or the “affine” 
model, obtained within the procedure for calculating the 
affine-type additive uncertainty (Kozáková and Veselý, 2007; 
2008). Unlike the standard robust approach to DC design in 
which the diagonal model as the nominal one (interactions 
are included in the uncertainty), the ESM method applied in 
the design for nominal performance allows to consider the 
full nominal model. Model uncertainty is described by any 
unstructured uncertainty form (7), (8) or (13). 
In (Kozáková and Veselý, 2008; 2009; Kozáková et al. 
2009a) a two-stage robust DC design methodology was 
proposed based on ESM and fulfillment of the M-∆  structure 
stability conditions. The direct DC design for robust stability 
and nominal performance is the main result of this paper. 
 
4.1 Direct decentralized controller design for robust stability 

and nominal performance 

If the robust stability conditions (11) or (16) are directly 
integrated in the ESM, local controllers of equivalent 
subsystems are designed already with regard to robust 
stability. A suitable performance specification is the 
maximum peak of the complementary sensitivity TM  related 

to maximum overshoot in the full system; in equivalent 
subsystems it can be translated into lower bounds of phase 
margins according to (26) (Skogestad and Postlethwaite, 
2005)  

]rad[
MM

arcsinPM
TT

1

2

1
2 ≥








≥  (26) 

where PM is the phase margin, and MT is the maximum peak 
of the complementary sensitivity T(s)  

1−+= )]s(R)s(GI)[s(R)s(G)s(T  (27) 

As for MIMO systems  

)T(M maxT σ= , (28) 

the upper bound for the nominal complementary sensitivity 
1

000
−+= )]s(R)s(GI)[s(R)s(G)s(T  can be derived by 

substituting into (1) the uncertain system model (additive 
uncertainty is considered in the following development) 
where G0(s) is the nominal model:  
 

])RGI(RIdet[)RGIdet(

]R)G(Idet[

a

a

1
00

0

∆

∆

−+++=

=++

l

l

 (29) 

 

where the first term on the r.h.s. of is the CLCP of the 
nominal system that corresponds to the CLCPeq according to 
(22); condition for stability of the second term is determined 
using the small gain theorem. Hence the uncertain system is 
stable if and only if the nominal closed loop is stable and 
 

1∆ 1 <+ −
)RGI(R oal  (30) 

 

Considering the spectral norm and the singular value 
properties, (30) can readily be manipulated to yield the final 
condition (33). Bounds for other uncertainty forms can be 
derived by analogy. 
In case of inverse uncertainty forms, robustness bounds are 
obtained in terms of the maximum peak of the sensitivity 

)S(M maxS σ=  where 

1−+= )]s(R)s(GI[)s(S  (31) 
 

and using the lower bounds for PM in the form (Skogestad 
and Postlethwaite, 2005)  
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Upper bounds for )]j(T[ 0max ωσ or )]j(S[max ωσ 0  for 

additive-type uncertainties are summarized below. 
 
Additive uncertainty: 

ωω
ω

ωσ
ωσ 0

0 ∀=< )(L
)(
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)]j(T[ A

a
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l
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Additive affine-type uncertainty: 
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ωσ

ωσ1
ωσ 0
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pq
)]j(T[ AF
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Inverse additive uncertainty: 

ωω
ωσω

1
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0
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)]j(S[ IAF

maxia
max

l
  

 (35) 
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Any of the derived bounds (33), (34) or (35) for the nominal 
model can directly be implemented in the ESM due to the 
fact that performance achieved in equivalent subsystems is 
simultaneously guaranteed for the full system. The main 
benefit of this approach is the possibility to find the 
maximum overshoot of the full system in terms of 

)T(max 0σ or )S(max 0σ  for which robust stability is 

guaranteed, translate it into corresponding minimum phase 
margins required in equivalent subsystems and finally design 
local controllers for individual single input – single output 
equivalent subsystems independently. In this case the 
recommended design method for the ESM setting is the Bode 
diagram design.  
Considering performance just in terms of TM or SM  is not 

sufficient, the speed of response has to be considered as well 
which leads to considering the bandwidth frequency of the 
closed-loop system as well. In general, a large bandwidth 
corresponds to a smaller rise time, since high frequency 
signals are more easily passed on to the outputs. If the 
bandwidth is small, the time response will generally be slow 
and the system will usually be more robust. The gain 
crossover frequency 0ω is frequently used to define closed-

loop bandwidth.  

The Bode plot design procedure with regard both to the 
required phase margin and the required bandwidth is 
demonstrated in the next section on a simple example of 
SISO robust PI(D) controller design with guaranteed 
overshoot and settling time of transients. 
 

5. EXAMPLE 

Consider a SISO plant given by 3 transfer functions 
corresponding to its three different working points: 
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Next calculations include the nominal model (as a mean 
value parameter one), the additive uncertainty )(a ωl  

according to (7) and the upper bound for the nominal 
complementary sensitivity )(LA ω according to (33). 
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The least value TA M)(Lmin =ωω  is chosen to generate the 

minimum required phase margin guaranteeing robust 
stability; in our case 66.2MT = corresponds to 

0
min 6.21PM = . 
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The PI(D) controller design is carried out with regard to both 
the required phase margin and the required bandwidth, the 
latter being related to the settling time according to the 
relation 
 

s

0

s t

4

t

π
ω

π
<<  (36) 

 
 

The design philosophy is as follows:  
 

After specifying the required reqPM and settling time St , 0ω  

is calculated from (36) and the )(PM 0ω is read off. If 

req0 PM)(PM >ω , a PI controller is designed. 

If req0 PM)(PM <ω , a PD controller sK1)s(G DPD +=  is 

to be designed first to provide )(PM 0req ω  and then a PI 

controller 
s

K
K)s(G I

PPI += is designed. The resulting PID 

controller is a combination of both 

)sK1)(
s

K
K()s(G D

I
PPID ++= . 

Consider the required s60tS = which corresponds to 
1

0 s1309.0 −=ω . From the Bode plot of the uncompensated 

system in Fig. 6 and 0
0req 49)(PM =ω it is obvious that a PI 

controller will be sufficient, its resulting parameters are 

s

053.0
4602.0GPI += . Bode plot of the compensated system 

in Fig. 7 proves achieving of the required parameters. 
Closed-loop step responses of the nominal model and models 
in individual working points are in Fig. 8 and Fig. 9, 
respectively. Stability robustness is verified in Fig. 10. 
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CONCLUSIONS 

The paper deals with the decentralized PID controller design 
for robust stability and plant-wide nominal performance 

within the setting of the Equivalent Subsystems Method 
(ESM). The nominal performance for the full system 
specified in terms of maximum overshoot is achieved through 
phase margins specified for equivalent subsystems. The 
design methodology per se uses the Bode plots and is 
therefore applicable also for SISO systems. The design 
procedure is illustrated by an example. 
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Fig. 10  Robust stability verification 
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Abstract: The aim of this paper is to compare two toolboxes used for solving the robust
stabilization problem. Robust static output feedback controller was designed for a continuous
stirred tank reactor (CSTR) in which two parallel exothermic reactions take place. The reactor
is a system with parametric uncertainty and multiple steady states. The problem of robust
controller design was converted to a problem of solution of linear matrix inequalities (LMIs)
and computationally simple non-iterative and iterative algorithms can be used for controller
tuning. The MATLAB–Simulink environment enables to compare the results of the YALMIP
and the Robust Control toolboxes.

Keywords: chemical reactor, multiple steady states, robust stabilization, static output feedback

1. INTRODUCTION

Continuous-time stirred tank reactors (CSTRs) belong to
the most important plants in chemical and food industries.
From the control viewpoint, CSTRs are very interesting
systems, because of their potential safety problems and
the possibility of exotic behavior such as multiple steady
states, see e.g. Molnár et al. (2002). Furthermore, opera-
tion of chemical reactors is corrupted by various uncertain-
ties. Some of them arise from varying or not exactly known
parameters, as e.g. reaction rate constants, reaction en-
thalpies, heat transfer coefficients, etc. Operating points of
reactors change in other cases. All these uncertainties can
cause poor performance or even instability of closed-loop
control systems. Application of robust control approach is
one way for overcoming all these problems, as it is shown
e.g. in Alvarez-Ramirez and Femat (1999), Gerhard et al.
(2004), Bakošová et al. (2005), Tlacuahuac et al. (2005)
and others. From the viewpoint of safety operation or in
the case when the unstable steady state coincides with
the point that yields the maximum reaction rate at a pre-
scribed temperature, it is necessary to control CSTRs into
the prescribed open-loop unstable steady state (Bakošová
and Oravec (2010), Bakošová et al. (2009), Bakošová et al.
(2006), Puna et al. (2006)).

One of solved problems in robust control theory is the
problem of robust static output feedback control (Dong
and Yang (2007), Iwasaki et al. (1994), Syrmos et al. (1997)
and references therein). This approach can be success-
fully used for solving the problem of robust stabilization
of CSTRs. For obtaining robust stabilizing controllers,
the non-iterative and iterative algorithms can be applied
(Veselý (2002)).

In this paper, the problem of robust stabilization of a
CSTR is solved. The conditions for robust stabilization
are formulated in the form of linear matrix inequalities
(LMIs). Solution of LMIs represents a convex optimization
problem that has been solved in the MATLAB environ-
ment by Robust Control toolbox (Balas et al. (2006))
and YALMIP toolbox (Löfberg (2004), Kvasnica and
Fikar (2010)) with solver SeDuMi (Henrion and Lasserre
(2003)).

2. CONTROLLED CSTR

The controlled reactor is a continuous-time stirred tank
reactor with two first order irreversible parallel exothermic

reactions according to the scheme A
k1→B, A

k2→ C, where
B is the main product and C is the side product. Chemical
reactions are performed in a reaction vessel and reaction
heat is removed from the reactor by coolant in a reactor
jacket. Because of the exponential dependency of reactant
concentrations on the temperature of the reaction mixture
known as the Arrhenius equation (Molnár et al. (2002)), it
is supposed that it is not necessary to control directly con-
centrations. The multivariable controller is used in order to
achieve control of the reaction mixture temperature in the
reaction vessel and the coolant temperature in the jacket.
Control inputs are flow rates of reaction mixture and
coolant. Parameters and inputs of the considered CSTR
(Bakošová et al. (2006)) are shown in Table 1 and Table 2.

Model uncertainties of the over described reactor follow
from the fact that there are four only approximately
known physical parameters in the reactor, which values
are shown in Table 3. Here, ∆rH1, ∆rH2 are reaction
enthalpies of the chemical reactions and k∞1, k∞2 are
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Table 1. Parameters of CSTR

Variable Value Unit

V 0.23 m3

VC 0.21 m3

ρ 1020 kg m−3

ρC 998 kg m−3

cP 4.02 kJ kg−1K−1

cPC
4.182 kJ kg−1K−1

A 1.51 m2

α 42.8 kJ min−1m−2K−1

g1 = E1/R 9850 K
g2 = E2/R 22019 K

Table 2. Steady-state inputs of CSTR

Variable Value Unit

cA,0 0.0824 kmol m−3

cB,0 0 kmol m−3

T0 310 K
TC,0 288 K
qs 0.015 m3min−1

qsC 0.004 m3min−1

pre-exponential factors in the reaction rate constants. The
nominal values of uncertain parameters are considered
to be mean values of given intervals. These uncertainties
represent parametric uncertainties.

Table 3. Uncertain parameters of CSTR

Variable Minimal value Maximal value Unit

∆rH1 −8.8 × 104 −8.4 × 104 kJ kmol−1 min−1

∆rH2 −5.7 × 104 −5.3 × 104 kJ kmol−1 min−1

k∞1 1.5 × 1011 1.6 × 1011 min−1

k∞2 4.95 × 1026 12.15 × 1026 min−1

It follows from the steady-state analysis that the reactor
has three steady states, two of them are stable and
one is unstable. The situation for the nominal model is
shown in Figure 1, where the curve QGEN (red line)
represents the heat generated by the reactions and the line
QOUT (blue line) represents the heat withdrawn from the
reactor. The steady-state operating points of the reactor
are points, where the curve and the line intersect. The
steady states are stable if the slope of the cooling line
is higher then the slope of the heat generated curve.
This condition is satisfied in the steady states at the
temperatures T = 308.4 K and T = 352.6 K, and it is not
satisfied in the steady state at T = 338.4 K. The steady-
state behavior of the chemical reactor is similar for all
vertex systems, which are obtained for all combinations of
minimal and maximal values of uncertain parameters. The
maximal concentration of the main product B (red line) is
always obtained when the reactor operates in the unstable
steady state as it is shown in Figure 2 (Bakošová et al.
(2006)).

Linearized mathematical model of the reactor has been
derived under the assumption that the control inputs are
the reactant flow rate q and the coolant flow rate qC , the
controlled outputs are the reaction mixture temperature T
and the coolant temperature TC and the operating point
of the reactor is its open-loop unstable steady state. Then
the linearized model of the CSTR is in the form

ẋ (t) =Ax (t) + Bu(t), x (t0) = x 0

y(t) =Cx (t) (1)
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Fig. 1. Steady states of CSTR with nominal values of
uncertain parameters
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Fig. 2. Concentration of components A and B in depen-
dence on the reaction mixture temperature – nominal
model

where again x(t) ∈Rn is the state, u(t) ∈Rm the control,
y(t) ∈Rr the output. Matrices A, B, C are in the form

A =




a11 0 a13 0
a21 a22 a23 0
a31 0 a33 a34

0 0 a43 a44


 (2)

B =




b11 0
b21 0
b31 0
0 b42


 (3)

C =

(
0 0 1 0
0 0 0 1

)
(4)

Matrices A, B have varying coefficients as according to
the values of uncertain parameters steady states of the
reactor vary. For coefficients of matrices A and B see
Table 4.

For all combinations of boundary values of 4 uncertain
parameters, we have obtained 24 = 16 linearized mathe-
matical models with matrices Ai, Bi. These systems rep-
resent vertices of an uncertain polytopic system. All these
vertices are unstable systems as between the eigenvalues of
Ai, i = 1, ..., 16, are also positive eigenvalues. Unstable is
also the linearized nominal model (Bakošová et al. (2006)).
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Table 4. Matrices parameters

Parameter Value

a11 −
(
qs

V
+ ks

1 + ks
2

)

a13 − cs
A

(ks
1g1+ks

2g2)

(Ts)2

a21 ks
1

a22 − qs

V

a23
ks
1∆rH1+ks

2∆rH1

qscP

a31 −
(

qs

V
+ αA

V ρcp
+

cs
A(ks

1g1∆rH1+ks
2g2∆rH1)

ρcP (Ts)2

)

a34
αA

V ρcP

a43
αA

VCρCcPC

a44 −
(

qs
C

VC
+ αA

VCρCcC

)

b11
cA,0−cs

A
V

b21
cB,0−cs

B
V

b31
T0−Ts

V

b42
TC,0−Ts

C
V

3. ROBUST STATIC OUTPUT FEEDBACK
STABILIZATION OF CSTR

Design of a robust static output feedback controller is
based on having a linear time-invariant state space model
(1) of the controlled system. For the system (1), it is
necessary to find a static output feedback u(t) = Fy(t).
Using this static output feedback we obtain an uncertain
polytopic closed-loop system

ẋ (t) = [A + BFC ] x (t) = ACLx (t) (5)

The system (1) is simultaneously static output feedback
stabilizable with guaranteed cost

∞∫

0

(
x (t)TQx (t) + u(t)TRu(t)

)
dt ≤ xT

0 Px 0 = J∗

P > 0 (6)

if there exist matrices P > 0,Q > 0,R > 0 and a matrix
F such that the following inequalities hold (Veselý (2002))

ΩT
i P + PΩi + Q + CT

i F
TRFC i < 0

i = 1, . . . , N (7)

where

Ωi = Ai + B iFC i (8)

The system (1) is simultaneously static output feedback
stabilizable with guaranteed cost (6) also if there exist
matrices P > 0,Q > 0,R > 0 and a matrix F such that
the inequalities hold (Veselý (2002))

AT
i P + PAi − PB iR

−1BT
i P − Θi + Q ≤ 0

i = 1, . . . , N (9)

where

Θi = CT
i F

TRFC i (10)

and also the inequalities hold

λiφ
−1
i λT

i − R ≤ 0

i = 1, . . . , N (11)

where

λi = BT
i P + RFC i (12)

φi = −(AT
i P + PAi − PB iR

−1BT
i P − Θi + Q) (13)

The non-iterative and iterative procedures for simulta-
neous static output feedback stabilization of the system
(1) with guaranteed cost (6) are based on statements
formulated above (Veselý (2002)).

3.1 Non - iterative algorithm

Using the Schur complement formula and defining S is
equal to P−1 and considering Θi is equal zero, the in-
equality (9) is transformed to the following LMIs

[
SAT

i + AiS − B iR
−1BT

i S
√
Q√

QS −I

]
≤ 0

γI < S , i = 1, . . . , N (14)

where γ > 0 is any positive constant.

Using P = S−1, the inequality (11) can be rewritten to
the following LMIs

[
−R BT

i P + RFC i

(BT
i P + RFC i)

T −φi

]
≤ 0

i = 1, . . . , N (15)

The non-iterative algorithm for static output simultaneous
stabilization of the system (1) with the guaranteed cost (6)
is following (Veselý (2002)).

(1) Set parameter γ and required values of the weight
matrices Q, R in the cost function (6).

(2) Compute S = ST > 0 from the inequalities (14). If
the solution of (14) is not feasible, the system (1)
is not simultaneously stabilizable by static output
feedback.

(3) Set P := S−1.
(4) Compute F from the inequalities (15). If the solution

of (15) is not feasible, the closed-loop system (5) is
not quadratically stable with guaranteed cost. Then
change Q, R or γ in order to find feasible solutions.

(5) If the solutions of (14), (15) are feasible, then the
system (1) is simultaneously stabilizable and the sys-
tem (5) is quadratically stable with guaranteed cost
control algorithm u∗(t) = Fy(t) and J∗ = xT

0 Px0 is
the guaranteed cost.

3.2 Iterative algorithm

Using the Schur complement formula and defining S is
equal to P−1, the inequality (7) is transformed to the
following LMIs

[
SkA

T
i + AiSk − B iR

−1BT
i Sk

√
Ψi√

ΨiSk −I

]
≤ 0

γI < Sk, i = 1, . . . , N (16)
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where

Ψi = C T
i F

T
k−1RF k−1C i + Q (17)

and γ > 0 is any positive constant.

Using P = S−1, the inequality (11) can be rewritten to
the following LMIs




−R BT
i P + RF iC i 0

PkB i + C T
i F

T
k R ϕi C iF

T
k

0 F kC i R


 ≤ 0

i = 1, . . . , N (18)

where

ϕi = AT
i Pk + PkA

T
i − PkB

T
i R

−1BT
i Pk + Q (19)

The iterative algorithm for static output simultaneous
stabilization of the system (1) with the guaranteed cost
(6) is following (Veselý (2002)).

(1) Set parameter γ and required values of the weight
matrices Q, R due to the cost function (6).

(2) Set k := 0 and initial value of matrix F 0.
(3) Set k := k + 1.

(4) Compute Sk = ST
k > 0 from the inequalities (16). If

the solution of (16) is not feasible, the system (18)
is not simultaneously stabilizable by static output
feedback.

(5) Set Pk := S−1
k .

(6) Compute F k from the inequalities (18). If the solution
of (18) is not feasible, the closed-loop system (5) is
not quadratically stable with guaranteed cost. Then
change Q, R or γ in order to find feasible solutions.

(7) If ||Fk − Fk−1|| ≤ tolerance then stop else go to the
Step 3.

(8) If the solutions of (16), (18) are feasible, then the
system (1) is simultaneously stabilizable and the sys-
tem (5) is quadratically stable with guaranteed cost
control algorithm u∗(t) = Fy(t) and J∗ = xT

0 Px0 is
the guaranteed cost.

4. CASES OF ROBUST CONTROLLER DESIGN

Solving presented algorithms represents the feasibility
problem of convex optimization. The MATLAB environ-
ment enables to solve this problem by Robust Control
toolbox and YALMIP toolbox with solver SeDuMi. The
Robust Control toolbox uses function setlmis to initial-
ize the LMI generating. Function lmivar enables to define
the properties of optimization variable. Function getlmis
generates LMI in the form required for processing by the
function feasp. This function enables to solve the LMI fea-
sibility optimization problem. The YALMIP uses function
sdpvar to set the properties of optimization variable. The
constraints are set simple by using the parentheses in the
form [ expression ] . Function solvesdp enables to
solve the optimization problem. To obtain the calculated
value, the function double can be used.

For robust controller design the above presented non-
iterative algorithm has been applied. The values of ma-
trices Q, R in the cost function (6) and parameter γ used
for controller tuning are shown in Table 5.

Table 5. Parameters for controller design

Cost function Q R γ

1




0.1 0 0 0
0 0.1 0 0
0 0 0.01 0
0 0 0 0.01




(
10 0
0 10

)
0.001

2




0.1 0 0 0
0 0.1 0 0
0 0 0.01 0
0 0 0 0.01




(
100 0
0 100

)
0.001

Due to the various weight matrices in the cost function (6)
and using different MATLAB toolboxes, the four different
cases of controller tuning have been obtained (Table 6).
The following initial conditions of system (1) have been
considered (Bakošová and Oravec (2010))

x 0 = (∆cA, ∆cB, ∆T, ∆TC)T (20)

x 0 = (2.1210, 0.8644, 335.4726, 325.7271)T −
−(1.8614, 1.0113, 338.4080, 328.0599)T =

= (0.2596, −0.1469, −2.9354, −2.3328)T (21)

Table 6. Cases of the robust controller design

Case Method Cost function Used toolbox

1 non-iterative 1 Robust Control
2 non-iterative 1 YALMIP
3 non-iterative 2 Robust Control
4 non-iterative 2 YALMIP

5. RESULTS AND DISCUSSION

Four different controllers (F1–F4) for considered system
(1) have been designed for various cases of the robust
stabilization controller tuning (Table 6). The designed
controllers are shown in Table 7. In this table are shown the
maximal evaluated values of cost function J in comparison
to guaranteed values of the cost function J∗ for each
designed controller. These values have been evaluated for
considered initial values (21). The maximal eigenvalue of
all uncertain systems (EVmax) have been calculated. The
time measured in seconds needed for each LMI solving
procedure is shown in column tCPU . These data have been
evaluated by computer with 3.20 GHz CPU and memory
4 GB RAM.

Table 7. Properties of the designed robust
static output feedback controllers

Case Controller Fc J∗ J EVmax tCPU

1

[
0.0456 0.0294
0.0569 0.0496

]
0.2765 0.1286 −0.016

[
0.08
0.05

]

2

[
0.0026 −0.0026
0.0179 0.0160

]
0.3221 0.2151 −0.036

[
0.58
0.25

]

3

[
0.0333 0.0170
0.0261 0.0189

]
0.7340 0.2638 −0.020

[
0.08
0.05

]

4

[
0.0028 −0.0029
0.0020 0.0005

]
0.5546 0.4158 −0.033

[
0.51
0.47

]

All the designed controllers assure the lower value of cost
function J than the guaranteed value J∗ as the theory
predicts. All designed controllers guarantee the negative
value of maximal eigenvalue for all uncertain closed–loop
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systems. The lower values of cost function J have been
obtained for the controllers tuned by Robust Control
toolbox.

In general, YALMIP toolbox needs more CPU time for
solving the optimization problem than Robust Control
toolbox. On the other hand, the YALMIP toolbox offers
more comfortable environment. For system (1) and all the
controllers F1–F4, closed–loop behaviours have been gen-
erated with corresponding control inputs using MATLAB–
Simulink environment. In the Figures 3 – 12 are shown
performances of the closed–loop system controlled using
controllers designed by non-iterative algorithm.
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Fig. 3. Closed-loop behaviour of CSTR using the robust
controller F1
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Fig. 4. Control inputs generated by the controller F1

The controllers F1, F2 have been designed for the cost
function 1 and the controllers F3, F4 have been tuned
for the cost function 2 (Table 6). As can be seen in the
Figure 3 and Figure 5 the control performances of the
CSTR assured by the controllers F1, F2 obtain similar
overshoot (Bakošová et al. (2003)). The Figure 3 show
that using the controller F1 tuned by Robust Control
toolbox leads to the lower value of settling time (Bakošová
et al. (2003)) in comparison to the control performance
assured by the controller F2 tuned by YALMIP (Figure 5).
The control performance assured by the controller F4

tuned by YALMIP toolbox obtain lower value of overshoot
(Figure 9) than is assured by using the controller F3

(Figure 7). On the other hand, the setling time obtained
using the controller F4 is much longer (Figures 11, 12) in
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Fig. 5. Closed-loop behaviour of CSTR using the robust
controller F2
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Fig. 6. Control inputs generated by the controller F2
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Fig. 7. Closed-loop behaviour of CSTR using the robust
controller F3

comparison to the performance assured by the controller
F3 (Figure 7, 8) tuned by Robust Control toolbox.

6. CONCLUSION

Robust stabilization of the exothermic CSTR with four
uncertain parameters using static output feedback con-
trollers was studied. The robust stabilizing multivariable
controllers have been designed using the presented simple
non-iterative and iterative algorithms, which are based on
solving of two sets of LMIs. The problem of their solutions
represents the feasibility problem of convex optimization.
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Fig. 8. Control inputs generated by the controller F3
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Fig. 9. Closed-loop behaviour of CSTR using the robust
controller F4
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Fig. 10. Control inputs generated by the controller F4

The Robust Control toolbox and YALMIP toolbox have
been used for solving the LMIs and the results have
been compared using MATLAB–Simulink environment.
Description of optimization problem using YALMIP is
more user-friendly. On the other hand, the CPU time
decreases using Robust Control toolbox. Despite of simple
using of YALMIP, using Robust Control toolbox seems to
be more suitable for solving the problem of robust static
output feedback stabilization.
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Fig. 11. Closed-loop behaviour of CSTR using the robust
controller F4 using longer evaluation time
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Fig. 12. Control inputs generated by the controller F4

using longer evaluation time
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Abstract: Two different approaches for design of lateral control augmentation system for large
blended-wing-body aircraft (BWB) with flexible structure are presented and asses in this paper.
The most challenging issue is handling of rigid-body dynamics and flexible modes coupling. First,
a more classical approach is employed giving rise to separate flight dynamics controller (H2
optimal, with sufficient roll-off) and an active damper for most prominent lateral flexible modes
on top of that (mixed-sensitivity H∞ design). This approach proves successful and has obvious
advantages related to the design process complexity, or implementation and testing issues. On
the other hand, there is always a risk of potentially significant performance loss compared to
a fully integrated design. For this reason, fully integrated design is also presented in the form
of a fixed-order MIMO H∞ optimal FCS controller, obtained by means of direct non-convex
non-smooth optimization package HIFOO. Performance of both approaches is assessed.

Keywords: Lateral control; Fixed order optimization; BWB aircraft

1. INTRODUCTION

Large aircraft structures and novel concepts, such as
Blended Wing Body (BWB) aircraft configurations, can
lead to higher fuel-efficiency and reduced emissions. How-
ever, this also leads to low frequency structure vibration
modes, and coupling of those to the flight mechanic modes
may occur. Also, BWB concepts are expected to show
coupling between longitudinal and lateral dynamics. This
and significant parameter dependency of the aircraft dy-
namics pose significant design challenges for developing
robust and well-performing flight control laws. Traditional
methods for flight control design typically use nested SISO
control loops and strongly structured control architectures
(6). These methods are based on detailed aircraft system
analysis and exploit paths with weak coupling to obtain
good results for conventional flight control design. How-
ever, multivariate methods, such as optimal control and
particularly robust control design methods are state of the
art for more complex flight control tasks under coupled
and/or uncertain system dynamics. Two large groups of
control design methodologies are optimal control design
methods (e.g., LQG control and the Kalman estimator
(4), (3)), as well as robust control design methods (see (8)
and (5) for fundamentals, or (2) for an aerospace-specific
overview). This work reports first findings from ongoing
research connected to the control design for a large BWB
passenger aircraft.

? This is preliminary version of paper submitted for IFAC 2011.

Two different approaches to lateral MIMO feedback Con-
trol Augmentation System (CAS) for NACRE BWB air-
craft are presented in the following. They are namely a ro-
bust MIMO H2/H∞ mixed sensitivity controller and a low-
order robust MIMO H∞ optimal controller designed by
direct fixed-order control design techniques. All controllers
are designed to assure for desired closed-loop rigid-body
response (namely rise time and no-overshoot behavior to
the reference change of the bank angle set point, attenua-
tion of beta disturbance, and required damping ratio of the
DR mode) and to damp first two antisymmetric wings flex-
ible modes. Performance and robustness of all controllers
is demonstrated by means of MATLAB/Simulink simula-
tions, and their advantages and drawbacks are discussed
to arrive at conclusions. More details about BWB aircraft
control issues can by found in (9), (10), (11), (12) and (13).

2. BLENDED WING BODY AIRCRAFT

ACFA 2020 is a collaborative research project funded
by the European Commission under the seventh research
framework programme (FP7). The project deals with
innovative active control concepts for ultra efficient 2020
aircraft configurations like the blended wing body (BWB)
aircraft (see Fig. 1 and 2). The Advisory Council for
Aeronautics Research in Europe (ACARE) formulated the
”ACARE vision 2020”, which aims for 50% reduced fuel
consumption and related CO2 emissions per passenger-
kilometre and reduction of external noise. To meet these
goals is very important to minimize the environmental
impact of air traffic but also of vital interest for the aircraft
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industry to enable future growth. Blended Wing Body
type aircraft configurations are seen as the most promising
future concept to fulfill the ACARE vision 2020 goals
because aircraft efficiency can be dramatically increased
through minimization of the wetted area and reducing
of structural load and vibration by active damping in a
integrated control law design (addopted from (1)).

Fig. 1. BWB FEM structure.

Fig. 2. BWB visualization.

3. BLENDED WING BODY AIRCRAFT
MATHEMATICAL MODEL

Mathematical model of BWB aircraft used for control law
design consist of aircraft model itself, model of actuators
and sensors. Actuators models are considered as 2nd order
linear models augmented by saturations and rate limiters.
Sensors are modeled as 2nd order Butterworth filters with
time delays approximated by 2nd order Padde approxi-
mation. Mathematical model of aircraft consist of rigid
body description (modeled as a 12th order linear system
separated to longitudinal and lateral dynamics), flexible
modes (for design purposes just four modes are considered,
with rise to 8th order linear model) and lag states. Overall
model used for control law design is of order 52.

4. H2/H∞ MIXED SENSITIVITY CONTROLLER

A two-stage control law is devised - separate control
augmentation system (CAS) taking care of the flight-
dynamics (robust H2 optimal roll autopilot, with roll-off
at higher frequencies), and an active damper for selected
flexible modes (H∞ optimal mixed-sensitivity controller
tuned to first two antisymmetric wing bending modes).
Such an arrangement has obvious advantages - regarding
tuning (both parts are designed/tuned independently),
future flight testing (the active damper can be tested after
the roll autopilot is implemented and approved, and it can
be turned on/off at any time while keeping the aircraft
well controlled), safety (loss of the damper’s functionality,
e.g. due to sensors failure, does not take the airplane
out of control). The drawback is potential reduction of
performance compared to a fully integrated design where
both flight dynamics and vibrational issues are handled
by a single large multiple input multiple output (MIMO)
controller.

4.1 design method

The lateral CAS (roll autopilot) is designed by H2 norm
minimization of the generalized plant, encompassing the
lateral rigid body dynamics itself (4 states/outputs), 2
integrators (to assure for perfect steady-state tracking
of roll angle set point command and for perfect steady-
state attenuation of beta disturbance), and two low-pass
filters (for required roll-off at higher frequencies - so that
the flexible modes are left untouched, not excited by
the controller). As all the rigid body (RB) states are
measured, the observer needs not be implemented in fact
and the resulting order of this CAS can be kept quite
small (six states). Resulting controller features robust
stability/performance for all considered mass cases (3
passengers and 5 fuel cases).

Fig. 3. Control augmentation system for H2 controller
design. Where control surfaces are considered as anti-
symmetrically driven wings ailerons.

On top of that, a robust MIMO controller is built by
minimization of the H∞ norm of the frequency weighted
mixed-sensitivity function. Wings modal antisymmetric
sensor and antisymmetric flaps make up the input/output
groups. Loosely speaking, the closed loop sensitivity func-
tion is kept small at selected frequency regions (in our case
covering the wing antisymmetric modes) to assure for good
performance (disturbance attenuation) while the comple-
mentary sensitivity function is kept small everywhere else
(to assure for robustness - the design model becomes
invalid outside the selected frequency region). A simple
design model of 8th order was constructed (modeling accu-
rately the two modes and close region in the I/O channels).
Two resonant weighting filters of 2nd order are tuned to
the frequencies and dampings of the antisymmetric wing
bending modes of a selected representative case for this
purpose. Resulting H∞ controller has 20 states.
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Fig. 4. Control augmentation system for H2/H∞ controller
design. Where control surfaces are considered as anti-
symmetrically driven wings ailerons.

Resulting damper (and also the overall CAS/damper
combo) features robust stability for all mass cases, sig-
nificant improvement regarding damping of structural vi-
brations for major part of mass cases (more than 5dB
attenuation), and no-effect on vibrations damping for the
remaining cases. These findings, and the overall perfor-
mance of the designed controller and its respective parts,
are visualized in the Fig. 3 and Fig. 4.

4.2 H2/H∞ control results

Brief assessment of the controller performance is given in
the text above (regarding robustness and performance). A
set of selected characteristics is now given to document
those findings.

Fig. 5. Wing bending mode. Open loop (green), H2 control
(blue) and H2/H∞ control (red). All axis values are
omitted from confidential reasons.

Note that very good performance is achieved for those
cases that do not vary much in the frequency of the
targeted modes (Fig. 5 left). However, even for the other
cases (Fig. 5 right), some performance improvement is
achieved, and robust closed loop stability is assured.

Fig. 6. Roll reference tracking. H2 control (blue) and
H2/H∞ control (red).

Required response to a set point command is achieved.
Note marginal improvement of the response when the

Fig. 7. Beta disturbance rejection. Open loop (green), H2

control (blue) and H2/H∞ control (red).

Fig. 8. Yaw rate damper. Open loop (green), H2 control
(blue) and H2/H∞ control (red).

damping system is connected (though it was not intended
to influence the flight dynamics in fact). As stated above,
the flight-dynamics part contains integrated yaw damper
and beta compensator. Gain and phase margins for the
complete designed controller have been evaluated. Robust
closed loop stability for all mass cases is achieved. For
simultaneous, independent, worst-case variations in the in-
dividual channels the gain margin ranges 1.9-3.7dB, phase
margin 12-23 degrees, depending on the mass case (MAT-
LAB/Robust Control Toolbox command loopmargin).

5. FIXED ORDER H∞ OPTIMAL MIMO ROBUST
CONTROLLER

An integrated H∞ optimal approach was used to design
Lateral Control Augmentation System (CAS) for NACRE
airliner. Similarly as in previous section two different con-
trol goals were aimed, but this time in one integrated
version. One part of control law is to provide autopilot
functionality. The autopilot consists of Stability Augmen-
tation System (Dutch roll damper) and CAS (roll and beta
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angle reference signal tracking). Other part of control law
takes care of vibration and load attenuation.

5.1 Design method

In order to directly obtain a robust feedback controller
of pre-specified order, the H∞ Fixed-Order Optimization
(HIFOO) toolbox is used, outlined in detail in (7). The HI-
FOO control design method searches for locally optimal so-
lutions of a non-smooth optimization problem that is built
to incorporate minimization objectives and constraints for
multiple plants. First, the controller order is fixed at the
outset, allowing for low-order controller design. Second, no
Lyapunov or lifting variables are introduced to deal with
the conflicting specifications. The resulting optimization
problem is formulated on the controller coefficients only,
resulting in a typically small-dimensional non-smooth non-
convex optimization problem that does not require the
solution of large convex sub-problems, relieving the com-
putational burden typical for Lyapunov LMI techniques.
Because finding the global minimum of this optimization
problem may be hard, an algorithm that searches only
for local minimization is used. While no guarantee can be
given on the result quality of this algorithm, in practice
it is often possible to determine a satisfying controller
efficiently.

Fig. 9. H∞ fixed order optimization setup.

The lateral integrated CAS was designed as a 2DoF archi-
tecture using fixed order optimization approach to keep
control law order low. The resulting extremely low order
(in this case 3rd order control law was used) controller was
built using HiFOO toolbox. Overall lateral CAS consist of
Rigid Body autopilot (roll and beta tracker with Dutch roll
damper) and structural modes control. The lateral CAS
set up can be seen from Fig. 10. Two reference signals
are used as inputs into feedforward part of controller
(roll and beta set points). The beta reference signal is
usually set to zero and then CAS provides coordinated
turn functionality.

Control surfaces used by CAS are all ailerons (antisymmet-
ricaly actuated FL1 - FL3), rudders (RU) and elevators

Fig. 10. Control augmentation system for HiFOO.

(symmetrically actuated EL). Measured signals are lateral
RB variables at CG (beta angle, roll angle, roll rate and
yaw rate), for structural modes control we have selected
lateral wing acceleration modal sensor in antisymmetri-
cal setup. Resulting control law (autopilot and structural
modes controller) provides robust stability as well as ro-
bust performance for all 18 cruse conditions cases (6 fuel
and 3 passenger cases).

5.2 HiFoo control results

Improvement of damping of 1st and 2nd wing bending
modes can be seen form Fig. 11. Simultaneously DC gain
is preserve for all cases. Robust performance property can
be seen form Bank angle reference signal tracking response
plotted in Fig. 12 (left). Response for series of two steps is
involved here and one can see that handling qualities are
satisfied with suitable amount of overshot.

Fig. 11. Wing bending mode. Open loop (blue), closed loop
(red).

Property of beta disturbance attenuation is investigated
in Fig. 13 (left). One can seen complete vanishing of
side wing influence in few second and without inducing
of oscillation for major part of cases. Dutch roll mode
damping is investigate in Fig. 13 (right).

Gain and phase margins for the complete designed con-
troller have been evaluated. Robust closed loop stability
for all mass cases is achieved. For simultaneous, indepen-
dent, worst-case variations in the individual channels the
gain margin ranges 0.8-2.6dB, phase margin 5-16 degrees,
depending on the mass case (MATLAB/Robust Control
Toolbox command loopmargin).
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Fig. 12. Bank angle and Roll rate reference signal tracking.

Fig. 13. Beta angle disturbance attenuation (left) and Yaw
rate damping (right). Open loop (blue), closed loop
(red)

6. CONCLUSIONS

Two efficient approaches to lateral control for the prospec-
tive BWB concept of large passenger aircraft are elab-
orated and assessed in this paper. First, a hierarchical
approach is considered with separately designed control
augmentation system (lateral autopilot with integrated
beta-compensator and yaw damper) and the active damp-
ing system for structural vibrations on top of that. Main
advantages of this approach are due to safety (the non-
critical part - active damper - does not de-stabilize the
plant if disengaged, e.g. due to a failure), easier process
of tuning and certification (step-by-step), and the results
look very good in fact. On the other hand, this approach
is conservative by its nature and does not exploit fully
the potential of active control as a true MIMO overall
controller could do. Therefore, the second approach also
presented in the paper is a fully integrated H∞ optimal

control law of low order designed by fixed order optimiza-
tion. Performance of both control strategies is assessed,
and the integrated design indeed features better closed
loop characteristics in terms of robustness (more mass
cases covered), rise times, or Dutch-roll damping.
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Abstract: Using of a modified Smith predictor for compensation of measurable disturbances
affecting a time-delay system is studied in this paper. The controlled system is a tubular heat
exchanger, in which the kerosene is heated by hot water. The heat exchanger is a nonlinear
system with time delay. The Smith predictor and the modified Smith predictor are used for
control of the heat exchanger without and with disturbances. Obtained simulation results
confirm that the modified Smith predictor with feed-forward compensation of measurable
disturbances can improve the closed-loop control responses of the time delay systems with
disturbances.

Keywords: time delay, disturbance, Smith predictor, modified Smith predictor, tubular heat
exchanger

1. INTRODUCTION

Time delay is a typical phenomenon in real processes that
is usually caused by information, mass or energy transport.
It can be also caused by mass or energy accumulation
in dynamic systems connected in series. Typical time-
delay processes in chemical industry are tubular heat
exchangers. There are several approaches to control heat
exchangers as time-delay systems and the Smith predictor
and its modifications belong to the approaches offering
good results. The predictor based controllers are known
as time delay compensators and they have been applied
in many engineering fields, mainly in the process industry
(Huzmezan et al. (2002), Normey-Rico et al. (1997)), but
also in robotics (Normey-Rico and Camacho (1999)) and
internet connection (Mascolo (2006)).

The Smith predictor and its modifications (Šulc and
Vı́tečková (2004)) can be successfully used for control of
processes with significant time delay, when the model of
the controlled system and the model of the time delay are
very well known. The modifications are used to improve
the closed-loop control responses of time-delay integrating
systems, time-delay unstable systems, time-delay systems
with disturbances, etc. (Dostál et al. (2008)).

The paper presents using a modified Smith predictor
for control of a co-current tubular heat exchanger, in
which the kerosene is heated by hot water. Kerosene
flows in the inner tube and water flows in the outer
tube. The operation of the heat exchanger is affected
by disturbances that are represented by changes of the
kerosene inlet temperature. The objective is to heat the
outlet temperature of the kerosene to the demanded value
by the mass flow of heating water. The heat exchanger
represents a non-linear system with time delay.

2. SMITH PREDICTOR

One of the most popular time delay compensating method
is the Smith predictor. The structure of the Smith predic-
tor is shown in Figure 1. This structure can be divided into
two parts. The first part is the primary controller Gr(s),
which is usually the PID controller and the second part is
the predictor structure. The predictor is composed of the
plant model without time delay Gm(s) and of the model
of the time delay e−Dms. The complete process model
is Pm(s) = Gm(s)e−Dms. The model Gm(s) is used to
compute an open loop prediction. The controller Gr(s)
can be tuned for the plant model without time delay,
when there are no model errors or disturbances and the
error between process output and model output is zero.
For successful modelling, following three characteristics of
the Smith predictor have to be analysed: P (s) = Pm(s),
G(s) = Gm(s), D = Dm. The Smith predictor structure
has for the nominal case (no modelling errors) these fun-
damental properties (Normey-Rico and Camacho (2008)):

• time delay compensation and prediction
• performance limitation of the Smith predictor

Fig. 1. Smith predictor
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2.1 Property 1: Time delay compensation and prediction

It is easy to see in Figure 1, the error signal ep(t) is zero, if
r(t) = 0 and G(s)e−Ds = Gm(s)e−Dms. The characteristic
equation is

1 + Gr(s)Gm(s) = 0 (1)

Compare the equation (1) to the time-delay dependent one
obtained in the PID case

1 + Gr(s)Gm(s)e−Dms = 0 (2)

where the extra phase introduced by the time delay re-
duces the phase margin. The feedback signal yp(t) an-
ticipates the system output for changes in the set point,
although this is not the case for disturbances

yp(t) = y(t + Dm) + Pm(s) [r(t) − r(t + Dm)] (3)

For slow changes of the disturbance, it is a good prediction
of y(t + Dm). But if the disturbance changes rapidly then
it cannot be eliminated from the feedback signal yp(t)
(Normey-Rico and Camacho (2008)).

2.2 Property 2: Performance limitation for the Smith
predictor

The structure of the Smith predictor divides the plant into
two parts. The first is invertible Gm(s) and the second
is non-invertible e−Dms. Using this idea and considering
that ideal controller with infinity gain could be applied, it
follows (Fig. 2)

G′
r(s) =

Gr(s)

1 + Gr(s)Gm(s)
= (Gm(s))−1 (4)

The ideal transfer function between the reference and
the output is a simple delay. In real conditions the ideal
controller cannot be applied. Even in the ideal case, if a
disturbance is applied at t = 0, it is necessary to wait until
t = 2Dm to note the effect of the controller on the output
(Normey-Rico and Camacho (2008)).

Fig. 2. Equivalent control structure of the Smith predictor

3. MODIFICATION OF THE SMITH PREDICTOR
FOR DISTURBANCE COMPENSATION

A modification of the Smith predictor with feed-forward
control loop can be used for improving the closed-loop
control response when the controlled system is affected
by measurable disturbances. When the disturbance is not
measurable, this approach can be applied, but the distur-
bance has to be estimated (Normey-Rico and Camacho

(2008)). Figure 3 shows a block diagram of the Smith
predictor for disturbance compensation, where Pmr(s) rep-
resents the model for Pr(s). Pr(s) represents the model
of the disturbance dynamics (Normey-Rico and Camacho
(2008)).

Fig. 3. Smith predictor modification for disturbance com-
pensation

In the ideal case, when Pmr(s) = Pr(s) and Pm(s) = P (s),

the transfer function Y (s)
R(s) is in the form

Y (s)

R(s)
= [Pr(s) − Gff (s)P (s)] (5)

The disturbance effect can be eliminated from the output
of the process independently on the type of disturbance if
exists such Gff (s) that

Gff =
Pr(s)

P (s)
(6)

Consider the plant and the load disturbance transfer
functions P (s) and Pr(s) defined as P (s) = G(s)e−Ds,
Pr(s) = Grr(s)e

−Drs. Two situations can occur (Normey-
Rico and Camacho (2008)):

• D < Dr

In this case, the controller is in the form

Gff =
Gr(s)

G(s)
e−(Dr−D)s (7)

If Gr(s)
G(s) can be computed the disturbance is eliminated

from the output. Otherwise, a pseudo inverse of G(s) can

be computed Gff (s)P (s) = P (s)X(s). The final Y (s)
R(s) is

Y (s)

R(s)
= e−DrsGr(s)[1 − X(s)], (8)

where 1 − X(s) has zero static gain and the fastest
achievable response (Normey-Rico and Camacho (2008)).

• D > Dr

In this case, it is not possible to compute the inverse of
e(Dr−D)s. The feed-forward controller is given by

Gff =
Gr(s)

G(s)
(9)
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Table 1. Heat exchanger parameters and inputs

Variable / Unit Value Variable / Unit Value

l / m 2 ρ1 / kg m−3 810
D3 / m 0.05 ρ2 / kg m−3 8930
D2 / m 0.028 ρ3 / kg m−3 1000
D1 / m 0.025 CP1 / kJ kg−1K−1 2100
αs

1 / W m−2K−1 750 CP2 / kJ kg−1K−1 385
αs

2/ W m−2K−1 1480 CP3 / kJ kg−1K−1 4186
ṁs

1 / kg s−1 0.0556 ϑs
1in / oC 20

ṁs
3in / kg s−1 0.0417 ϑs

3in / oC 85

and the final transfer function is
Y (s)

R(s)
= e−Dr(s)Gr(s)

[
1 − X(s)e−(D−Dr)s

]
(10)

Note that even in this case the solution is better than
the one obtained when the feed forward is not used. The
advantage of this solution is less important when Dr → 0.
The previous structure cannot be used when disturbance
is not measurable. Using an estimation of disturbance
r(t), the idea can be used to improve the controller. One
advantage of this approach is that the controller can be
easily tuned to reject other types of disturbances and not
only step ones (Normey-Rico and Camacho (2008)).

4. MODEL OF THE TUBULAR HEAT EXCHANGER

The controlled process is a co-current tubular heat ex-
changer, in which kerosene is heated by hot water.
Kerosene flows in the inner copper tube and water flows
in the outer copper tube. The operation of the heat ex-
changer is affected by the disturbance that is represented
by changes of the kerosene inlet temperature. The objec-
tive is to heat the outlet temperature of the kerosene to
the demanded value by the mass flow of heating water.
The heat exchanger represents a non-linear system with
variable time delay, where the controlled output is the
outlet kerosene temperature and the control input is the
mass flow-rate of heating water.

Technological parameters and steady-state inputs of the
heat exchanger are listed in the Table 1, where l is the
length of the heat exchanger, D is the tube diameter, ρ
is the density, α is the heat transfer coefficient, CP is
the specific heat capacity and ṁ is the mass flow rate.
The subscripts have following meaning: 1–kerosene or from
the copper tube to kerosene or the inner diameter of the
inner tube, 2–copper or from water to the copper tube
or the outer diameter of the inner tube, 3–water or the
inner diameter of the outer tube and in – the inlet. The
superscript s represents the steady-state.

The mathematical model of the tubular heat exchanger
is represented by three nonlinear partial differential equa-
tions in the form

T1
∂ϑ1(z, t)

∂t
+ T1w1

∂ϑ1(z, t)

∂z
= −ϑ1(z, t) + ϑ2(z, t) (11)

T2
∂ϑ2(z, t)

∂t
= Z1ϑ1(z, t) − ϑ2(z, t) + Z2ϑ3(z, t) (12)

T3
∂ϑ3(z, t)

∂t
+ T3w3(z, t)

∂ϑ3(z, t)

∂z
= −ϑ3(z, t) + ϑ2(z, t)

(13)

where

T1 =
D1ρ1CP1

4α1
, T2 =

(D2
2 − D2

1)ρ2CP2

4(D1α1 + D2α2)
,

T3 =
(D2

3 − D2
2)ρ3CP3

4D2α2

w1 =
q1

πD2
1

, w3(z, t) =
q3(z, t)

π(D2
3 − D2

2)

q3(z, t) =
ṁ3(z, t)

ρ3

Z1 =
D1α1

D1α1 + D2α2
, Z1 =

D2α2

D1α1 + D2α2

For simulations purposes, the heat exchanger was split in
ten sections, each of them represented by three ordinary
nonlinear differential equations with delayed inputs. The
model was generated using MATLAB–Simulink environ-
ment.

For control purposes, the properties of the heat exchanger
have been examined by simulation experiments. The model
of the heat exchanger was identified using the Strejc
method (Mikleš and Fikar (2007)) in the form of the
transfer function

Pm(s) =
K

(Ts + 1)
n e−Ds (14)

where n is the order of the system, K is the gain, T is the
time constant and D is the time delay.

For the identification, following step changes of the inlet
mass flow-rate of heating water were generated at the time
t = 0 s: ±10%, ±20%, ±30%. Step responses of the outlet
kerosene temperature on the generated inlet step changes
are shown in Figure 4. According to these step changes,
the heat exchanger is a time-delay nonlinear system with
asymmetric dynamics.

The heat exchanger was identified in the form of the 3rd
order plus time delay system (Table 2). For various step
responses, we obtained intervals for values of the gain K,
the time constant T and the time delay D.

Table 2. Identification of the process dynamics

n = 3
Kmin Kmax Tmin Tmax Dmin Dmax

0.055 0.071 11.382 19.241 14.422 22.844

It is supposed further that the dynamics of the heat
exchanger is affected by disturbances. The disturbances
are caused by changes of the kerosene inlet temperature.
The model of the disturbance dynamics was identified
using the Strejc method. The generated step changes
of the inlet kerosene temperature were ±2oC. The step
responses of outlet kerosene temperature are depicted in
the Figure 5. The values of the identified parameters are
summarized in Table 3, where Kr represents the gain, Tr

is the time constant and Dr is the time delay of the model
of the disturbance dynamics.

Table 3. Identified parameters of the distur-
bance dynamics

nr = 2
Kr Tr Dr

0.6007 4.7566 20.8980
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Fig. 4. Step responses of the outlet kerosene temperature
on the step changes of the control input, where input
change +10% is represented by cyan line, −10% is
represented by red line, +20% is represented by ma-
genta line, −20% is represented by green line, +30%
is represented by yellow line, −30% is represented by
blue line
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Fig. 5. Step responses of the outlet kerosene temperature
on the step changes of the disturbance, where distur-
bance change +2% is represented by blue line, −2%
is represented by green line

5. CONTROL OF THE TUBULAR HEAT
EXCHANGER

For the third order model of the heat exchanger, four
PI controllers were designed (GR1 – GR4). The transfer
function of the PI controller is in the form

GR(s) = ZR +
ZR

TIs
(15)

where ZR is the gain and TI is the reset time of the
controller (Bakošová et al. (2003)).

The controllers GR1–GR3 were tuned using the experi-
mental methods. The controller GR1 was designed for the

model described by maximal values of identified param-
eters, the controller GR2 was designed for the model de-
scribed by the minimal values of identified parameters and
the controller GR3 was designed for the model described
by the mean (nominal) values of parameters (Table 2).
Because the heat exchanger can be represented also as a
system with interval parametric uncertainty, a robust PI
controller GR4 was tuned using the method described in
Závacká et al. (2007). The parameters of designed con-
trollers are listed in Table 4.

Table 4. Parameters of set-point tracking per-
formances using the Smith predictor

controller model parameters ZR TI IAE

GR1 maximal 8.44 49.14 1794

GR2 minimal 11.78 83.07 2035

GR3 nominal 9.98 25.52 4737

GR4 interval 5.00 25.00 2150

Control of the heat exchanger without disturbance using
the Smith predictor was simulated at first and all designed
controllers were used in the predictor structure. The step
change of the set-point was done at time t = 1500 s from
50oC to 40oC. The closed-loop control responses obtained
using four designed controllers are shown in Figure 6,
where the closed-loop control using GR1 is represented by
the solid magenta line, using GR2 is represented by the
cyan dash-dot line, using GR3 is represented by the red
dotted line, using GR4 is represented by the green dashed
line. The quality of the closed-loop control was evaluated
using IAE (Mikleš and Fikar (2007)) quality criteria (16)

IAE =

∞∫

0

|e(t)|dt (16)

Obtained values of IAE are enumerated in Table 4. The
best value of the IAE was reached using controller GR1.
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Fig. 6. Set-point tracking assured using GR1 (solid ma-
genta line), GR2 (cyan dash-dot line), GR3 repre-
sented by the (red dotted line) and GR4 (green dashed
line)

Then the control of the heat exchanger affected by distur-
bances was analyzed. The disturbance is represented by
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Fig. 7. Disturbance rejection without disturbance compen-
sation assured using GR1 (solid magenta line), GR2

(cyan dash-dot line), GR3 represented by the (red
dotted line) and GR4 (green dashed line)

the step change of the kerosene inlet temperature. This
temperature decreased in 2oC at the time t = 800s and
then the inlet kerosene temperature increased in 2oC at
the time t = 1600s. Table 5 contains the controllers and
the associated calculated values of IAE. The minimal value
has been reached using GR3 controller. Figure 7 shows the
closed-loop control responses obtained using the Smith
predictor without disturbance compensation, where the
closed-loop control using GR1 is represented by the solid
magenta line, using GR2 is represented by the cyan dash-
dot line, using GR3 is represented by the red dotted line,
using GR4 is represented by the green dashed line.

Table 5. Parameters of disturbance rejection
performances using the Smith predictor

controller model parameters ZR TI IAE

GR1 maximal 8.44 49.14 1371

GR2 minimal 11.78 83.07 1533

GR3 nominal 9.98 25.52 740

GR4 interval 5.00 25.00 1210

Then the modified Smith predictor with feed-forward dis-
turbance compensation was applied. In Table 6, we can see
the used controllers and the associated calculated values
of IAE. The minimal value of IAE was reached also using
GR3 controller. As can be seen in Table 6, the control
performances generated by the controllers GR1 and GR3

lead to the higher values of IAE in comparison to the
Smith predictor without disturbance compensation (Ta-
ble 5). Figure 8 shows the closed-loop control response
obtained using the modified Smith predictor with distur-
bance compensation, where the closed-loop control using
GR1 is represented by the solid magenta line, using GR2 is
represented by the cyan dash-dot line, using GR3 is repre-
sented by the red dotted line, using GR4 is represented by
the green dashed line.
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Fig. 8. Disturbance rejection with disturbance compen-
sation assured using GR1 (solid magenta line), GR2

(cyan dash-dot line), GR3 represented by the (red
dotted line) and GR4 (green dashed line)

6. CONCLUSION

The possibility to use the Smith predictor and the modified
Smith predictor with feed-forward disturbance compen-
sation for control of a time-delay system was studied in
this paper. The controlled system was a tubular heat
exchanger, which was a nonlinear time delay system. As
the process was identified as a system with interval para-
metric uncertainty, the four PI controllers were designed
for the Smith predictor and modified Smith predictor con-
trol structure. The three controllers were designed using
experimental methods. They were tuned using the maxi-
mal, minimal and nominal process model parameters. The
fourth PI controller was designed using robust control
approach. Because of complicated dynamics of the con-
trolled process, obtained simulation results are difficult
to compare. But it can be stated, that using the robust
controller in both control structures never led to the worst
control response. Using the robust controller in the mod-
ified Smith predictor lead to the better disturbance com-
pensation in comparison to the Smith predictor without
disturbance compensation. Using the controller designed
for the nominal values of process model parameters gave
the best results in the task of disturbance rejection, but
this controller led to the worst result in the task of set-
point tracking.

In the next work the heat exchanger with counter-current
of cooling medium will be studied. The obtained results
will be compared to the results obtained using the heat
exchanger with co-current of cooling medium. The studied

Table 6. Parameters of disturbance rejection
performances using modified the Smith predic-

tor

controller model parameters ZR TI IAE

GR1 maximal 8.44 49.14 1422

GR2 minimal 11.78 83.07 1198

GR3 nominal 9.98 25.52 790

GR4 interval 5.00 25.00 1116
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control methods will be applied to the control of a real
model of the heat exchanger.
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Bakošová, M., Ľ. Čirka, and Fikar, M. (2003). Automatic
control fundaments (in Slovak). STU Publishing House,
Bratislava.
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Abstract: The paper presents simulation results obtained by robust control of a system of three serially 
connected tanks. The method used for robust controller design is based on the small gain theorem. The 
robust PID controller is designed that assures the stability of the closed-loop control system for a certain 
range of unstructured uncertainties.
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1. INTRODUCTION 

Uncertainty arises when some aspect of the system model is 
not completely known at the time of analysis and design. The 
typical example of a structured uncertainty is the value of a 
parameter which may vary according to operating conditions. 
The unstructured uncertainty can be caused by simplified 
modelling, when it is used to avoid very detailed and 
complex models. The other reasons for unstructured 
uncertainties are process non-linearity, changes of operating 
conditions and external disturbances. Dynamic systems with 
unstructured uncertainties are widely used to model physical 
systems.  

The small gain theorem (Green and Limebeer, 1994) is a tool 
for robust controller design for systems with unstructured 
uncertainty (Karafyllis and Zhong-Ping, 2007). The small 
gain theorem states that stable systems can be connected to 
form a stable closed-loop if the loop gain product is less than 
unity. It is the basis for the general robust stability results.  

The paper describes the robust PID controller design for three 
serially connect tanks. The process is modelled as a system 
with unstructured additive uncertainty and the robust 
controller design is based on the small gain theorem. The 
designed robust controller is tested by simulations.  

2. ROBUST STABILITY 

Suppose that the transfer function of an uncertain continuous-
time system with additive unstructured uncertainty has the 
form 

( ) ( ) ( )
( ) ( ) ( )ssWsG

sGsGsG

AAA

A

∆=
+=

∆

∆0  (1) 

 
where G0(s) is the nominal model, WA(s) is the weight 
function and ∆A(s) is a category of uncertainties that satisfies 
the condition ( ) 1≤ω∆ jA  for .  ω∀

The task is to find a robust controller for control of the 
system (1). The design method is based on the small gain 
theorem (Green and Limebeer, 1994, Veselý and Harsanyi, 
2007) and uses the fact that if a feedback loop consists of 
stable systems and the loop-gain product is less than unity, 
then the feedback loop is internally stable. The other basis for 
the design is a fixed point theorem known as the contraction 
mapping theorem (Khalil, 1996). 

According to the small gain theorem, following conditions 
have to be satisfied: the controller with the transfer function 
GR(s) stabilizes the nominal model and for the open-loop 
transfer function L(s), the condition given in (2) also holds.    

 

( ) ( ) ( )
( ) 1<ω

=

jL
sGsGsL R  (2) 

 

The family of the controlled system transfer functions G(s) 
creates a set, in which G0(s) is the transfer function of the 
nominal system and Gk(s) is a transfer function from the set 
G(s), which differs from G0(s). Then, the value lA(ω) can be 
calculated as the maximal value of modules as it is shown in 
(3)  

 
( ) ( ) ( )

( ) .....,k,,
jGjGmaxl kA

210
0

=∞∈ω

ω−ω=ω
 (3) 

 

The characteristic equation of the closed loop with uncertain 
controlled system is 

 

( ) ( ) 01 =+ sGsGR  (4) 
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and after the substitution (1) into (4), we obtain 
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where V0(s) is the closed-loop transfer function with the 
nominal model and has the form 

 

( ) ( ) ( )
( ) ( )sGsG

sGsGsV
R

R

0

0
0 1+

=  (6) 

The closed loop must be stable. The small gain theorem 
requires satisfying also the second condition. It follows from 
(5) that for the second term in (5) the following condition 
holds 

 

( ) ( )
( ) 01

0
0 =⎥

⎦

⎤
⎢
⎣

⎡
+ ∆

sG
sGsV A  (7) 

 

Then after the substitution s = jω we obtain 

 

( ) ( )
( )

( )∞∈ω∀

<
ω
ω

ω ∆

,
jG
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0

1
0

0  (8) 

 

The conditions ( ) 1=ω∆ jA and ( ) ( )ω=ω AA ljW  represent 
the worst cases and so, it is possible to rewritten (8) to the 
form  

 

( ) ( )
( )ω

ω
<ω

Al
jG

jV 0
0  (9) 

Robust controller design is then based on finding parameters 
of the transfer function V0(s), the choice of the structure of 
the robust controller and calculation of the controller 
parameters. 

3. ROBUST PID CONTROLLER DESIGN 

A robust PID controller was designed for the process 
represented by three serially connected tanks. The controlled 
variable is the liquid level h3 in the 3rd tank and the 
manipulated variable is the flow rate of the inlet stream of 
water q. The inputs, outputs and parameters of the nominal 
model in a steady state are represented by following values: 
inlet flow rate qs =1m3 min-1, steady-state value of level 
h3

s = 0.444 m, valve constants k11 = 1 m2.5 min-1, 
k22 = 1.5 m2.5 min-1, k33 = 1.5 m2.5 min-1 and cross-section 

areas of tanks F1 = 0.5 m2, F2 = 0.1 m2, F3 = 0.1 m2. 
Unstructured uncertainties result from simplification of the 
mathematical model using linearization and changes of the 
valve constant k33. The family of the transfer functions in 
three operating points is following 
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where G0(s) is the nominal model, G1(s) is the model 
obtained with k33 = 1.3 m2.5 min-1 and G2(s) is the model 
obtained for k33= 1.7 m2.5 min-1. Figure 1 shows the function 
lA(ω ) which was determined using (3).  

 

  

Fig. 1. Dependence of maximal values of modules on the 
frequency ω 

The structure of robust PID controller was selected in the 
form: 
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The transfer function V0(s) is in the form  
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Parameter K is an optional parameter and the function V0(s) 
has to satisfy (9). The polynomial D0d(s) is optional, too, and 
the following equation has to be satisfied 

 

( ) ( ) ( )sCsDsG dd 00 =  (15) 

 

Parameters d1, c1, c0, c-1 are calculated from the following 
equation 

 

( )( 10
2

11

23

1

11811800080
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and their values are: d1 = 1.1765, c1 = 0.0068, c0 = 0.0035,    
c-1 = 1. The transfer function V0(s) has the form 

 

( )
1

1
2

1
0

++
=

KsKsd
sV  (17) 

 
and it is affected by the choice of the parameters K. Figure 2 

illustrates the dependence of 
( )
( )ω

ω

Al
jG0  and the dependence of 

( )ωjV0  on ω calculated for various values of K (blue lines). 
It is clear from Figure 2 that the boundary value of K is 
K = 0.11.   

 

Fig. 2. Amplitude characteristics of V0  for various K 

The system of three serially connected tanks was controlled 
using three robust PID controllers designed by the small gain 
theorem for various feasible values of the parameter K. The 
transfer functions of found controllers are: 

 

( ) 3002270333301170 .K,s.
s

..sGR =++=  (18) 

( ) 50136020070 .K,s.
s

.sGR =++=  (19) 

( ) 5001402000070 =++= K,s.
s
..sGR  (20) 

 

Designed controllers were tested by simulation experiments 
for the nominal model with k33 = 1.5 (the index 0), the model 
with k33 = 1.3 (the index 1) and the model with k33 = 1.7 (the 
index 2). The set point was w = 0.4 and it changed at the time 
40 min to w = 0.6. The simulation results obtained using the 
PID robust controllers (18) – (20) are presented in Figs. 3 – 5. 

 

Fig. 3. Control responses of the system of three serially 
connected tanks with the controller (18) 

 

Fig. 4. Control responses of the system of three serially 
connected tanks with the controller (19) 
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Fig. 5. Control responses of the system of three serially 
connected tanks with the controller (20) 

 

The control responses obtained using three robust controllers 
were compared by evaluation of the IAE performance 
indexes. Their values are summarizes in the Table 1. 

Table 1 Comparison of robust controllers using IAE 
performance indexes 

 IAE0 IAE1 IAE2

K=0.3 1.817 2.0541 1.7609 

K=0.5 1.26 1.308 1.294 

K=5 1.8218 2.1527 1.6828 

 

One PID controller was designed for K higher then 0.11 to 
show that such choice leads to unstable control responses. 
The choice was K = 0.1 and the inequality (9) is not satisfied 
in this case. The transfer function of the found controller is  

 

( ) 100680100350 .K,s.
s

.sGR =++=  (21) 

 

The simulation results obtained using the PID controller (21) 
are presented in Fig. 6. 

 

 

Fig. 6. Control responses of the system of three serially 
connected tanks with the controller (20) 

4. CONCLUSION 

Obtained simulation results confirmed, that it is possible to 
assure good control responses of controlled processes with 
unstructured uncertainties using robust PID controllers. The 
optional parameter K used in the controller synthesis depends 
on the controlled system and on the amplitude of unstructured 
uncertainties. The stability and quality of the control response 
depends on the value of optional parameter K and it is 
important to find its boundary value.  
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1. INTRODUCTION

Nowadays, in the field of automation and process control
it is essential to keep abreast of information technologies.
Virtual laboratories became a very popular way how to
improve education opportunities in fields of automation,
process control, physics, mathematics, and others. These
laboratories are usually publicly accessible through Inter-
net and thus can be used by a wider group of students and
other interested people. The most commonly used software
technologies to create and run online computer simula-
tions are Java, Flash, PHP, ASP, JavaScript, and devel-
opment environments like Easy Java Simulations (EJS),
Virtual Reality Modeling Language (VRML), LabVIEW,
and MATLAB connected technologies.

At our department we try to give students practical
experience with measurements using real technological
devices. But it is not possible to provide them these
opportunities anytime, because our capabilities depend on
disponibility of real plants at our department. In past, we
decided to develop an Internet virtual laboratory to handle
this issue.

The virtual laboratories from the different fields of science
can be found all over the web. The Virtual Laboratory
of Evolutionary Computing, developed by students from
FEI STU in Bratislava, provides simulations in field of
technical computing, automation, and process control.
Most of their simulations are based on MATLAB software
with graphical user interfaces built on VRML (Virtual
Reality Modeling Language). This virtual laboratory is
freely accessible through Internet and can be found on web
site http://ural.elf.stuba.sk/vrlab/.

Malki and Matarrita (2002) created the virtual laboratory
for process control based on LabVIEW environment. They
used virtual model software with PID control of second-
order plants.

Another interesting project is Virtual engineering/science
course, which is a virtual laboratory created by developers
from the Department of Chemical Engineering at John
Hopkins University, Baltimore, USA. Virtual laboratory

is based on Java technology (Java Applets) and includes
models such as a robotic arm, heat conduction in ma-
terials, spatial distribution of sound, diffusion process,
and some statistical and computing programs. Models are
available at Web page http://www.jhu.edu/~virtlab/
virtlab.html.

Our original virtual Flash laboratory, described in Kalúz
(2010) and Čirka et al. (2010), was created using software
programming platform Adobe Flash, and it provides vir-
tual simulations of technological plants like liquid storage
tank system, tube heat exchanger, and continuous stirred-
tank reactor. We think that virtual laboratory including
only simulations of system dynamics is not sufficient for ac-
tual education needs, so we have decided to improve it with
features of process control. Our extensions for simulation
applications in virtual laboratory contain feedback closed-
loop control with PID controllers. Students and other
users can access the virtual laboratory through e-learning
system Moodle, located on web page of our department.

Recently, we have also created a virtual laboratory (Kalúz
et al., 2010) based on Java Server Pages technology, includ-
ing computing applications with MATLAB functions and
simulations of storage tank system and heat exchangers.

2. OVERVIEW OF THE ORIGINAL APPLICATIONS

Our original applications in virtual laboratory course are
simulations, based on computation of mathematical mod-
els of technological plants. The applications were created
as Flash SWF files, published in regular Web page of
Moodle course. We created three applications, presenting
technological plants most commonly used in education at
our department. The first application provides simulation
of tank storage system dynamics (Fig. 1). It contains
two general mathematical models of plant, the non-linear
and linear (obtained by linearization). Each of the models
consists optionally of 1-3 ordinary differential equations
(ODE), depending on number of tanks in system. The
second simulation contains model of a tube heat exchanger
(Fig. 2), which is discretized to five segments. Mathemati-
cal model consists of five linear ODEs. The last application
is simulation of continuous stirred-tank reactor dynamics
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(Fig. 3), with mathematical model containing both types
of ODEs (linear and non-linear).

So far, all applications are in Slovak language only, but we
plan to provide interface with more languages as well.

Fig. 1. The first screen of Flash application for liquid
storage tank system, showing forms for input parame-
ters, which are used for computation of mathematical
model and steady state of system

Fig. 2. The first screen of Flash application for tube heat
exchanger

Fig. 3. The first screen of Flash application for continuous
stirred-tank reactor

When user starts application, he has to fill input parame-
ters for mathematical model computation. The application
includes a script that checks the correct format for all input
parameters. After this procedure, application will compute
and display steady state of plant. Before dynamics simu-
lation starts, user fills simulation parameters like duration
and steps for input variables. In this phase, another script
checks the correct format of parameters. Then user pushes
the button for executing system simulation. If all input
parameters are correctly filled and all necessary setting are
done, the application switches to simulation screen. When

the simulation is running, the screen provides observation
of plant states (numerically and graphically). After the
simulation is finished, the application switches to another
screen, where user can collect data in several structure
types (text field, XML, MATLAB array).

3. MATHEMATICAL IMPLEMENTATION OF PID
CONTROLLER

Mathematical model of simulated plant is in form of ordi-
nary differential equations, therefore it must be solved by
appropriate numerical method. During the development
of original virtual laboratory for system dynamics simu-
lation, we chose 4th order Runge-Kutta method to solve
ODE problem. For the PID controller, we implement it
in discrete form. To get appropriate discrete controller
from a standard expression of the PID, one possibility
is to transform derivative and integral components from
continuous-time to discrete form (Bobál et al., 2005). The
standard form is as follows

u(tk) = Kp

(
e(tk) +

1

Ti

∫ tk

0

e(τ)dτ + Td
de(tk)

dt

)
(1)

The first-order derivative is approximated by backward
finite difference

de(tk)

dt
=
e(tk)− e(tk−1)

∆t
(2)

The integral term is discretized with a sampling time ∆t
to finite summation

∫ tk

0

e(τ)dτ =

k∑

i=1

e(ti)∆t (3)

Final expression for implementation of the PID controller
(4) is obtained by differentiating u(t), using first and
second differences.

u(tk) = u(tk−1) +Kp

[(
1 +

∆t

Ti
+
Td
∆t

)
e(tk)

−
(

1 +
2Td
∆t

)
e(tk−1) +

Td
∆t

e(tk−2)

]
(4)

4. OVERVIEW OF THE NEW FEATURES

The first screens of applications are the same as in the
original ones (Fig. 1, 2, and 3). User has to setup the
parameters for mathematical model computation. Math-
ematical model of steady state for each dynamical system
used in applications is defined as a system of algebraic
equations.

The steady state observation (Fig. 4) now features two new
radio buttons (choice between simulation of dynamics and
control). When simulation button is checked, application
switches to its original part. To use new features of PID
control, user has to check the process control button.

The control setup screen (Fig. 5) defines types of math-
ematical model (this feature is available only for storage
tank system, where user can choose between linear and
non-linear model), manipulated and output variable (MV
and OV), controller structure (P, PI, or PID), controller
parameters, and set points of MV.

When user pushes the button for simulation of process
control, the application executed script that runs simple
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Fig. 4. Screen of Flash application showing steady state
of system and choice between simulation and process
control

Fig. 5. Setup screen for OV/MV, controller type (P, PI,
PID), controller parameters and setpoint step timing

Fig. 6. Application interface, showing graph for levels of
liquid in tanks and controlled variable

pre-simulation of control to get information about its
behavior. This is important for setting up the graph scaling
in simulation screen.

The simulation screen appears if all parameters are cor-
rectly filled. User can observe simulation as animated
scheme of plant, where application shows only periodically
updated values of plant states, or as graphs of MVs (Fig. 6)
and OVs (Fig. 7).

After simulation of plant control is finished, the application
switches to screen with results (Fig. 8). On this screen,
user can collect data from simulation in several structures
and formats. Application provides data as plain text field,
XML structure, and MATLAB formatted array.

Fig. 7. Application interface, showing graph for MV during
simulation of control

Fig. 8. Results from simulation can be exported in several
structures (text field, XML, MATLAB array)

5. CONCLUSIONS

We have extended our virtual Flash laboratory with new
features for PID control. Users can now either simulate of
control process models. This new features have been added
to all recently developed simulation applications, contain-
ing models of storage tank system, tube heat exchanger,
and continuous stirred-tank reactor.
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Abstract: The aim of the paper is to demonstrate possibilities of open software environment Maxima in 

educational process at technical universities whereby our attention is dedicated to the teaching of Bode 

plots. The developed procedure for drawing its asymptotic approximation can be used both for checking 

results on the base of the entered system transfer function and also for self testing purposes. In addition, 

the results were used for the building of web application that will be used in frame of the subject Control 

Theory.   
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

1. INTRODUCTION 

Computer algebra systems are systems that enable to solve 

mathematical tasks either in numerical or symbolical way. 

Following Internet resources one can find several products 

that can be divided into two main groups: proprietary 

software that is a product of some company taking care about 

the whole development and support and open software 

developed usually by an enthusiastic person or group of 

persons that is available for free.  

We decided to devote our attention to open alternative since 

it helps to solve problems connected with legal purchase of 

software that is used. In the case of proprietary products 

students usually use another version of software at the faculty 

and another version (very often illegal) at home. After 

finishing their study the proprietary software that is devoted 

to specific purposes like mathematical calculations are is too 

expensive for paying licences and keeping it regularly 

updated. Therefore they stop to use it. Open software can 

overcome these problems and therefore it could be good if 

students would know about its existence already during their 

stay at university. 

Looking for the best alternative of computer algebra system 

(CAS) we had several requirements. The selected software 

should be open and enable at least 

 numerical and symbolical calculations,  

 simplification and processing of algebraic 

expressions,  

 matrix computations, 

 solution of a system of linear, nonlinear and 

differential equations, 

 differentiate and integrate functions, 

 graphical presentations of results, 

 simple programming. 

Except of that the selected CAS should have good ongoing 

support, cooperative community, continuing development 

and it would be welcomed if it could be supported both for 

Windows and Unix/Linux operating system. After 

considering several software environments (Axiom, Maxima, 

SymPy, Sage, Yacas, etc.) we decided to choose Maxima 

computer algebra system that can be an open alternative for 

such proprietary programs as Maple, Mathematica or Matlab 

with Symbolic Toolbox are. 

2. BODE PLOTS 

A Bode plot is a plot showing one of graphical representation 

of frequency response characteristics for linear time invariant 

system usually described by a transfer function. The 

sinusoidal transfer function of any linear system (obtained by 

substituting jω for s in the transfer function of the system) is 

characterized by its magnitude and phase angle with 

frequency as parameter. Therefore the Bode plots are 

represented by two separate plots - one expressing the 

magnitude of the frequency response gain (magnitude vs. 

frequency plot) and another one expressing the frequency 

response phase shift (phase vs. frequency). Standard Bode 

plots are logarithmic on the frequency axis, and plot the 

magnitude in dB's (decibels) and phase in degrees. 

Using computers drawing of plots can be done by simple 

entering many values for the frequency, calculating the 

magnitude and phase at each frequency and displaying them.  

However, there are reasons to develop a method for sketching 

Bode diagrams manually. By drawing the plots by hand you 

develop an understanding about how the location of poles and 

zeros influences the shape of the plots. With this knowledge 

you can predict how a system behaves in the frequency 

domain by simply examining its transfer function. On the 

other hand, if you know the shape of transfer function that 

you want, you can use your knowledge of Bode diagrams to 

generate the transfer function. 
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Therefore our aim was not only to draw Bode plots of linear 

dynamical systems but to visualise also their asymptotic 

approximations. The main advantage of using Bode plots is 

that multiplication of magnitudes can be converted into 

addition.  

To sketch asymptotic approximates of Bode diagram it is 

necessary to draw separate asymptotic curves for each of the 

transfer function factors  

 gain, 

 integral and derivative factors, 

 first-order factors, 

 quadratic factors. 

The composite curve (both for magnitude and phase as well) 

is obtained by adding algebraically the individual curves. In 

order students could check their results, the developed 

Maxima procedure tries to offer results in the way as students 

obtain them manually. Actually, any change in the slope of 

the magnitude curve is made only at the break frequencies 

(break frequency or corner frequency is the frequency at 

which two asymptotes meet) of the transfer function. 

Therefore, instead of drawing individual magnitude curves 

and adding them up, it is possible to sketch the magnitude 

curve without sketching individual curves. In similar way, it 

is possible to proceed also in the case of the phase curve. 

3. MAXIMA IMPLEMENTATION 

Computation and visualisation of Bode diagram in Maxima 

can be realised very easily by using standard functions 

bode_gain() for magnitude plot and bode_phase() for phase 

plot. The input of both functions is a transfer function of a 

system. These functions were already created by other 

persons and there is no need to change them. 

Our interest was first of all dedicated to the creation of Bode 

diagram asymptotic approximations. As it was already told 

the created procedure tries to demonstrate all steps of the 

manual graphical sketching that include 

 transformation of the transfer function to the 

normalized form 

      
              

             

              
             

 

 separation of all transfer function factors (gain, 

integral and derivative factors, first-order factors, 

quadratic factors) 

 calculation of break frequencies 

 visualisation of asymptotic approximation of 

magnitude and phase plots for each separate factor 

 adding up the previous results and drawing the final 

asymptotic approximation for both Bode plots. 

Similar to standard Bode functions the created Maxima 

function has one input – the transfer function of the system.  

The function output generates asymptotic approximations of 

frequency responses together with all break frequencies.   

4. WEB APPLICATION 

It is to say that Maxima is the software that was developed 

only for the use on local computer. Since we want to use it as 

an engine for driving our web application it was necessary to 

prepare tools that would enable to communicate with 

Maxima via Internet. This functionality was already realised 

and was described in our previous papers (see e.g. Magyar et 

all, 2009). The developed implementation enables to 

exchange commands and data between Maxima software 

installed on linux server and our web application only on the 

base of created php functions.  

The front end of the application was created using standard 

technologies as HTML, CSS and JavaScript. For the data 

exchange the JSON format was used. For plotting of the 

graphical dependencies we used free Javascript plotting 

library for jQuery that is called jqPlot. It produces graphical 

plots of arbitrary datasets on the client-side.  

4.1 Basic functionality 

The developed web application enables to draw asymptotic 

approximations of Bode plots. During university courses 

students learn to sketch these approximations in order they 

would be able to estimate behaviour of dynamical systems 

also without using computer.  

The considered system is defined by the transfer function that 

is entered using coefficients of the transfer function 

numerator and denominator. In Fig. 1 the system with the 

transfer function   

     
   

       
 

   

          
 

 

 

   

 
 
 
    

 
 
   

 

is started to be solved. 

 

Fig. 1. Form for entering the input coefficients 

   

After submitting the entered parameters, the user input is sent 

for processing to Maxima where break frequencies and 

corresponding slopes of asymptotes are calculated. The 

graphical result is displayed again in web browser (Fig.2). 

The advantage is that user can display resulting frequency 

response, final asymptotic approximation of Bode plots or 

only asymptotic approximation of chosen separate factor. In 

this way student can check all steps of own manual 

procedure. 
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Fig. 2. The resulting frequency 

response      and       asymptotic  

approximations 

 

4.2 Self testing 

The developed application can also be used in other way. 

Students should be able not only to sketch Bode plots but 

also to analyse the model of the system according to sketched 

frequency characteristics. Therefore we prepared the 

modification of the application that can be used for self 

testing of students. Instead of entering parameters of the 

transfer function by student the parameters are determined 

randomly by computer. Then, the resulting asymptotic 

approximation of the magnitude Bode plot is visualised to the 

student (Fig.3). According to break frequencies student can 

determine time constants of the system and according to the 

vertical position of the characteristics the gain of the system 

can be found. In this way student can determine the resulting 

transfer function that is after entering to the web page 

compared with the originally generated system description 

(Fig.4). Maxima computer algebra system is able to compare 

both transfer functions without any problem.  

In the case of self testing we decided to concentrate only on 

transfer functions with real poles and real zeros. The transfer 

functions containing complex roots are not considered 

because of the problematic determination of a system 

damping from the graph. From similar reason we do not 

consider systems with non minimal phase. The transfer 

function that is taken into account has the following form  

      
         

   

           
   

 

whereby the introduced parameters can achieve the following 

values:                                          ; 

       ;           . 

The parameters are restricted to the mentioned values 

because of their easier identification from the graphical 

presentation of the magnitude plot. We decided to use only 

values that can be read from the picture exactly and without 

any doubt. It is very convenient and useful if no values 

rounding has to be used. In addition, such restriction of 

values doesn't mean any limitation to the complexity of the 

task. It is more important to consider various structures of 

transient functions.  

Following the considered values of parameters the considered 

transient function can achieve several forms e.g. 

      
 

       
 

      
 

       
 

      
 

                     
 

      
        

         
 

Of course, we didn’t introduce all possibilities. The number 

of transient functions should be sufficient for comprehension 

of the problem by student. 

 

Fig. 3. Randomly generated asymptotic approximation of the 

magnitude Bode plot 

 

 

 

 

 

 

 

Fig.4. Verification of the result 
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5. CONCLUSIONS 

In the paper we exploited a possibility to use Maxima 

software for solution of one problem from Control Theory. 

The advantage is that the tool is available online via Internet 

for all interested users in any time they need. Since the 

presented topic is part of the study at probably all technical 

universities it presents the useful instrument in an educational 

process mainly in online and distance forms of education. 

The last thing to mention is the fact that each version of the 

introduced application was prepared by regular students in 

frame of their individual projects. They like programming 

and together with it they learn control theory, too. The idea of 

“learning by doing” is in this case very actual and the results 

showed that it is good to continue in this direction also in 

future. 

The application is a part of study materials that are available 

on the address: 

http://obelix.urpi.fei.stuba.sk/~tar/pedagogika/tar1/ 
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Abstract: This paper presents the control design via the combination of the neural predictive controller 
and the neuro-fuzzy controller type of ANFIS. The neuro-fuzzy controller works in parallel with the 
predictive controller. This controller adjusts the output of the predictive controller, in order to enhance the 
predicted inputs. The performance of our proposal is demonstrated on the three tank system control 
problem with disturbance. Simulation results demonstrate the effectiveness and robustness of the proposed 
approach. 

 

1. INTRODUCTION 

The aim of process control is to achieve the target value of 
the given variable. This is mainly the task of the properly 
designed controller. The controller should also provide some 
flexibility in case an unexpected failure, change of 
conditions, etc.  

Today, there are many methods for designing intelligent 
controllers, such as fuzzy control, neural networks or expert 
systems. Appropriate combinations of these methods offer a 
number of other design possibilities.  

This paper describes the above mentioned combination of 
two methods of intelligent system controlling. By the parallel 
connection of predictive and neural-fuzzy controller, we 
aimed to obtain better results of the reference variable in 
terms of lowering its overshooting and reducing the control 
time. The designed system with two connected controllers 
was tested using a three tank system. The tank system 
introduces one of the nonlinear type of the chemical-
technological processes. 

 

Fig. 1. Model-based predictive control scheme 

 

 

2. PREDICTIVE CONTROL 

MBPC (Model-Based Predictive Control) is a name of a 
several different control techniques (A. Vasičkaninová 2008). 
All are associated with the same idea. The prediction is based 
on the model of the process (Figure 1). 

The controller uses a neural network model to predict future 
plant responses to potential control signals. An optimization 
algorithm then computes the control signals that optimize 
future plant performance. The neural network plant model is 
trained offline, in bath form, using any of the training 
algorithms. The controller, however, requires a significant 
amount of online computation, because an optimization 
algorithm is performed at each sample time to compute the 
optimal control input. The model predictive control method is 
based on the receding horizon technique. The neural network 
model predicts the plant response over a specified time 
horizon. The predictions are used by a numerical 
optimization program to determine the control signal that 
minimizes the following performance criterion over the 
specified horizon. 

∑∑
==

−+∆++−+=
uN

i

N

Ni
rm ituityitykutJ

1

22 ))1(())()(())(,(
2

1

λ       (1) 

where N1, N2 and Nu define the horizons over the tracking 
error and the control increments are evaluated. The ∆u 
variable is the tentative control signal, yr is the desired 
response and ym is the network model response. The λ value 
determines the contribution that the sum of the squares of the 
control increments has on the performance index. 

The controller consists of the neural network plant model and 
the optimization block. The optimization block determines 
the values of u that minimize J, and then the optimal u is 
input to the plant.  
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Equation (1) is used in combination with input and output 
constraints: 

maxmin

maxmin

maxmin

maxmin
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            (2) 

3. NEURO-FUZZY CONTROLLER 

The neural predictive controller can be extended with neuro-
fuzzy controller, connected in parallel (Figure 2). 

 

Fig. 2. Neuro-fuzzy control scheme 

Neuro-fuzzy systems, which combine neural networks and 
fuzzy logic, have recently gained a lot of interest in research 
and application. A specific approach in neuro-fuzzy 
development is the ANFIS (Adaptive Network-based Fuzzy 
Inference System) (M. Agil 2007). ANFIS uses a feed 
forward network to search for fuzzy decision rules that 
perform well on a given task. Using a given input-output data 
set, ANFIS creates an Fuzzy Inference System for which 
membership function parameters are adjusted using a 
combination of a backpropagation and least square method. 
The ANFIS architecture of the first-order Takagi-Sugeno 
inference system is shown in Figure 3. 

 

Fig. 3. System architecture ANFIS 

4. EXPERIMENTAL 

4.1 Process 

We assume a non-linear system of three tanks shown in 
Figure 4 that is described by three sets of differential 
equations (Mikleš and Fikar 2007). 
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where S1, S2, S3 [dm2] are the cross-sectional areas of tanks, 
h1, h2, h3 [dm] – heights of liquid in tanks, k11, k22, k33 [dm2.5s-

1] – constants , q01 [dm3s-1] – inlet volumetric flow rate to the 
first tank, q02, q1 [dm3s-1] – inlet volumetric flow rate to the 
second tank, q2 [dm3s-1] – inlet volumetric flow rate to the 
third tank, q3 [dm3s-1] – outlet volumetric flow rate from the 
third tank and t [s] – time variable. The concrete values of the 
parameters are summarized in Table 1. 

 

Fig. 4. Signification scheme of a three tank system 

Table 1. Parameters of the tank system 

Variable Unit Value 
S1 dm2 3 
S2 dm2 2.5 
S3 dm2 2 
k11 dm2.5s-1 1.8 
k22 dm2.5s-1 1.3 
k33 dm2.5s-1 1.4 
q01 dm3s-1 1 
q02 dm3s-1 0.3 

 

The height of liquid in the third tank h3 is controlled variable 
and inlet volumetric flow rate to the first tank q01 is input 
variable. The process state variables are heights of liquid in 
tanks (h1, h2 and h3). 
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4.2 Process control in the nominal state 

Firstly, process was simulated with neural predictive 
controller (NNPC). To set this controller neural network 
process model was needed. Neural network model of three 
tanks system was trained offline based on non-linear process 
input and output data by Levenberg-Marquardt back 
propagation method. When optimization parameters were 
adjusted, tanks system was further controlled by NNPC 
controller. 

Secondly, tanks system was controller with neuro-fuzzy 
controller (NFC) formed from neural predictive controller 
and ANFIS controller. ANFIS was trained by PID controller. 
PID parameters were designed by Strejc method (Bakošová 
et al. 2003) in five training periods. ANFIS have two inputs: 
set-point error e and derivation of set-point error de. Sixteen 
membership function bell shape were chosen for ANFIS 
input: nine for variable e and seven for variable de (Figure 5). 
The neural predictive and the neuro-fuzzy cotnroller were 
tested in MATLAB/SIMULINK ® environment using neural 
network toolbox and fuzzy logic toolbox. This experiment 
was designed to compare a neural predictive controller with 
neuro-fuzzy controller performance while controlling and 
nominal process.  

 

 

Fig.5. Membership functions for input variables e and de 

For neural predictive controller had IAE criteria value 5.07 
and for neuro-fuzzy controller had IAE criteria value 3.94. In 
Figure 6, set-point changes of the desired height profile were 
tracked with satisfactory result in both considered cases. 
However, it can be seen, that the controlled variable (h3) 
profiles exhibit differences for both controllers compared. 
The neuro-fuzzy controller had more fainting performance 
that the neural predictive controller. 

 

Fig.6. Comparison of NNPC and NFC performance for 
nominal plant 

4.3 Process control in the perturbed state 

Besides the good regulatory performance tested above, 
tracking abilities of controllers proposed in the presence of 
disturbances is of utmost importance. Disturbance was 
applied during the control curse and it was set as step change 
of inlet volumetric flow rate to the second tank (q02). This 
disturbance was change in range ± 10% from nominal value 
q02.  

 

Fig.7. Comparison of NNPC and NFC performance for 
perturbed state – step change of q02 – 10% from nominal 
value 
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A comparison of the neural predictive controller and the 
neuro-fuzzy controller performance tested in the presence of 
process parameter is demonstrate in Figure 7,8 (the arrow is 
to show the time instants when disturbance was applied). IAE 
criteria values are shown in Table 2. 

Table 2. Values of IAE criteria 

Controller\Disturbance q02 – 10% from 
nominal value 

q02 + 10% from 
nominal value 

NNPC 5.522 3.998 

NFC 4.144 3.403 

 

Fig.8. Comparison of NNPC and NFC performance for 
perturbed state – step change of q02 + 10% from nominal 
value  

5. CONCLUSION 

In this paper, we present intelligent control of a three tanks 
system. This intelligent control system is composed from two 
individual controllers: neural predictive controller and 
ANFIS controller. 

The main goal of the resulting control system was to enhance 
a profile of height of liquid in the third tank  by manipulating 
the inlet volumetric flow rate to the first tank. Simulation 
results and IAE criteria obtained demonstrated the usefulness 
and robustness of the proposed control system, and general 
advantages of the innovative technique in control application.  
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Abstract: This work deals with the design and application of a neuro-fuzzy control of a chemical reactor. 

The reactor is exothermic one. There are two parameters with only approximately known values in the 

reactor. These parameters are the reaction enthalpies. Because of the presence of uncertainty in the 

continuous stirred tank reactor, the robust output feedback is designed. The simulation results confirm 

that fuzzy control is one of the possibilities for successful control of chemical reactors. 

1. INTRODUCTION 

It is well known that the control of chemical reactors often 

represents very complex problems (Luyben 2007), (Molnár et 

al. 2002). Continuous stirred tank reactors (CSTRs) are often 

used plants in chemical industry and especially exothermic 

CSTRs are very interesting systems from the control 

viewpoint (Bequette 1991). The dynamic characteristics may 

exhibit a varying sign of the gain in various operating points, 

the time delay as well as non-minimum phase behaviour. 

Various types of disturbances also affect operation of 

chemical reactors, operation of chemical reactors is corrupted 

by many different uncertainties. Some of them arise from 

varying or not exactly known parameters, as e.g. reaction rate 

constants, reaction enthalpies or heat transfer coefficients 

(Antonelli and Astolfi 2003). All these problems can cause 

poor control response or even instability of classical closed-

loop control systems.  

Effective control of CSTRs requires application of some of 

advanced methods, as e. g. robust control (Gerhard et al. 

2004), (Tlacuahuac et al. 2005). Robust control has grown as 

one of the most important areas in modern control design 

since works by (Doyle 1981), (Zames 1983) and many others. 

Soft computing is a collection of methodologies like fuzzy 

system, neural networks and genetic algorithm, designed to 

tackle imprecision and uncertainty  involved in a complex 

nonlinear system. Recent reviews on soft computing around 

the world (Dote and Ovaska 2001) indicate that the number 

of soft computing based engineering applications is 

increasing. 

Fuzzy system has been known to provide a framework for 

handling uncertainties and imprecision by taking linguistic 

information from human experts. Fuzzy logic controllers have 

the advantages over the conventional controllers: they are 

cheaper to develop, they cover a wider range of operating 

conditions, and they are more readily customizable in natural 

language terms. FLCs have been implemented successfully in 

a variety of applications (Shapiro 2004), (Hayward and 

Davidson 2003), (Peri and Simon 2005). 

Fuzzy controllers are more robust than PID controllers becau-

se they can cover a much wider range of operating conditions 

than PID can, and can operate with noise and disturbances of 

different nature. Given the dominance of conventional PID 

control in industrial applications, it is significant both in theo-

ry and in practice if a controller can be found that is capable 

of outperforming the PID controller with comparable ease of 

use. Some of PID fuzzy controllers are quite close to this aim 

(Ying 2000). The simplest and most usual way to implement a 

fuzzy controller is to realize it as a computer program on a 

general purpose computer.  

 One popular soft computing method is neuro-fuzzy technique 

which is a hybrid combination of artificial neural networks 

(ANN) and fuzzy inference system (FIS). Adaptive Network 

based Fuzzy Inference System (ANFIS) (Jang 1993), (Jang et 

al. 1997) is such a neuro-fuzzy technique. A clustering 

algorithm partitions a data set into several groups such that 

the similarity within a group is larger than among groups 

(Jang et al. 1997). The idea of data grouping, or clustering, is 

simple in its nature and is close to the human way of thinking 

(Jain and Dubes 1988). A more recent overview can be found 

in a collection of (Bezdek and Pal 1992), (Backer 1995). 

2. FUZZY CONTROL 

Classic control theory is usually based on mathematical 

models which describe the behaviour of the process under 

consideration. The main aim of fuzzy control is to simulate a 

human expert (operator), who is able to control the process 

by translating the linguistic control rules into a fuzzy set 

theory. 

In 1965 Lotfi A. Zadeh introduced fuzzy sets, where a more 

flexible sense of membership is possible. The past few years 

have witnessed a rapid growth in the use of fuzzy logic 

controllers for the control of processes that are complex and 

badly defined. Most fuzzy controllers developed till now have 

been of the rule-based type (Driankov et al. 1993), where the 

rules in the controller attempt to model the operator´s 
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response to particular process situations. An alternative 

approach uses fuzzy or inverse fuzzy model in process 

control (Babuška et al. 1995), (Jang 1995) because it is often 

much easier to obtain information on how a process responds 

to particular inputs than to record how, and why, an operator 

responds to particular situations. A review of the work on 

fuzzy control has been presented by Lee (Lee 1990). 

Design of a simple fuzzy controller can be based on a three- 

step design procedure that builds on PID control: start with 

a PID controller, insert an equivalent, linear fuzzy controller 

and make it gradually nonlinear. 

A fuzzy controller (Fig. 1) can include empirical rules, and 

that is especially useful in operator controlled plants. Take 

e.g. a typical fuzzy controller:  

• if error is negative and change in error is negative then 

output is negative big 

• if error is negative and change in error is zero then output is 

negative medium. 

The collection of rules is called a rule base. The computer is 

able to execute the rules and compute a control signal 

depending on the measured inputs error and change in error. 

The inputs are most often hard or crisp measurements from 

some measuring equipment. A dynamic controller would have 

additional inputs, for example derivatives, integrals, or 

previous values of measurements backwards in time. 

The block fuzzification converts each piece of input data to 

degrees of membership by a lookup in one or several 

membership functions. The rules may use several variables 

both in the condition and the conclusion of the rules. 

Basically a linguistic controller contains rules in the if-then 

format, but they can be presented in different formats. 

The resulting fuzzy set must be converted to a number that 

can be sent to the process as a control signal. This operation 

is called defuzzification. There are several defuzzification 

methods. Output scaling is also relevant.  

 

Fig. 1. Fuzzy control (Passino and Yurkovich 1998) 

3. ADAPTIVE NETWORK BASED FUZZY INFERENCE 

SYSTEM (ANFIS) 

The output sets can often be linear combinations of the 

inputs, or even a function of the inputs. The developed Fuzzy 

Logic Toolbox for the software package Matlab implements 

one of the hybrid schemes known as the ANFIS. ANFIS 

represents a Sugeno-type fuzzy system. Suppose the rule base 

of a Sugeno - Takagi fuzzy system as follows (Nauck et al. 

1977), (Takagi et al. 1985): 

 if  x1 is Ai and x2 is Bi  

 then y = pi x1 + qi x2 + ri, i = 1, ..., N (1) 

The if-parts (antecedents) of the rules describe fuzzy regions 

in the space of input variables error e, its derivative de and 

the then-parts (consequents) are functions of the inputs, 

usually linear with consequent parameters pi, qi, ri, y is an 

output variable, Ai, Bi are fuzzy sets. 

ANFIS represents a useful neural network approach for the 

solution of function approximation problems. Data driven 

procedures for the synthesis of ANFIS networks may be 

based on the subtractive clustering technique (Chiu 1994) of 

the input-output space of a training set of numerical samples 

of the unknown function to be approximated.  

In the ANFIS architecture, FIS is described in a layered, 

feedforward network structure (Fig. 6.). The parameters in 

layer 1 are called premise parameters and they are adjustable. 

The second layer represents the T-norm operators that 

combine the possible input membership grades in order to 

compute the firing strength of the rule. In the basic ANFIS 

method these parameters are not adjustable. The third layer 

implements a normalisation function to the firing strengths 

producing normalised firing strengths. The fourth layer 

represents the consequent parameters that are adjustable. The 

fifth layer represents the aggregation of the outputs performed 

by weighted summation. This is not adjustable. 

3.1 Subtractive clustering 

Subtractive clustering method is a method which extracts 

rules from supplied input-output training data. The idea of 

fuzzy clustering is to divide the data space into fuzzy clusters, 

each representing one specific part of the system behavior. 

After projecting the clusters onto the input space, the 

antecedent parts of the fuzzy rules can be found. The 

consequent parts of the rules can then be simple functions. In 

this way, one cluster corresponds to one rule of the TSK 

model. Several clustering methods are well known (Chiu 

1994), (Yager and Filev 1994). 

Let us consider a collection of n data points {x1, x2, ..., xn} in 

an M dimensional space. Each data point is a candidate for 

cluster centers, a density measure at data point xi is defined as 

 






 
2

1

jk

N

=j

k xxαxpe=P  (2) 

where 
2)a(r

γ
=α , kP is the new potential-value of each 

examined point, is the weight between i-data to j-data, x is 

the data point, is variables (commonly set 4), ra is a cluster 
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radius, it is a positive constant that represents the radius of 

data neighborhood. 

A data point will have a high density value if it has many 

neighboring data points. The first cluster center xc1 is chosen 

as the point having the largest density value Pc1. Next, the 

density measure of each data point xi is revised as follows: 

 









2

1exp1 cxkxβcPkP=kP  (3)  

where =/(rb)
2
, ηr=r ab , rb  is a positive constant which 

defines a neighborhood that has measurable reductions in 

density measure. Therefore, the data points near the first 

cluster center xc1 will have significantly reduced density 

measure. Pc1  is the new potential-value data as cluster centre, 

is the weight of i-data to cluster centre, is the quash 

factor, usually set 1,5, ri is the distance between cluster 

centre.  

When the potential of all data points have been revised 

according to (3), the data point with highest remaining 

potential is selected as the second cluster center. We then 

further reduce the potential of each data point according to 

their distance to the second cluster center. The process is 

repeated until the potential of the points reaches the stopping 

criterion 1cPkP  , where  is the reject ratio, usually set 

0,15. 

4. SIMULATION AND RESULTS 

4.1 Chemical reactor 

Consider a continuous-time stirred tank reactor (CSTR) with 

the first order irreversible parallel exothermic reactions 

according to the scheme B
k

A  1 , C
k

A  2 , where B 

is the main product and C is the side product. The dynamic 

mathematical model of the reactor is obtained by mass 

balances of reactants, enthalpy balance of the reactant 

mixture and enthalpy balance of the coolant. Assuming ideal 

mixing in the reactor and other usual simplifications (Ingham 

et al. 1994), (Vasičkaninová and Bakošová 2006), the 

simplified nonlinear dynamic mathematical model of the 

chemical reactor consists of five differential equations 

 AAAAv
A ckckc

V

q
c

V

q
=

dt

dc
21   (4) 

 A1BBv
B ck+c

V

q
c

V

q
=

dt

dc
  (5) 

 A2CCv
C ck+c

V

q
c

V

q
=

dt

dc
  (6) 
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V
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2211 

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  c

pccc

c

c

vc
cc TT

cρV

Ak
+T

V

cq
T

cV

q
=
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dT
   (8) 

with initial conditions cA(0), cB(0), cC(0), T(0), Tc(0). The 

reaction rate coefficients are non-linear functions of the 

reaction temperature being defined by the Arrhenius relations 

 

 2,1,
i

i0i 


iek=k RT

E

 (9)  

 

Here, c are concentrations, T are temperatures, V are 

volumes,  are densities, cp are specific heat capacities, q are 

volumetric flow rates, h are reaction enthalpies, A is the heat 

transfer area, ki is the heat transfer coefficient, ki0 is the pre-

exponential factor, E is the activation energy and R is the 

universal gas constant. The subscript c denotes the coolant 

and the superscript s denotes the steady-state values in the 

main operating point.  

The values of constant parameters and steady-state inputs of 

the chemical reactor are summarized in Table 1. Model 

uncertainty of the over described reactor follows from the fact 

that there are two physical parameters in this reactor, the 

reaction enthalpies, which values are known within following 

intervals (Table 2). The nominal values of these parameters 

are mean values of theirs intervals.  

 

Table 1. Constant parameters and steady-state inputs of 

the chemical reactor 

Variable  Unit Value 

q  m
3
min

-1
 0,015  

V m
3
 0,23  

VC  m
3
 0,21 

ρ kg m
-3

 1020  

ρC  kg m
-3

 998  

cp  kJ kg
-1

 K
-1

 4,02 

cpc kJ kg
-1

 K
-1

 4,182 

A  m
2
 1,51 

k  kJ m
-2

 min
-1

 K
-1

 42,8  

k10  min
-1

 1,55×10
11

  

k20  min
-1

 4,55×10
25

 

E1/R K 9850 

E2/R  K 22019 

cAv kmol m
-3

 4,22  

cBv kmol m
-3

 0  

cCv kmol m
-3

 0 

Tv K 328  
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Tvc K 298 

q
s
c m3 min

-1
 0,004 

T
s 

K 363,61 

T
s
c K 350,15  

c
s
A kmol m

-3
 0,4915  

c
s
B kmol m

-3
 2,0042  

c
s
C kmol m

-3
 1,7243 

 

Table 2. Uncertain parameters of the chemical reactor 

Variable  Unit Value 

-h1min  kJ kmol
-1

 8,4×10
4
  

-h1max  kJ kmol
-1

 8,8×10
4
 

-h2min  kJ kmol
-1

 1,62×10
4
  

-h2max   kJ kmol
-1

 2,02×10
4
 

4.3 Neuro-fuzzy controller of the chemical reactor 

In this paper, ANFIS and subtractive clustering method were 

used to design fuzzy controller. The design procedure is 

conducted in two stages: first subtractive clustering is applied 

to extract fuzzy model from experimental data; then ANFIS is 

applied to improve the fuzzy model performance. 

Sugeno-type neuro-fuzzy inference system was generated in 

the form:  

 

8,,1,
d

d

isais
d

d
ais





iiseirt

e
iqeipifthen

iCeiB
t

e
iAeif

 (10)  

where e is the control error, pi, qi, ri, si are consequent 

parameters. The symmetric Gaussian function (gaussmf in 

MATLAB) (11) was chosen as the membership function. The 

Gaussian function  depends on two parameters  and c as it 

is seen in (8), where x represents e, de/dt or e. 

  

 












 

2

2

2σ

cx

e=cσ,x;  (11) 

The parameters  and c for gaussmf are listed in the Table 3. 

For obtaining of these parameters, it was necessary to have 

the input data sets. These data were obtained by simulation of 

experimental PID controllers. The consequent parameters in 

the control input rule (10) are listed in Table 4. Figure 2 

demonstrates the Takagi-Sugeno fuzzy inference system. 

Figure 3 shows the structure of Anfis. 

Table 3. Parameters of the Gaussian curve membership 

functions 

e de ∫e 

i ci i ci i ci 

2,91 

2,95 

-4,72 

2,71 

0,44 

0,50 

-0,37 

0,79 

23,9 

23,9 

-56,33 

0,0013 

 

 

 

Table 4. Consequent parameters 

pi qi ri si 

-3,110
-3 

-1,610
-4 

-6,710
-3 

8,310
-3 

-3,110
-3 

-2,610
-4 

-5,410
-3 

2,410
-3 

-2,910
-3 

-1,510
-4 

-6,110
-3 

5,610
-3 

-3,310
-3 

-2,510
-4 

-7,010
-3 

3,910
-3 

-3,210
-3 

-2,610
-4 

-6,710
-3 

2,310
-3 

-3,310
-3 

-2,210
-4 

-7,010
-3 

4,810
-3 

-3,110
-3 

-2,610
-4 

-6,610
-3 

3,410
-3 

-3,310
-3 

-2,210
-4 

-6,310
-3 

4,010
-3 

 

 

Fig. 2. Fuzzy inference system 

 

Fig. 3. Structure of Anfis 

4.4 Control of the chemical reactor  

The reactions in the described reactor are exothermic ones 

and the heat generated by the chemical reactions is removed 

by the coolant in the jacket of the tank. The measured output 

is temperature of the reaction mixture T, the coolant flow rate 

qc
 
is chosen as the control input. The control objective is to 

keep the temperature of the reacting mixture close to a 

desired value.   

The steady state behaviour of the chemical reactor with no-

minal values and also with 4 combinations of minimal and 

maximal values of 2 uncertain parameters was studied at first. 

The maximal concentration of the main product B is obtained 

by temperature T=355 K (Fig. 4).  
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Fig. 4. Concentration of the main product B in the 

dependence on the T 

The open-loop behaviour of the reactor was also studied. 

Simulation results obtained for the nominal model and also 

for 4 vertex systems are shown in Figure 5, 0 – nominal sys-

tem, 1 – h1min, h2min, 2 – h1max,, h2max, 3 – h1max, h2min, 4 – h1min, 

h2max. 

 

Fig. 5. Open-loop response of the CSTR: 0 - nominal system, 

1, 2, 3, 4  - vertex systems  

In Figure 6 the neuro-fuzzy control of the reacting mixture 

temperature and the reference trajectory obtained for the 

nominal model and for 4 vertex systems are shown. The 

control inputs are presented in Figure 7. The controller is fast 

and the overshoots are minimal. 

In praxis, it is necessary to work with noisy signals, the white 

noise was added to the controlled output. Figures 8, 9 present 

the simulation results of the fuzzy control of the chemical 

reactor in the case when disturbances affect the controlled 

process. Disturbances were represented by temperature 

changes in the feed temperature of the reaction mixture. 

Following disturbances were loaded: T decreased by 5 K at 

t=200 min and increased by 10 K at t=200 min.  

The neuro-fuzzy PID controller attenuates disturbances very 

fast and the overshoots caused by disturbances are minimal. 

 

 

Fig. 6. Control of the CSTR: 0 - nominal system, 1, 2, 3, 4  - 

vertex systems  

 

Fig. 7. Control inputs to the CSTR: 0 - nominal system, 1, 2, 

3, 4  - vertex systems  

 

Fig. 8. Control of the CSTR with disturbances and noisy 

signals: 0 - nominal system, 1, 2, 3, 4  - vertex systems  
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Fig. 9. Control inputs to the CSTR with disturbances and 

noisy signals: 0 - nominal system, 1, 2, 3, 4  - vertex 

systems  

5. CONCLUSIONS 

In this paper, the neuro-fuzzy control is applied to the 

exothermic CSTR with uncertain parameters. Simulations 

confirmed that robust neuro-fuzzy controllers can be 

successfully used for control of CSTRs with uncertainties and 

disturbances, even though CSTRs are very complicated 

systems from the control point of view. All simulations were 

done using MATLAB.  
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ABSTRACT 

This paper describes a new method of evolution that is named 

Transplant Evolution (TE). None of the individuals of the 

transplant evolution contains genotype. Each individual of the 

transplant evolution contains only phenotype. Reproduction 

methods as crossover and mutation work and store only the 

phenotype. The hierarchical structure of grammar-differential 

evolution that is used for finding optimal structures and 

parameters of general controllers is described. 

  

Categories and Subject Descriptors 

D.3.2 

General Terms 

Algorithms, Design 

Keywords 

Transplant evolution, grammatical-differential evolution, object 

trees, hierarchical structures, algebraic reducing of trees, 

crossover by linking. 

 

1. INTRODUCTION 
The aim of this paper is to describe a new optimization method 

that can create control equations of general regulators. For this 

type of optimization a new method was created and we call it 

Two-Level Transplant Evolution (TLTE). This method allowed us 

to apply advanced methods of optimization, for example direct 

tree reducing of tree structure of control equation. The reduction 

method was named Arithmetic Tree Reducing (ART). For 

optimization of control equations of general controllers is suitable 

combine two evolutionary algorithms. Main goal in the first level 

of TLTE is the optimization of structure of general controllers. In 

the second level of TLTE the concrete parameters are optimized 

and the unknown abstract parameters in structure of equations are 

set. The method TLTE was created by combination of Transplant 

Evolution method (TE) [1,2,3,8,9,10] and Differential Evolution 

method (DE) [7]. The Transplant Evolution (TE) optimizes 

structure of solution with unknown abstract parameters and the 

DE optimizes the parameters in this structure. The parameters are 

real numbers. The real numbers are not easy find directly in TE 

without DE. For evaluation of quality of found control equation 

are described new methods, which allow us evaluate their quality. 

It can be used in the case when the simulation of control process 

cannot be finished. In results are shown some practical 

application. In all results we received the control equation that 

reached better quality of control process, than classical PSD 

controllers and Takahashi`s modification of PSD controller. 

 

2. THE  PRESENTATION OF OBJECT 

TREE STRUCTURES  
 

The phenotype representation 

of the individual is stored in the 

object tree structure. Each of 

nodes in the tree structure, 

including the sub-nodes, is an 

object that is specified by a 

terminal symbol and the type of 

terminal symbols. All nodes are independent and correctly defined 

mathematical functions that can be calculated, e.g. the function x-

3, shown on Fig. 1, is a tree structure containing a functional 

block (sub-tree). 

Creating the object tree is a key part of GEOS, which this method 

differs from other evolutionary algorithms. When the object tree is 

generated, similar methods to a traditional grammatical evolution 

are used. But the GEOS does not store the genotype, because the 

production rules are selected by randomly generated genes that 

are not saved in chromosomes of individuals. The final GEOS’s 

individual contains only phenotype expressed in an object tree 

structure. 

The algorithm of GEOS uses a generative grammar [4,5,6] whose 

translation process starts from the initial symbol S and continues 

randomly with using the rules of defined grammar [2]. The basic 

procedure of the translation algorithm is shown on Fig. 2 where is 

explain to why is unnecessary to store the genotype. 

European Polytechnical Institute 

Kunovice, 

Osvobození 699, 686 04 Kunovice, 

Czech Republic 

3

–

X

 

Fig. 1. Function block 
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3. CROSSOVER 
The crossover is a distinctive tool for genetic algorithms and is 

one of the methods in evolutionary algorithms that are able to 

acquire a new population of individuals. For crossover of object 

trees can be used following methods: 

Crossover the parts of object trees (sub-trees) 

The method of crossover object trees is based on the selection of 

two parents from the population and changing each other part of 

their sub-trees. For each of the parents cross points are randomly 

selected and their nodes and sub-trees are exchanged. This is the 

principle of creating new individuals into subsequent population 

as is shown on Fig. 3.  

Crossover by linking trees or sub-trees 

This method, as well as the previous one, is based on the 

crossover of two parents who are selected from the previous 

population. But the difference is in the way how the object trees 

are crossed. This method, unlike the previous one, does not 

exchange two randomly selected parts of the parents but parts of 

individuals are linked together with new and randomly generated 

node. This node will represent a new root of the tree structure of 

the individual. This principle is shown on Fig. 4.  

 

Fig.4. Crossover by linking method  

4. MUTATION 
Mutation is the second of the operators to obtain new individuals. 

This operator can add new structures, which are not included in 

the population so far. Mutation is performed on individuals from 

the old population. In the selected individual are randomly chosen 

nodes which are then subjected to mutation. The mutation 

operator can be subdivided into two types: 

 Non-structural Mutation (NM) 

 Structural Mutation (SM) 

Non-structural Mutation (NM) 

Non-structural mutations do not affect the structure of already 

generated individual. In the individual who is selected for 

mutation, chosen nodes of object sub-tree are further subjected to 

mutation. The mutation will randomly change chosen nodes, 

whereas used grammar is respected. For example it means that 

mutated node, which is a function of two variables (i.e. + - × ÷) 

cannot be changed by node representing function of one variable 

or only a variable, etc. see Fig. . 
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Fig. 4. Crossover by linking method (LC - Linking 

Crossing) 
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Fig. 3. Classical Crossover (CC) 
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Fig. 2 Flowchart creation of object tree 
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Structural Mutation (SM) 

Structural mutations, unlike non-structural mutations, affect the 

tree structure of individuals. Changes of the sub-tree by extending 

or shortening its parts depend on the method of structural 

mutations. Structural mutation can be divided into two types: 

Structural mutation which is extending an object tree structure 

(ESM) and structural mutation which is shortening a tree structure 

(SSM). This type of mutation operator can be subdivided into two 

types:  

 

Extending Structural Mutation (ESM) 
In the case of the extending mutation, a randomly selected node is 

replaced by a part of the newly created sub-tree that respects the 

rules of defined grammar (see fig. 3). This method obviously does 

not always lead to the extension of the sub-tree but generally this 

form of the mutation leads to extension of sub-tree. (see Fig. ). 

Shortening Structural Mutation (SSM) 
Conversely the shortening mutation replaces a randomly selected 

node of the tree, including its child nodes, by node which is 

described by terminal symbol (i.e. a variable or a number). This 

type of mutation can be regarded as a method of indirectly 

reducing the complexity of the object tree (see Fig. ).  

The complexity of the tree structure can be defined as the total 

number of objects in the tree of individual.  

5. DIRECT TREE REDUCTION 
The minimal length of an object tree is often one of the factors 

required in the optimal problem solution. This requirement can be 

achieved in several ways: 

 By penalizing the part of the individual fitness which 

contains a complex object tree, 

 Method of targeted structural mutation of individual (see 

SSM), 

 The direct shortening of the tree using algebraic 

adjustments - algebraic reducing tree (ART). 

The last-mentioned method can be realised by the GEOS, where 

all of individuals does not contain the genotype, and then a 

change in the phenotype is not affected by treatment with 

genotype. The realisation of above mentioned problem with 

individual, which use genotype would be in this case very 

difficult. This new method is based on the algebraic arrangement 

of the tree features that are intended to reduce the number of 

functional blocks in the body of individuals (such as repeating 

blocks "unary minus", etc.). The method described above is 

shown on Fig.  and Fig. . 
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Fig. 5. Nonstructural mutation 
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In view of the object tree complexity of the individual and also for 

subsequent crossover is preferable to have a function in the form 

 than x = a + a + a, or more generally x = n × A. 

Another example is the shortening of the function x = ─ (─ a), 

where is preferable to have the form x = a (it is removing 

redundant marks in the object tree individual). The introduction of 

algebraic modifications of individual phenotype leads to the 

shorter result of the optimal solution and consequently to the 

shorter presentation of the individual, shortening the time of 

calculation of the function that is represented in object tree and 

also to find optimal solutions faster because of higher probability 

of crossover in the suitable points with higher probability to 

produce meaningful solutions. The essential difference stems from 

the use of direct contraction of trees, which leads to significantly 

shorter resulting structure than without using this method. 

6. HIERARCHICAL STRUCTURE OF TE 

(GDEOS) FOR OPTIMISATION OF THE 

CONTROLLER 
The hierarchical structure of the transplant evolution can be used 

for optimisation of the structure and parameters of a general 

controller. This structure contains three layers. First two layers 

(GE + DE) are contained in TE. Those two layers are used for 
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Fig. 9. Flowchart of TE (GDEOS) for controller 
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optimisation of the structure and parameters of general controller. 

The third layer which is named layer of controller is used for 

computation of fitness in TE. 

At the beginning of GDEOS an initial population is created (see 

Fig. 2) and then fitness of individuals is calculated. In the case of 

finding the optimal solution in the first generation, the algorithm 

is terminated, otherwise creates a new population of individuals 

by crossover and mutation operators, with the direct use of 

already created parent’s object tree structures (it is analogy as 

transplantation of already created organs, without necessary 

know-ledge of DNA – “Transplant Evolution (TE)”). If the result 

of GDEOS needs some numerical parameters (for example num in 

(Weisser 2010)), the second level with Differential Evolution 

(DE) is used for optimization their parameter setting. The DE 

gives better results in finding optimal values of unknown 

numerical parameters that are expressed in the form of real 

numbers, then in the GE. Due to the use of GDEOS for 

optimization of controllers in the next stage of calculation of 

fitness is model of controller used which is represented by the 

equation in incremental form (recurrent algorithm). Quality of 

controller is determined depending on the type of criterial 

function (see equation 3). For fitness calculation are various 

criterial functions used. Basic criterion is linear control area, 

quadratic control area, linear or quadratic control area extended 

with overshoot, oscillation of action value of the controller. 

The flowchart of TE (GDEOS) for a controller is shown on Fig.  

7. RESULTS 
The TE and TE + ART methods for optimization of equation for 

general controller were compared.  

The resulting form of the recurrent equation of general controller 

without using the direct method shortening of the tree (ART) is 

following (equation 1): 

uk=((((((Ek-(-((Ek+Ek))))×3)×2)+Ek-3)-(-(2)))-(-(((((((Ek-3+((((((Ek×3) 

+(Ek+(((dEk-1+Ek)×2)×1.63)))×2)×2)+(-(((Ek-4+(Ek-(-(3))))+Ek-2)))) 

×3))+(-(((Ek-4+(Ek-Ek))+Ek-2))))×2)+((dEk-1+(4.47-((((Ek-(-

((((((((((Ek×3)+(Ek+(((dEk-1+Ek)×2)×2)))×2)×2)×2)+(-(3.61)))+Ek) 

+Ek)+(-((3+Ek-2)))))))+((Ek×2)+Ek))+Ek)-(-(((Ek+2)×(3×((Ek-4+2) +Ek-

2))))))))-((((Ek+((((Ek+2)+Ek)+Ek)+(Ek/(-((6.88-((dEk-1+(1.79-Ek-3))-

2))))))) ×2)×3)+(-(((Ek-4+((Ek+Ek)×2)) +Ek))))))+Ek)-(-(Ek-2))))) 

 (1) 

 

The resulting form of the recurrent optimization algorithm in the 

case with using the direct method of contraction tree is following 

(equation 2):  

 

uk = ( Ek-3 - Ek × 1.93 ) × 33.97 + Ek-1 + Ek-2 (2) 

 

As you can see, the resulting lengths of recurrent equation of the 

general controller, is shorter in case of using TE + ATR then TE 

without ART.  

Bellow is shown result of optimisation parameters of PSD 

controllers and optimisation of the structure and parameters of 

general controllers. The parameters of PSD controllers were 

optimised with using DE and structure and parameters of general 

controller were optimised with using TE + ART method. 

The basic criterion of minimal integral control area was used as 

criterial function for optimisation of PSD or general controllers, 

(see equation 3) 

 

(3) 

On the Fig. and Fig.  are result of optimisation of PSD controller 

and general controller to control the identical system with 5 

second time delay. 

On the Fig. is shown regulatory process of PSD controller. The 

parameters of PSD controller were optimised with using DE. 

 

On the Fig.  is shown regulatory process of general controller. The 

structure and parameters of this controller was optimised with 

using TE (GDEOS) + ART method. The equation of general 

controller is following (see equation 4). 

uk = Ek × 23.01 + 10.91 × Ek-3 + Ek-1 × (-33.91) + Uk-1 (4) 

On the Fig. and  

Fig.  are result of optimisation of PSD controller and 

general controller to control the identical system with 2 

second time delay. 

On the Fig.  is shown regulatory process of PSD controller. 

The parameters of PSD controller were optimised with 

using DE. 

 

Fig.10. Regulatory process of PSD controller for second order 

system with 5s time delay 

(Top figure shows the system response and on the bottom 

part of the figure is shown the action output of controller) 
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On the Fig.13 is shown regulatory process of general controller. 

The structure and parameters of this controller was optimised with 

using TE (GDEOS) + ART method. The equation of general 

controller is following (see equation 5). 

uk = (32.55×Ek-5) + (58.79×Ek) + 7.08 + (-89.97×Ek-2)  (5) 

 

We tested the TLTE method for optimization of recurrent 

equation of general controllers. There is some results of 

optimization for one following system:. 

Integral system with transport delay 

                                     (5) 

In Fig.14 we compare 3 types of controllers. There is one PSD 

controller marked PSD_DE and two general controllers marked 

General_DE and General_TLTE. The curve marked PSD_DE is 

PSD controller. Parameters (Kr, Ti, Td) of this controller were 

optimized by Differential Evolution (DE). The curve marked 

General_DE is for general controller which has the control 

equation in PSD equation form, but parameters q0, q1, q2 were 

optimized directly by DE. The curve marked General_TLTE is for 

general controller with general control equation that was 

optimized by Two-Level Transplant Evolution (TLTE). As you 

can see, the best result gives the General_TLTE. In this case we 

receive the recurrent control equation with following form: 

 

 

 

Fig. 13. Regulatory process of general controller for second order 

system with 2s time delay 

(Top figure shows the system response and on the bottom part 

of the figure is shown the action output of the controller) 

 

Fig. 12 Regulatory process of PSD controller for second 

order system with 2s time delay 

(Top figure shows the system response and on the bottom 

part of the figure is shown the action output of controller) 

Fig. 11 Regulatory process of general controller for 

second order system with 5s time delay 

(Top figure shows the system response and on the bottom 

part of the figure is shown the action output of the 

controller) 
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8. CONCLUSION 
The Two-Level Transplant Evolution (TLTE) was successfully 

use for automatic generation of control programs of general 

controllers. We tested this algorithm on many problems, only one 

example was described in this paper. We hope that this new 

method of controller design will be use in practice, not only for 

simulation.  

Although we are at early stages of experiments, but it seems that it 

is possible to use parallel grammatical evolution with backward 

processing to generate combinatorial logic circuits. The 

grammatical algorithm can be outperformed with algorithms, 

which are designed specifically for this purpose. 
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Fig.14. Step response for integration system with time delay 
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Abstract: Approximation of experimental data by means of an analytical or general mathematical 

dependence is performed most frequently by the regression method using the least squares approach. The 

quality of curve fitting is evaluated on the basis of analysis of resulting set of residuals which, however, can 

be defined  in various ways. This paper deals with suitability tests of the individual types from the 

standpoint of curve fitting quality of the regression dependence. 
____________________________________________________________________________________________________________ 

1. INTRODUCTION 

Regression is one of most common and most favored 

approximation methods of experimental dependences. The 

principle consists in optimization (i.e. minimization) of the 

users function, most often in the form of the least squares, 

which expresses closeness of curve fitting of the regression 

and experimental dependence. The function fitted may be 

known in analytical form, where the parameters have direct 

physical meaning, or various types of mathematical 

dependences are used. The basic classification of regression 

methods is done according to the parameters of fitted 

dependences, i.e. linear regression and non-linear regression 

are known. While the linear regression is evaluated according 

to univocal formulas, the so-called normal equations, the 

course and results of non-linear regression are affected by a 

number of factors, such as initial assessment of parameters, 

the adopted optimizing method, interdependence of individual 

parameters etc. Therefore, the parameters found can be neither 

correct nor accurate, particularly in the cases where even their 

approximate values are unknown. The non-linear regression 

offers relatively few tools for verification of the found 

parameters. If several calculations are performed with 

different models, their comparison is carried out by means of 

Akaike Information Criterion (AIC), mean quadratic error of 

prediction (MEP), the value of users function (residual-square-

sum, RSC) etc. (MELOUN, 2011). However, if we have only 

a single calculation, then one of the few available tools is the 

analysis of set of residuals. It is quite paradoxical that most PC 

programs (even the commercial ones. such as STATISTICA) 

do not include this analysis; only in algorithmic regime they 

provide the values of parameters with their standard 

deviations. No further verification is performed, and the curve 

fitting quality of regression dependence and experimental 

dependence cannot be evaluated. 

If the conditions of application of regression method are 

fulfilled (the data do not exhibit heteroscedasticity, 

supernormality, multicollinearity, autocorrelation, outliers, 

the model is significant), then the set of residuals should 

exhibit normal distribution, which can be proved on the basis 

of calculated values of central moments, Pearson’s test, sign 

tests and other tests. However, residuals can be defined in 

various ways, and their information abilities differ. 

2. DEFINITION OF VARIOUS TYPES OF RESIDUALS  

2.1 Classical Residuals iê  (MELOUN, 2011) 

These residuals are defined as a difference between the 

calculated values and the experimental ones. They are 

correlated, do not have constant dispersion, and they need 

not correctly indicate deviated points. 

2.2 Normalized Residuals Niê  (MELOUN, 2011) 

In this case the normalization consists in division of the 

value of classical residual by the value of standard deviation 

of the whole set. The set of residuals should have normal 

distribution with zero mean value and standard deviation is 

equal to one. The values higher/lower than the triple of 

standard deviations are considered as outliers.  

However, the mathematical analysis shows that the 

dispersion D( Niê ) = (1-Hii) is neither constant nor unit, so 

the recommended elimination of the values exceeding the 

interval of the triple of standard deviation need not be 

correct. 

2.3 Standardized Residuals Siê  (MELOUN, 2011) 

They also should exhibit normal distribution with constant 

dispersion; they are defined as follows: 

 

ii

i
Si

H

e
e




1ˆ

ˆ
ˆ


 (1) 

where ̂  stands for standard deviation 

 iiH  are diagonal elements of projection matrix 

Their properties are almost identical with the classical ones. 
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2.4 Jack-Knife Residuals Jiê  (MELOUN, 2011) 

If in Eq. (1) we use, instead the overall standard deviation, its 

estimate obtained with omitting of the i-th point: 

 
Si

Ji
emn

mn
e

ˆ

1
ˆ




  (2) 

where n stands for the number of measurements 

 m is the number of parameters determined 

Under the assumption of normality of errors, these residuals 

exhibit Student distribution with n-m-1 degrees of freedom. 

These residuals are used for identification of outliers points. 

2.5 Predicted Residuals Piê  (MELOUN, 2011) 

These are defined as follows: 

 
ii

i
iiiPi
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e
xye
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ˆ

)(b  (3) 

where x is/are independent variable(s) and y is the 

dependent variable quantity 

)(ib  are estimates of parameters obtained by the 

least squares method from all points except the i-th 

point 

3. OTHER DIAGNOSTIC TOOLS 

3.1 Cook’s Distance Di  (MELOUN, 2011) 

This, in fact, is the Euclidean distance between the vector of 

prediction of independent variable obtained by the least 

squares method and the same vector obtained with 

elimination of the i-th point. Cook’s distance expresses the 

effects of the i-th point upon the estimates of parameters 

only. It is defined as follows: 

 
ii

iiSi

H

H

m

e
iD



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ˆ
 (4) 

3.2 Atkinson’s Distance iA  (MELOUN, 2011) 

This is used in order to increase the sensitivity of regression 

to extreme points. It is defined as follows: 
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3.3 Distances of Likelihood 

This quantity is the difference of logarithms of credibility 

function using all point and that obtained with elimination of 

the i-th point. If its value is higher than the quantile 

)1(2
1  m of distribution, then the given point is considered 

as influential. 

3.4 Summary Characteristics of Properties of Whole Set of 

Residuals 

The following characteristics have also been used for 

determination of validity of the basic presumptions of 

Original data 

Type of residuals Classical Normalized Standard. 

Users function 0.0030 1.7373 29.9600 

Arithm. mean 0.0000 -0.0430 0.3816 

Stand. deviation 0.0101 0.2368 0.9236 

Mom. coeff. of skew. -0.2084 -3.0775 -1.2577 

Mom. coeff. of curt. 0.0298 11.6552 2.3077 

R-factor 0.0006 0.0136 0.0563 

Type of residuals Jack-Knife Predicted  

Users function 32.2588 0.0035  

Arithm. mean -0.0058 0.0000  

Stand. deviation 1.0369 0.0108  

Mom. coeff. of skew. -0.2908 -0.1922  

Mom. coeff. of curt. 0.3215 -0.0634  

R-factor 0.0584 0.0006  

Other criteria   

AIC -227.0000   

MEP 0.0001   

Heteroscedasticity yes   

Normality yes   

Autocorrelation not   

Sign test negat.   

Table 1. Characteristics of set of residuals of starting data 

 

application of the least squares method from the whole set of 

residuals (the classical residuals were always used): 

- Cook–Weisberg’s test of heteroscedasticity 

- Jarque–Berr’s test of normality 

- Wald’s test of autocorrelation 

- Sign test 

Description of these tests is somewhat complicated and time-

consuming; therefore, see Ref. (MELOUN, 2011). 

The above-mentioned diagnostic tools (except for 3.4) are 

ordinarily used only for detection of significant (extreme, 

outliers) points, which from the standpoint of overall view of 

the quality of curve fitting of regression model is of not very 

high significance. If the model is not suitable, then the search 

for these points has no meaning either. In most cases, the 

closeness of curve fitting is evaluated by means of classical 

residuals, but their information effectiveness is very small; 

the calculation of statistical moments expresses neither the 

outliers points not the trends in curve fitting. In this case, the 

tests given in section 3.4 come in useful and, furthermore, 

testing of suitability of the whole model by means of F-test, 

or Student’s test of significance of the individual parameters. 

The two last mentioned tests have not been taken into 

account in this paper, since the model was known. Also 

Hamilton’s R-factor has very good information ability: 

 




2

iy

RSC
R  (6) 
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Classical residuals 

First point 

Multiple of 

characteristics of 

original set 

1. point +1 

s 

1. point + 

2s 

1. point + 

3s 

Users function 0.9596 3.1891 11.1415 

Arithmetic mean –0.8662 2.4045 5.1910 

St. deviation 0.9796 1.7858 3.3903 

M. coeff. of skew. 1.2973 –12.1966 –19.1828 

M. coeff. of curt. 4.7594 350.2452 655.3301 

R-factor 0.9796 1.7858 3.3378 

Other criteria       

AIC –273.2000 –237.2000 –199.7000 

MEP 0.0001 0.0004 0.0014 

Heteroscedasticity yes yes yes 

Normality yes yes not 

Autocorrelation not not not 

Sign test negat. negat. negat. 

Second point 

Multiple of 

characteristics of 

original set 

1. point 

+1s, 2. 

point -1s 

1. point 

+2s, 2. 

point -2s 

1. point 

+3s, 2. 

point -3s 

Users function 1.0754 3.6223 12.1170 

Arithmetic mean 0.0000 2.8989 0.6816 

St. deviation 1.0370 1.9032 3.4809 

M. coeff. of skew. 2.0439 –9.8283 –17.4348 

M. coeff. of curt. 7.9841 317.6662 606.9347 

R-factor 1.0370 1.9032 3.4809 

Other criteria       

AIC –269.8000 –233.4000 –197.1000 

MEP 0.0001 0.0005 0.0016 

Heteroscedasticity yes yes yes 

Normality yes yes not 

Autocorrelation not not not 

Sign test negat. negat. negat. 

Table 2. Various variants of calculation for classical 

residuals 

If the value of R-factor is not higher than the uncertainty of 

measurement, then the curve fitting can be considered as a 

good one. However, the use of classical residuals could be 

replaced by another type, which is more sensitive and better 

reflects the deviation in the fitting of regression dependence. 

Hence in the subsequent text we will try to select the more 

suitable type out of the available types of residuals. 

 

4. TESTING 

The testing of individual types of residuals was performed on 

a simulated example of linear dependence. The values of 

dependent variable were calculated for the given values of 

independent variable and given parameters of straight line. 

The calculated values were loaded with errors exhibiting 

normal distribution. The obtained data were evaluated by  

Normalized residuals 

First point 

Multiple of 

characteristics of 

original set 

1. point +1 

s 

1. point + 

2s 

1. point + 

3s 

Users function 0.4125 29.8402 112.5996 

Arithmetic mean 0.4781 –3.6503 –7.2397 

St. deviation 0.6469 5.5122 10.8850 

M. coeff. of skew. 0.7344 –1.6724 –1.6877 

M. coeff. of curt. 0.8122 2.3804 2.4561 

R-factor 0.6422 5.4626 10.6110 

Other criteria       

AIC –273.2000 –237.2000 –199.7000 

MEP 0.0001 0.0004 0.0014 

Heteroscedasticity yes yes yes 

Normality yes yes not 

Autocorrelation not not not 

Sign test negat. negat. negat. 

Second point 

Multiple of 

characteristics of 

original set 

1. point 

+1s, 2. 

point -1s 

1. point 

+2s, 2. 

point -2s 

1. point 

+3s, 2. 

point -3s 

Users function 0.8572 33.3538 121.3035 

Arithmetic mean 0.6204 –3.3425 –6.7443 

St. deviation 0.9342 5.8382 11.1266 

M. coeff. of skew. 1.2930 –1.5192 –1.6224 

M. coeff. of curt. 1.6985 2.1565 2.3071 

R-factor 0.9259 5.7752 11.0136 

Other criteria       

AIC –269.8000 –233.4000 –197.1000 

MEP 0.0001 0.0005 0.0016 

Heteroscedasticity yes yes yes 

Normality yes yes not 

Autocorrelation not not not 

Sign test negat. negat. negat. 

Table 3. Various variants of calculation for normalized 

residuals 

linear regression, and the central moments of the set of 

residuals were calculated. In the next step, the value of 

dependent variable of the first point was increased stepwise 

by adding one, two and three multiples of standard deviation 

from the first set, and again the individual sets of data were 

evaluated by linear regression, and central moments of the 

sets of residuals were calculated. These values were 

referenced to the values of central moments of the original 

set – i.e. to find out to what extent the change of one point 

will make itself felt in the change of characteristics of the set 

of residuals. In subsequent step, also changes of the second 

point were added to the changes of the first point in the 

opposite direction as compared with the first point. 

Apart from the tests described, we also carried out 

calculations with the sets in which the described changes had 

been realized in central part of the dependence; however, this  
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Standardized residuals 

First point 

Multiple of 

characteristics of 

original set 

1. point +1 

s 

1. point + 

2s 

1. point + 

3s 

Users function 17.2142 1.0464 1.0595 

Arithmetic mean –0.0003 0.0145 0.0165 

St. deviation 1.0810 1.1068 1.1312 

M. coeff. of skew. 0.2081 –2.0917 –3.2168 

M. coeff. of curt. 0.0453 4.7456 8.6059 

R-factor 0.9991 1.0229 1.0293 

Other criteria       

AIC –273.2000 –237.2000 –199.7000 

MEP 0.0001 0.0004 0.0014 

Heteroscedasticity yes yes yes 

Normality yes yes not 

Autocorrelation not not not 

Sign test negat. negat. negat. 

Second point 

Multiple of 

characteristics of 

original set 

1. point 

+1s, 2. 

point -1s 

1. point 

+2s, 2. 

point -2s 

1. point 

+3s, 2. 

point -3s 

Users function 1.0034 1.0487 1.0606 

Arithmetic mean –0.0024 0.0112 0.0139 

St. deviation 1.0838 1.1080 1.1143 

M. coeff. of skew. 0.3467 –1.6840 –2.9227 

M. coeff. of curt. 0.1070 4.2868 7.9575 

R-factor 1.0017 1.0241 1.0298 

Other criteria       

AIC –269.8000 –233.4000 –197.1000 

MEP 0.0001 0.0005 0.0016 

Heteroscedasticity yes yes yes 

Normality yes yes not 

Autocorrelation not not not 

Sign test negat. negat. negat. 

Table 4. Various variants of calculation for  

standardized residuals 

almost did not make itself felt in the evaluation of the 

regression process, hence it was not tested any more. This 

fact is connected with different interdependence of 

parameters throughout the course of regression dependence, 

e.g., see Ref. (MELOUN, 1984). 

5. CONCLUSION 

The tests performed unambiguously show that the 

normalized residuals (Tab. 3) are most suitable for evaluation 

of closeness of fit. The performed changes in analyzed data 

are most clearly reflected by the statistical characteristics of 

the sets of normalized residuals. Of course, these changes 

apply to such criteria as are the value of users function, the 

first and the second central moment and the R-factor. 

However, the parameters characterizing the form of 

probability distribution do not substantially change, 

Jack-Knife residuals 

First point 

Multiple of 

characteristics of 

original set 

1. point +1 

s 

1. point + 

2s 

1. point + 

3s 

Users function 1.0026 2.3131 9.0801 

Arithmetic mean 1.0198 –21.0248 –70.0348 

St. deviation 1.0013 1.5164 3.0392 

M. coeff. of skew. 1.2606 –14.4374 –18.0003 

M. coeff. of curt. 1.4778 64.8356 89.5911 

R-factor 1.0013 1.5209 3.0133 

Other criteria       

AIC –273.2000 –237.2000 –199.7000 

MEP 0.0001 0.0004 0.0014 

Heteroscedasticity yes yes yes 

Normality yes yes not 

Autocorrelation not not not 

Second point 

Sign test negat. negat. negat. 

Multiple of 

characteristics of 

original set 

1. point 

+1s, 2. 

point -1s 

1. point 

+2s, 2. 

point -2s 

1. point 

+3s, 2. 

point -3s 

Users function 1.0122 2.0193 6.2412 

Arithmetic mean 1.7396 –16.2757 –52.5175 

St. deviation 1.0060 1.4182 2.4812 

M. coeff. of skew. 1.8302 –12.6178 –17.8036 

M. coeff. of curt. 1.6265 56.6179 86.6017 

R-factor 1.0061 1.4210 2.4982 

Other criteria       

AIC –269.8000 –233.4000 –197.1000 

MEP 0.0001 0.0005 0.0016 

Heteroscedasticity yes yes yes 

Normality yes yes not 

Autocorrelation not not not 

Sign test negat. negat. negat. 

Table 5. Various variants of calculation for  

Jack-Knife residuals 

 which again speaks in favor of this type of residuals.  

Similarly it is possible to evaluate the predicted residuals 

(Tab. 6), but in this case the variability is lower than that in 

the case of normalized residuals. 

The Jack-Knife residuals (Tab. 5) can be placed behind the 

predicted residuals: the variability was still lower here. 

However, this type is very useful for guessing of significant 

points. 

In the case of classical residuals (Tab. 2) the first group of 

criteria changes only little – hence it is problematic to 

evaluate changes of fitting – and the second group (the 3
rd

 

and the 4
th

 central moments) are changed very markedly, 

which means that this type is absolutely unsuitable for 

evaluation of the quality of fitting. 

 

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

376



Predicted residuals 

First point 

Multiple of 

characteristics of 

original set 

1. point +1 

s 

1. point + 

2s 

1. point + 

3s 

Users function 0.9561 3.4940 12.5057 

Arithmetic mean 0.0956 –8.0159 –17.0309 

St. deviation 0.9778 1.8691 3.5919 

M. coeff. of skew. 1.3179 –14.1426 –21.2923 

M. coeff. of curt. –1.0926 –181.0766 –318.7822 

R-factor 0.9778 1.8692 3.5363 

Other criteria       

AIC –273.2000 –237.2000 –199.7000 

MEP 0.0001 0.0004 0.0014 

Heteroscedasticity yes yes yes 

Normality yes yes not 

Autocorrelation not not not 

Sign test negat. negat. negat. 

Second point 

Multiple of 

characteristics of 

original set 

1. point 

+1s, 2. 

point -1s 

1. point 

+2s, 2. 

point -2s 

1. point 

+3s, 2. 

point -3s 

Users function 1.0829 3.9852 13.6282 

Arithmetic mean 0.8011 –6.6097 –14.9265 

St. deviation 1.0406 1.9962 3.6915 

M. coeff. of skew. 2.3294 –11.3779 –19.3415 

M. coeff. of curt. –4.1581 –162.9381 –294.3271 

R-factor 1.0406 1.9963 3.6916 

Other criteria       

AIC –269.8000 –233.4000 –197.1000 

MEP 0.0001 0.0005 0.0016 

Heteroscedasticity yes yes yes 

Normality yes yes not 

Autocorrelation not not not 

Sign test negat. negat. negat. 

Table 6. Various variants of calculation for  

predicted residuals 

Variability was almost absent in the case of standardized 

residuals (Tab. 4): hence their application is utterly 

meaningless. 

The values of criteria for comparison of the quality of ftting 

between the individual sets (i.e. AIC and MEP) clearly 

reproduce the worsening conditions of the calculation. 

However, this is the only piece of information obtained from 

these characteristics. Interestingly, the values of both AIC 

and MEP are better for the first two variants of calculation as 

compared with the basic set – this is due to the fact that the 

first point in the basic set has a lower experimental value of 

dependent variable as compared with the predicted value; 

therefore, during the changes the regression improves at the 

beginning.  

The remaining characteristics (the tests of heteroscedasticity, 

distribution normality, autocorrelation, and the sign test) 

possess relatively low information ability, and their 

application can only be tentative. They can be successfully 

replaced by a map of distribution of residuals around the zero 

value, where the trends such as heteroscedasticity, normality, 

and autocorrelation or sign alternation can be evaluated much 

more objectively by mere inspection.  

 

The problem has been dealt with in the framework 

of the research project MŠM 0021627505 „Control, 

optimization and diagnostics of complex systems“. 

 

REFERENCES 

Meloun, M., Javůrek, M. Multiparametric Curve Fitting VIII. 

The Reliability of Dissociation Constants Estimated 

by Analysis of Absorbance-pH Curves. Talanta 

32(10), (1985), pp. 973-986, ISSN 0039-9140 

Meloun, M., Militký, J. Statistical Data Analysis.Cambridge, 

UK, Woodhead Publishing, Ltd. 2011, ISBN 978-0-

85709-109-3, 900p. 

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

377



Predictive Control Using Neural Network Applied on Semi-batch Reactor 
 

L. Macků * D. Sámek** 
 

* Tomas Bata University in Zlín,  
Faculty of Applied Informatics,  

Department of Electronics and Measurements.  
Nad Stráněmi 4511, 760 05 Zlín, Czech Republic 

(e-mail: macku@fai.utb.cz) 
** Tomas Bata University in Zlín, 

Department of Production Engineering.  
Nam. T.G.Masaryka 275, 762 72 Zlín, Czech Republic.  

Faculty of Humanities.  
Mostní 5139, 760 01 Zlín, Czech Republic 

(e-mail: samek@ft.utb.cz) 

Abstract: The article deals with the control of the semi-batch reactor that is used in chromium sludge 
processing. To simulate the real process a mathematical model including reaction kinetics was used. The 
parameters of the achieved model were obtained and verified by experiments. The control of the semi-
batch reactor is difficult by common control methods because of the strongly exothermic chemical 
reaction. A model predictive control using artificial neural network is applied to the temperature control 
problem. The system control is generally complicated because of its nonlinearities. 

 

1. INTRODUCTION 

Although the leather industry is environmentally important as 
a user of by-products of the meat industry, it is perceived as a 
consumer of resources and producer of pollutants. 

The most serious problem, which is now of a great 
importance, is chrome-tanned solid waste. One of the 
numerous possible solutions of the problem of chrome-
tanned waste is its enzymatic dechromation. A chromium 
filter cake containing not only the alkali, but also a non-
hydrolyzed protein is obtained. This fact can be used for the 
production of regenerated tanning chromium salts 
(Kolomazník at al. 2007). 

 Chromium filter cake (chromium sludge) processing can be 
done in a semi-batch reactor. Batch reactors provide flexible 
means of producing high value-added products in specialty 
chemical, biotechnical, and pharmaceutical industries. To 
realize the production objectives, these batch reactors have to 
be operated optimally in a precise fashion. However, due to 
the following characteristics: 1. intrinsic nonlinearity; 2. lack 
of steady-state operating conditions; 3. uncertainties in 
reaction dynamics, or modeling error; 4. unknown 
disturbances; 5. constraints on process variables; 6. and 
limited on-line measurement information, the optimization 
and control of batch reactors present some of the most 
interesting and challenging problems for both academia and 
industry in the process control arena (Hua at al. 2004). 

Due to the complexity of the reaction mixture and the 
difficulties to perform on-line composition measurements, 
control of batch and fed-batch reactors is essentially a 

problem of temperature control. The temperature profile in 
batch reactors usually follows three-stages (Bouhenchir at al. 
2006): (i) heating of the reaction mixture until the desired 
reaction temperature, (ii) maintenance of the system at this 
temperature and (iii) cooling stage in order to minimize the 
formation of by-products. Any controller used to control the 
reactor must be able to take into account these different 
stages. 

2. PROCESS MODEL 

In this paper, a fedbatch reactor model is used to study model 
predictive control method application. The model input data 
comes from a real process - the chromium waste recycling 
process (Macků 2003), (Janáčová 2006). Let us consider 
single input – single output (SISO) system of chemical 
exothermic semi-batch reactor. The mathematical model of 
this system can be written by equations (1)-(4). 
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where m is the total weight of reaction components in the 
reactor, a is the mass concentration of the reaction 
component in the reactor, c = 4500 J.kg.K-1 is the specific 
heat capacity of the reactor content, T is the temperature of 
the reactor content. FI, TI = 293.15 K and cI = 4400 J.kg.K-1 
is the reaction component input mass flow rate, temperature 
and specific heat capacity. FC = 1 kg.s-1, TCI = 288.15 K, TC, 
cC = 4118 J.kg.K-1 and mC = 220 kg is the cooling water mass 
flow rate, input temperature, output temperature, specific heat 
capacity and weight of the cooling water in the cooling 
system of the reactor, respectively. Other constants: 
A = 219.588 s-1, E = 29967.509 J.mol-1, R = 8.314 J.mol-1.K-1, 
ΔHr = 1392350 J.kg-1, K = 200 kg.s-3.K-1, S = 7.36 m2. 

3. MODEL PREDICTIVE CONTROL 

The task was to control the in-reactor temperature T by 
reaction component dosing FI. The desired value of 
temperature T was 370K and the maximum value shouldn’t 
exceed 373K. The actuating variable FI was from the interval 
<0,3> kg.s-1. 

The basic idea of model predictive control (MPC) is to use a 
model to predict the future output trajectory of a process and 
compute a series of controller actions to minimize the 
difference between the predicted trajectory and a user-
specified one, subject to constraints (Garcia at al. 1989), 
(Camacho 2004), Fig. 1. 

PLANT

MODELOPTIMIZATION

y

y

u

u*

CONTROLLER
reference 
trajectory

predicted outputspredicted control errors e

constraintscost
function

w  

Fig. 1. The basic scheme of model predictive control. 

Generally we can say that MPC uses a predictor network 
(ANN) as the plant model in order to get its output 
predictions. The controller then calculates the control input 
that will optimize the performance criterion over a specified 
future time horizon (Zhang 2008). Typical form of the 
performance criterion J is as follows: 
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where N1, N2 and Nu define horizons over which the tracking 
error and the control increments are evaluated. The ut 
variable is the tentative control signal, yr is the desired 
response and  is the predictor response. The λ and ρ 
parameters determine the contribution that the particular sum 
has on the performance index. 

ŷ

The selection of predictor is a key question in the model 
predictive control (Mazinan 2008). Because the controlled 
system is nonlinear, an artificial neural network (ANN) was 
selected (Volosencu 2009). After many simulations and tests 
the multilayered feed-forward neural network with three 
layers was chosen as the best solution from the wide group of 
artificial neural networks. From the figure 2 can be seen that 
as a transfer function the hyperbolic tangent was used in the 
both hidden layers, while in the output layer the linear 
function was applied. The ANN predictor used five last 
values of the system output and the controlled signal as an 
input. The ANN based predictor was trained offline using 
offline prepared identification data. 

The minimization of the performance function is in the linear 
MPC typically provided by quadratic programming (Tondel 
at al. 2003), (Kouvaritakis at al. 2002). Nevertheless, because 
of the nonlinearity of the predictor and the usage of 
constraints it was necessary to apply a numerical 
optimization method. Therefore, the Levenberg-Marquart 
method, which is implemented in the Matlab Optimization 
Toolbox (Venkataraman 2009), was used in this paper. 

 

 

Fig. 2. The based on artificial neural network. 
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Fig. 3. The in-reactor temperature development – MPC1. 
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Fig. 4. The temperature in the cooling system – MPC1. 
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Fig. 5. The in-reactor chromium sludge concentration 
development – MPC1. 
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Fig. 6 The mass of reaction mixture – MPC1. 

In the figures 3, 4, 5 and 6 there are presented results of 
selected simulation of control using MPC controller with the 
criterion function (6). The presented simulation used the 
following settings of the controller: λ =1000, ρ =100000, 
N1=1, N2=8, Nu=8. However, this “standard” approach does 
not provide satisfactory performance in case of this semi-
batch plant. The time of the batch must be as short as possible 
because of the economical reasons. But it is impossible to 
obtain fast batch without overshoot of temperature by any 
combination of controller parameters. The increase of ρ 
parameter can reduce the temperature overshoot but in the 
cost of long batch time. 

Therefore, the third part to the criterion function (5) was 
added in order to reduce the speed of dosing (control signal 
u). The γ parameter determines the influence of nominal 
values of future control signal on the cost function (6). 
Results obtained using this cost function is in the following 
text denoted as MPC2. The settings of the controller were: 
λ=1000, ρ=10000, γ =10000, N1=1, N2=8, Nu=8. As can be 
seen from figures 7, 8, 9 and 10, the controller has permanent 
control error. In order to show this negative behaviour more 
clearly, it is assumed in the MPC2 that there is unlimited 
amount of the chromium sludge (batch input). 
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It can be deduced from MPC2 results that the size of the 
control signal had to be penalized in the beginning of the 
batch only. Thus, the criterion function (6) was modified into 
the form defined by equations (7) and (8). Then, the γ 
parameter was during the control gradually decreased up to 
zero in order to avoid the permanent control error. In other 
words, the third sum in the beginning of the control has the 
maximum value, and after initial phase it equals to zero. The 
γc parameter determines the speed of the decrement in γ. 
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Fig.7 The in-reactor temperature development – MPC2. 
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Fig.8 The temperature in the cooling system – MPC2. 
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Fig.9 The in-reactor chromium sludge concentration 
development – MPC2. 
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Fig.10 The mass of reaction mixture – MPC2. 
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Fig.11 The in-reactor temperature development – MPC3. 
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Fig.12 The temperature in the cooling system – MPC3. 
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Fig.13 The in-reactor chromium sludge concentration 
development – MPC3. 
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Abstract: This paper deals with the modelling and control of semi-batch reactor used for chromium sludge 

regeneration process. A comparison of three process control approaches is presented. Usual PID controller 

without online identification (OI) and adaptive PID controller were adapted to semi-batch rector process in 

our previous studies. In this study the two-degrees-of-freedom (2DOF) controller is developed for the 

same reactor control. 



1. INTRODUCTION 

Batch and semi-batch reactors are widely used in chemical, 

biotechnical, and pharmaceutical industries. To obtain the 

desired product quality during the production period an 

accurate temperature control is required. The temperature 

profile in batch and semi-batch reactors usually follows three 

stages (Bouhenchir et al. 2010): (i) heating of the reaction 

mixture up to the desired reaction temperature, (ii) 

maintenance of the system at this temperature and (iii) 

cooling stage in order to minimize the formation of by-

products. Any controller used to control the reactor must be 

able to take into account these different stages. 

 In the literature some papers have been published which 

discuss the control of a batch or semi-batch reactor. A global 

linearization control strategy was applied, with online state 

and parameter estimation for a polymerization reactor (Beyer 

et al 2008). However, the authors concluded that the 

implementation of the proposed method is still difficult due 

to the missing support of required mathematical functions. 

The other approach was used in the next study (Cho et al. 

2008), where the authors applied a dual-mode control 

improved by iterative learning technique. Simulations 

showed that the proposed method can enhance the 

conventional DM control with modest efforts. For rapid and 

suitable reference-trajectory tracking a self-adaptive 

predictive functional control algorithm by Škrjanc was 

recommended (Škrjanc 2007). This approach was successful 

in a reactor with switching between cold and hot water in the 

inlet. Neural network was applied to similar system (Wu et 

al. 2010) to accommodate the online identification of a 

nonlinear system.  The authors found this strategy effective in 

identification and control of a class of time-varying-delayed 

nonlinear dynamic systems. Neural networks are often 

presented as a good method to reach useful results in batch 

processes. Some authors recommended using a tuning 

parameter allowing the designer to select the damping of the 

closed-loop responses (Gorez 2003). A damping factor was 

tested in milking machine vacuum control (Reinemann 

2005). Author argued that the damping factor is influenced 

by the system design as well as the amount of damping in the 

regulation device itself. Reinemann found the best value of 

damping factor = 1. Damping factor < 1 was causing 

oscillations. On the other hand, damping factor > 1 led to 

under-shoot. In another paper (Haugen 2005) was damping 

factor adjusted to the value 0,6 instead 1 for obtaining faster 

dynamics using Skogestad’s method.  

This paper presents results of experiments obtained by 

simulations and control of the semi-batch process using PID 

controller without online identification, adaptive PID 

controller and pole placement 2 degree-of-freedom (2DOF) 

controller with compensator for second order processes. The 

paper is organised as follows. In section 2, the semi-batch 

reactor and 2DOF controller are described; section 3 presents 

simulation results and section 4 concludes the current work 

and suggests new areas for investigation. 

2. METHODS SECTION  

2.1 The semi-batch reactor model 

To simulate tanning salts from chromium sludge regeneration 

process a mathematical model is used. The chemical reactor 

scheme is shown in Fig 1. We can see there a vessel with a 

double wall used for a cooling liquid circulation. It has two 

inputs and one output. Inputs are for the cooling liquid and 

for the chemical compound dosing, output only for the 

cooling liquid. 
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Fig. 1. Chemical reactor scheme 

The mathematical model of the fed-batch reactor is defined 

by differential equations 1-4. 
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   (4) 

The reactor model comprises the total mass balance (1), 

chromium sludge mass balance, where 
FK

m is used as control 

signal in this process (2), the enthalpy balance (3) and coolant 

heat balance (4). Further variables and the parameters of the 

reactor model are listed in Table 1. In Eq. (2), k [s
-1

] is the 

reaction rate constant expressed by the Arrhenius equation: 

)(tRT

E

Aek


  (5) 

Detailed description of this model is given in Macků (2003). 

2.2 Pole placement 2 degree-of-freedom controller with 

compensator for second order processes 

In this work, 2DOF controller was applied to calculate the 

optimal temperature trajectory to reach desired properties in 

minimum time. 

 

Fig. 2. 2DOF control loop 

Table 1 - Variables and parameters of the reactor model 

Fig.
1 p

m  [kg] Initial amount of reaction solution 

(1) 
FK

m [kg.s-1] Mass flow of the entering chromium sludge 

)(tm [kg.s-1] Accumulation of the in-reactor content 

(2) 

)(ta
FK

[-] Mass concentration of the chromium sludge 

)(tm [kg] Weight of the reaction components in the system 

k [s-1] The reaction rate constant 

(3) 

FK
c [J.kg-1.K-1] 

Chromium sludge specific heat capacity  

(cFK  = 4400 J.kg-1.K-1)   

Rc [J.kg-1.K-1] 

Reactor content specific heat capacity  

(cFK  = 4500 J.kg-1.K-1) 

FKT [K] Chromium sludge temperature 

r
H [J.kg-1] 

Reaction heat (ΔHr = 1392350 J.kg-1) 

K [kg-3.K-1] 
Conduction coefficient (K = 200 kg-3.K-1) 

S [m2] Heat transfer surface (S = 7,36 m2) 

)(tT [K] Temperature of reaction components in the reactor 

)(tTv
[K] Temperature of coolant in the reactor double wall 

(4) 

vm [kg.s-1] Coolant mass flow 

vc [J.kg-1.K-1] Coolant specific heat capacity (cv  = 4118 J.kg-1.K-1) 

vpT [K] Input coolant temperature 

vRm [kg] 

Coolant mass weight in the reactor double wall 
(mvR  = 220 kg) 

(5) 

A [s-1] Pre-exponential factor (A = 219,588 s-1) 

E [J.mol-1] 
Activation energy (E = 29967,5087 J.mol-1) 

R [ J.mol-1.K-1] 
Gas constant (R = 8,314 J.mol-1.K-1) 

Feedback controller: 
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Feedforward controller for a step reference signal: 

)1)(1()()P(z

)R(z
11

1

0

11-
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r
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Characteristic polynomial of closed loop: 

)()()()()()( 111111   zDzQzBzKzPzA  (8) 

Where polynomials are as follows: 
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where   is damping factor and   is natural frequency. Both 

parameters specifying dynamic behaviour of closed loop. The 

dynamic behaviour of the closed-loop is similar to second 

order continuous system with characteristic polynomial 
22 2   ss . 

Matrix equation: 
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Control law: 
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2.2 Online identification method 

Proportional-integral-derivate (PID) controllers have been the 

most commonly used feedback controllers in the past years. 

The popularity and widespread use of PID controllers 

attributed to their simplicity and robustness but it cannot 

effectively control some complicated or fast running systems 

since the response of a plant depends on only the gain P, I 

and D. Most of the PID tuning rules developed in the past 

years use the conventional methods. For example, the 

Ziegler-Nichols approach often leads to a rather oscillatory 

response to set-point changes because of system non-

linearities and various uncertainties such as modelling error 

and external disturbances. These methods provide simple 

tuning formulae to determine the PID controller parameters. 

However, since only a small amount of information on the 

dynamic behaviour of the process is used, in many situations 

they do not provide good enough tuning or produce a 

satisfactory closed-loop response.  

This was the reason to improve classical PID controller with 

parameters tuned according to Ziegler-Nichols from previous 

study (Novosad 2007). Controller was equipped by recursive 

least squares identification based on ARX model which can 

be used for the discrete on-line identification of processes 

described by the following transfer function: 
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 (23) 

The estimated output of the process in the step is computed 

on the basis of the previous process inputs and outputs 

according to the equation: 
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where mn bbaa ˆ,...,ˆ,ˆ,...ˆ
11  are the current estimations of the 

process parameters. This equation can be also written in 

vector form, which is more suitable for further work: 
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The vector 1k  contains the process parameter estimations 

computed in the previous step and the vector k  includes 

output and input values for computation of current output ky . 

This on-line identification is also used for 2DOF controller. 

3. RESULTS SECTION 

Identification of suitable models which accurately describe a 

batch reactor process is essential to successful optimization 

and control. In this study, on a semi-batch reactor by means 

of a simulation, 2DOF controller was tested and the effect of 

changes of the various parameters for a quality of the 

regulation process was monitored. 

First,   (damping factor) coefficient was adjusted. In this 

aspect it must be said that some authors (Haugen 2005) 

introduced the recommended values of parsliameter   

around 1; however, these values were not suitable in our case. 

It is necessary to use a far higher value. In Fig. 3, several 

temperature profiles with different   coefficients are plotted. 

As can be seen, the performance of the 2DOF is the best for 
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parameter 45 . In cases of lower  , the setpoint is 

overshot (Fig 3. and Fig. 4.).  

Cooling stage occurs when the reactor is full and the feeding 

is stopped. 

 

Fig. 3. Comparison of the temperature profiles for different 

damping factor 

 

Fig. 4. Comparison of the temperature profiles for different 

damping factor – detailed view 

 

Fig. 5. Comparison of the temperature profiles 

Figure 5 and 6 shows comparison of different methods of 

controlling semi-batch process. It can be seen that behaviour 

of PID controller without online identification and 2DOF 

controller are almost similar, both without oscillating and 

overshoots. In case of 2DOF, setpoint is reached faster for 

about 250 s. On the other hand, the performances in case of 

PID controller is slightly worse with overshoot at the 

beginning of the process and followed by undershoot. 

 

Fig. 6. Comparison of the temperature profiles – detailed 

view 

Some differences in feeding can be also showed (Fig. 7). 

Maximum feeding (3 kg.s
-1

) is reached in cases of controllers 

with online identification (adaptive PID and 2DOF). 2DOF 

controller provides the highest rates of the feeding at the 

beginning of the process and then feeding fall until the zero - 

feeding is stopped for about 150 s. 

 

Fig. 7. Comparison of the feeding profiles at the beginning of 

the process 

4. DISCUSSION SECTION 

In this study, the 2DOF controller for the temperature control 

in a semi-batch reactor was demonstrated by simulation 

means. The process control sensitivity is influenced by 

damping factor parameter. In general it can be said that 

increasing of damping factor leads to reducing the overshoot 

and the response becomes slower. The implemented control 

strategy was also compared with two control strategies using 

Cooling stage 
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PID controllers applied on the same process in the previous 

works (Novosad 2007, Novosad & Macků 2010). Based on 

presented results it can be concluded that proposed 2DOF 

controller can effectively overcomes problems with 

oscillating around the desired value in comparison with PID 

controller without online identification. The quality of the 

regulation process in cases of controllers with implemented 

online identification (adaptive PID and 2DOF) shows 

satisfactory results.  

There are still some other methods, which could possibly 

improve this process. In the future work, some other 

approaches will be applied to the batch process to find out 

other possible ways. 
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Abstract: This paper deals with real-time implementation of Model Predictive Control (MPC)
of a fan heater system using Programmable Logic Controller (PLC) platform. The MPC problem
is solved using parametric programming techniques, which encode the optimal control moves as a
lookup table. The challenge then becomes how to implement such a table on a memory-restricted
device. The proposed design procedure is illustrated on real-time control of a laboratory heat
exchange plant.

Keywords: model predictive control, programmable logic controllers

1. INTRODUCTION

Model predictive control (MPC) is an attractive approach
widely used in industry to control a broad range of the
systems due to its ability to provide optimal perfor-
mance while taking process constraints into account (Ma-
ciejowski, 2002). In MPC the control objectives are trans-
lated into an optimization problem, which is formulated
over a finite prediction horizon. The result of the opti-
mization is a sequence of optimal control moves which
drives system states towards a given reference point while
respecting system constraints (such as upper and lower
limits on the inputs and states) and optimizing a selected
performance criterion. Traditionally, MPC is implemented
in a so-called Receding Horizon fashion where the optimal
control move is achieved by solving optimization problem
in each time instance for a newly measured state. This
approach induces lot of computation load at each sampling
time, which might be prohibitive if not enough computa-
tion power is available or if sampling time is too short.

If less powerful control platforms are employed, additional
care has to be taken to respect real-time constraints. One
approach to decrease computational load involved in ob-
taining of optimal control action u∗ for a particular value
of x is to “pre-compute” the optimal solution to a given
optimization problem for all possible initial conditions of
x using parametric programming techniques (Bemporad
et al., 2002). The optimal control can be then found as
an explicit function u∗(x) mapping the states to the con-
trol inputs. The function is computed off-line and takes
a form of lookup table. Implementation of such a table
can be done very efficiently on-line, as the evaluation
of the feedback law involves only matrix multiplications,
additions and logic comparisons. As a consequence, real-
time implementation of such an explicit MPC can be done
much faster compared to traditional on-line MPC fashion.

In this work we aim at implementing explicit MPC on a
Programmable Logic Controller (PLC) restricted to 1024
bytes of memory. Three factors determine whether the
design procedure will be successful:

(i) whether it is possible to construct the explicit MPC
controller off-line in an automated fashion;

(ii) whether the controller is reasonably small as not to
exceed the memory capabilities of the PLC;

(iii) whether the controller can be implemented using
programming instructions which the control device
understands.

In the paper we illustrate how to synthesize the parametric
solution to MPC optimization problem using the Multi-
Parametric (MPT) Toolbox (Kvasnica et al., 2004) and
how to implement it on a PLC. First, we introduce the
controlled plant and derive its mathematical model. Then
we show which commands have to be used to set up the
MPC optimization problem and how to synthesize the
explicit MPC controller using MPT. Having a lookup table
we introduce an algorithm capable to transform it into
a binary search tree (BST), which can be downloaded
directly to the PLC. At the end we show results of the
laboratory plant control using explicit MPC controller
provided on the PLC.

2. PHYSICAL SETUP

2.1 Controlled Plant

The laboratory Air-stream and Temperature Control
Plant LTR 700 (Svet́ıková et al., 2003) is produced by the
German company Amira. It consists of a fan, a heating
coil, a differential pressure sensor, a temperature sensor,
and an actuator box.

This plant is designed for heating the entering medium.
Commonly, air is the medium which is intake to the plant
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thanks to the fan. The entering air is further heated by
heating coil. In order to obtain hot air of desired amount
and temperature, we can manipulate the fan speed or the
amount of heat generated by heating coil. In this work,
the heating coils output is set to constant value (50%).
We aim at controlling only the air-flow rate (manipulated
variable) by fan speed (control variable).

The plant is schematically illustrated in Fig. 1. Actual
temperature and air-flow can be measured by sensors (TI,
FI).

Fig. 1. Sensors in the air heater.

It is possible to implement several control configurations
ranging from simple feedback loops, through cascade loops,
up to multivariable control with two inputs and two
outputs.

Airflow The plant converts air-flow value to a current
signal in a range of 10.4-20mA. This output signal is
connected to the 3rd input of analog I/O module which
is shown in Fig. 2. For our control program, the connected
signal is converted into an integer number with physical
address AIW4 (A – analog, I – input of the PLC, W -
memory size of 16 bits, 4 – 3rd input to PLC). This integer
is converted into a corresponding quantity expressed in
mA units by the following relation:

x[mA] =
AIW4− 0.596

1583.026
, (1)

Corresponding value of the state in a percentage range is
achieved by

x[%] =
x[mA] − 10.4

0.096
, (2)

Fan speed Formula which relates actual control action
u[%], expressed in percentage rage, and a current signal
output to the fan engine in mA units is

u[mA] = 0.2u[%], (3)

Therefore, corresponding integer representation of the out-
put is

AQW0 = 1585.917u[mA] + 51.23, (4)

where AQW0 is a physical address (A – analog, Q – output
of the PLC, W –memory size of 16 bits, 0 – 1st output
from PLC). This input signal is connected to the output
of analog I/O module which is shown in Fig. 2.

The mathematical model of the fan airflow can be captured
by one differential equation of the following form

dV

dt
= kD3

Mf − V (5)

Here, V represents volume of air flow, k denotes a pro-
portionality coefficient as a function of the Reynolds num-
ber of blender, DM is blender diameter and f represents

blender rotation frequency. By linearizing (5) around the
steady state f s and V s, the following transfer function
model can be derived

G =
kD3

M

s + 1
=

Z

Tvs + 1
, (6)

where Z denotes gain of the system and Tv represents time
constant.

Corresponding state-space representation of the fan is

ẋ = Ax + Bu (7a)

y = Cx + Dy (7b)

where x = V − V s is the state and u = f − f s is the
input. Based on the steady state values of the variables
mentioned above, the matrices are defined by

A = − 1

Tv
, B =

1

Z
, C = 1, D = 0.

This linear state-space representation can then be used
to find a closed-form representation of the MPC feedback
law by using techniques of parametric programming as
described in Section 3.

2.2 PLC

A programmable logic controller (PLC) is a special digital
computer often used in process automation such as for
control of machinery on factory assembly lines, amusement
rides, or lighting fixtures. Unlike general-purpose com-
puters, PLCs are designed for multiple input and output
arrangements, extended temperature ranges, immunity to
electrical noise, and resistance to vibration and impact.
Programs to control machine operation are performed in
constant length cycles (Siemens, 2008).

In this work, we have used the SIMATIC S7-200 micro
PLC, which is exceptionally compact, remarkably capa-
ble, fast and comes with easy to operate hardware and
software. It has a modular design, still open-ended enough
to be expanded. The main components of the selected PLC
are briefly described next.

CPU The S7-222 CPU can be seen on the left side
in Fig. 2. Important to notice is that the CPU only
provides 1024 bytes of memory for program data. This
limit is both restrictive and challenging from the control
synthesis point of view. Another limitation is that control
algorithms have to be developed using so-called ladder
logic, a visual programming language which only requires
the algorithm to be composed of most basic operations
(e.g. sums, products, comparisons, etc.).

Real-time data measurements can be stored on a memory
cartridge (Siemens, 2008), marked by “MC” in Fig. 2. In
our case it provides a 256kB storage for measured signals,
which could be captured at a 0.04 second sampling rate.
The captured data can subsequently be opened in MS-
Excel.

Power Source Power source (LOGOPower 6EP1332-
1SH42) (Siemens, 2010, 2008) is a standard transformer
used to supply PLC from public power network (see
Fig. 2), where the“Power Network”is 1-phase AC line sup-
ply with voltage rate of 100-240V (50/60Hz) to isolated
output voltage 24VDC.
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Analog I/O Module Module EM235 is necessary for the
PLC to communicate with the controlled plant by means
of analog signals. The module is shown in Fig. 2, where
it is situated in between the central processor unit and
the power source. The module allows 4 analog inputs and
one analog output to be connected. Inputs have to be
connected and configured corresponding way. The outputs
in addition have to have correct HW configuration. For
setup the outputs to the 0-20mA we have to set a set of
6 switches. The set is placed right bottom corner of the
EM235 in Fig. 2. For our purpose we have set them as in
Fig. 3. The PLC communicates with the master PC by a
9 pin RS 486 port, located under the memory cartridge.

Fig. 2. PLC connections to the plant.

Fig. 3. Setting of the EM 235 inputs.

3. EXPLICIT MODEL PREDICTIVE CONTROL

In model predictive control (MPC), the optimal control
actions are found by optimizing for plant behavior while
taking process constraints into account. This is always
achieved by formulating and solving an optimization prob-
lem where a given objective function is minimized subject
to the constraints. A model of the plant is employed as an
additional constraint to capture the predicted evolution of
the plant:

We consider the discrete-time, stabilizable linear time-
invariant model given by the state-space representation

x(k + 1) = Ax(k) + Bu(k), (8a)

y(k) = Cx(k). (8b)

Here, x(k) denotes state at time instance k, x(k + 1) is a
successor state, u(k) is control input, and y(k) is a system
output. It is assumed that variables are constrained by
upper and lower limits

x ≤ x(k) ≤ x, u ≤ u(k) ≤ u, y ≤ y(k) ≤ y (9)

For the system (10) consider now the constrained finite-
time optimal control problem

min
∆u0,...,∆uN−1

N−1∑

k=0

‖ R∆uk ‖p + ‖ Q(y − yref) ‖p (10a)

s.t. x0 = x(t), (10b)

xk+1 = Axk + Buk, (10c)

yk = Cxk, (10d)

xk ∈ X , (10e)

yk ∈ Y, (10f)

uk ∈ U . (10g)

Here p denotes a matrix norm (either p = 1, p = 2 or
p = ∞), the integer N represents the finite prediction
horizon, and R, Q are weighting matrices used to tune
performance of the MPC controller. The linear model
in (10c) serves to predict the future states based on the
knowledge of the initial state x(t), which is assumed to
be available at each time instance. The optimization is
performed over the increments ∆uk to provide offset-free
tracking of the reference trajectory yref. The state, output
and input constraints represented, respectively, by the
polyhedral sets X , Y, and U .

MPC is usually implemented in so-called receding horizon
fashion. Here the optimal solution to the problem (10) is
found for particular value of x(t), which results into the op-
timal sequence [∆u∗

0, . . . , ∆u∗
N−1]. Here ∆uk = uk − uk−1

is the control action increment, used to introduce integral
action. Out of this sequence, only the first element (i.e.
∆u∗

0) is actually implemented to the plant and the rest is
discarded. At the next time instance, a new initial state
measurement x(t) is obtained and the whole procedure
is repeated. This repetitive optimization is performed in
order to introduce feedback control into the procedure
and to deal with possible disturbances and plant model
mismatches.

One can write new control action as uk = uk−1 + ∆uk

which function of previous known control action and
control action increment. The optimization problem (10)
than can be rewritten into the state-space formulation
with extended state feedback x̃k = [xk, uk−1]

T . Therefore,
state-space representation reduces number of optimization
variables from two (uk and ∆uk) to one (∆uk). The time-
varying reference is constrained to be yref,k+1 = yref,k,
hence, state vector can be extended into three states
x̃k = [xk, uk−1, yref,k]T and state-space representation is
defined in the form:

x̃k+1 =

[
A B 0
0 I 0
0 0 I

]
x̃k +

[
B
0
0

]
∆uk = Ãx̃k + B̃∆uk (11a)

yk = [C D 0] x̃k + D∆uk = C̃x̃k + D̃uk (11b)

with all the matrices of appropriate dimensions.

If the initial state x(t) and the value of the reference
signal yref are known, the problem (10) can be solved as
a quadratic problem (QP) for p = 2 and for p = 1 or
p = ∞ as a linear program (LP). Even though efficient
polynomial-time algorithms exist to solve both type of
problems, the time needed to perform the optimization
can be prohibitive of the sampling time is too short, or if
the implementation hardware is very simple and thus less
capable. To address this issue, in their seminal work (Be-
mporad et al. (2002)) have shown (for a quadratic type
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of performance induces) how to solve the problem (10)
parametrically for all admissible initial conditions x(t)
by employing techniques of parametric programming. In
this approach the optimal solution to (10) is found as
an explicit state feedback law parametrized in the initial
condition x(t). The advantage of the parametric solutions
is that the optimal control input can be obtained in real-
time by simply evaluating a look-up table. The main result
of the parametric approach is summarized by the following
theorem.

Theorem 3.1. (Bemporad et al. (2002)). The optimal so-
lution to the problem (10) is a piecewise affine function
of the initial state x0

∆u∗
0 = Frx0 + gr if x0 ∈ Rr (12)

where Rr = {x0 | Hrx0 ≤ Kr} are polytopic regions of the
state space, and Fr and gr are the matrices of the affine
state-feedback law active in the r-th region.

Theorem 3.1 shows that the optimal solution for the prob-
lem (10) can be found as a look-up table consisting of r
components. Therefore, once the table is calculated, MPC
can be implemented in a real time by simply evaluating
the table for the actual measurements of x0 := x(t). The
table can be calculated efficiently using, e.g. the Multi-
Parametric Toolbox (Kvasnica et al., 2004). Performance
of the MPC scheme can be tuned by appropriately adjust-
ing the weighting matrices Q and R, and by a suitable
choice of prediction horizon N .

4. IMPLEMENTATION ON PLC

As already mentioned, typical PLCs have severe memory
limitations. Our PLC, in particular, only allows 1024 bytes
of memory storage. A special care has thus to be taken
when evaluating the explicit MPC feedback (encoded as
a lookup table composed of feedbacks Fr, gr, and regions
Rr) on such a device. To perform this task efficiently, we
employ the binary search tree (BST) algorithm.

The basic idea of BST algorithm is to hierarchically
organize the controller regions into a tree structure where,
at level of the tree, the number of regions to consider is
decreased by a factory of two. Therefore the table traversal
can be performed in time logarithmic in the number of
regions. The tree is constructed in an iterative fashion. At
each iteration an optimal separating hyperplane hix(t) ≤
ki is selected such that the set of all regions processed
at the i-th iteration is divided into two smaller subsets:
regions R+

i residing on one side of the hyperplane and
R−

i on the other side. A new node in the tree is then
created which contains information about the hyperplane
and two pointers to child nodes. The left child is created
by recursively calling the algorithm for regions R+

i and
the right child for the regions R−

i . The exploration of a
given tree branch stops when no further subdivision can
be achieved. In such a case a leaf is created which points to
the region which contains x(t). The resulting tree is then
composed of the set of separating hyperplanes linked to
the actual regions through a set of pointers.

To be able to use a BST-encoded tree on a PLC, the
tree is transformed into a so-called “data-block”. In this
data table, first M entries represent one hyperplane and
pointers to next line which should be explored. Obtaining

Fig. 4. A short excerpt of the LAD implementation of
Algorithm 1

the optimal control action for a particular value of x
then reduces to traversing the binary search tree using
Algorithm 1.

Algorithm 1 Table traversal via binary search tree

INPUT: BST tree composed of separating hyperplanes
hix ≤ ki, i = 1, . . . , M and linked nodes, state mea-
surements x(t)

OUTPUT: Optimal control input u∗(x)
1: r ← 1
2: repeat
3: if hrx ≤ kr then
4: r ← index of the left child node (negative index)
5: else
6: r ← index of the right child node (positive index)
7: end if
8: until r is a leaf node (positive index).
9: u∗

0(x(t)) = Frx(t) + gr

The PLC version of Algorithm 1, implemented using the
Ladder Logic (LAD) programming language, is universal
and can process any kind of lookup tables described by
binary search trees. The LAD diagram consists of several
routines and subroutines, a short excerpt of which is shown
in Fig. 4. The program allocates 74 bytes of global memory
in main routine and at most 34 bytes of temporary memory
in subroutines. The total amount of memory allocated for
controller is 874 bytes, the rest (150 bytes) remains to user.

5. EXPERIMENTAL RESULTS

In this section we show how MPC could be used for control
of the fan heater described in the Section 2 using PLC.
The control objective is to drive the volume of air flow
to a time varying reference yref while respecting motor
capacity 0% ≤ f ≤ 100% and volume of the air flow
0% ≤ V ≤ 100%. The following mathematical model of
the fan heater was obtained using identification methods:

G =
5.12

0.4726s + 1
e−0.3s. (13)

MPC synthesis using the Multi-Parametric Toolbox begins
with a definition of the prediction model:

>> A=-0.1953; B=0.0923; C=1; D=0;
>> fan=ss(A,B,C,D)
>> Ts=0.25
>> model=mpt_sys(fan,Ts)

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Wednesday

391



where the model is converted into the discrete-time domain
using sampling time Ts. Time delay of the model can be
omitted as it is less than the time constant and the real
time verification proved such model to be satisfactory.
Next, constraints on state, input and output are defined:

>> model.umax=100-fs; model.umin=0-fs;
>> model.xmax=100-Vs; model.xmin=0-Vs;
>> model.ymax=100-Vs; model.ymin=0-Vs;

Notice that the constraints are imposed on the devi-
ation variables with linearization points f s = 15% and
V s = 30%.

Once the model is complete, parameters of the MPC
problem to be solved could be defined by

>> problem.R=1; %penalty on u_k
>> problem.Q=1; %penalty on x_k
>> problem.Qy=1000; %penalty on (y_k-y_ref)
>> problem.N=5; %prediction horizon
>> problem.norm=2; %use quadratic cost
>> problem.tracking=1; %use time-varying

reference

Values of the penalty matrices R and Qy were chosen with
respect to allowed number of regions (which reflect the
memory footprint of the controller). The number of regions
can be reduced by lowering R and increasing the value of
Qy. The upper bound on the number of regions is 26 for a
controller with 1 state and 1 input, otherwise the controller
footprint would exceed 1 kB.

Finally, the parametric solution to problem (10) can be
calculated as a lookup table using the command

>> ctrl=mpt_control(model,problem)

Result of the composition is, in this case, a lookup table
consisting of 25 regions in a 3D state-space. State-space
representation used in the controller consist of the follow-
ing matrices

Ã =

[
0.8226 0.3199 0

0 1 0
0 0 1

]
, B̃ =

[
0.3199

0
0

]
(14a)

C̃ =

[
1 0 0
0 1 0
0 0 1

]
, D̃ =

[
0
0
0

]
(14b)

BST tree is constructed from the lookup table using the
MPT command

>> tree=mpt_searchTree(ctrl)

In our case, tree consists of 25 nodes in 7 levels, which
corresponds to 724 bytes of memory. Selected parts of the
data-block are depicted in Fig. 5. The number of values
in one line corresponds with number of the state variables
and constant.

The data are subsequently downloaded to the PLC, which
then executes the table traversal at each sampling instance
based on the measurements of the states. When the region
for the actually measured state is found, Algorithm 1
is executed and the corresponding control input to the
system is calculated as

Fig. 5. A short excerpt of the data-block provided on the
PLC.

uk = uk−1 + ∆u∗ (15)

with state-feedback law ∆u∗ = Fix̃k +gi, where x̃k is state
variable of the system (11).

The data-block representing the controller was down-
loaded to the PLC to perform real-time experiments. First,
ability of the controller to follow a time-varying reference,
where user can change a setpoint at any time, is docu-
mented in Figs. 6–7.

System response near the and upper bound is without os-
cillations within a reasonable settling time, while response
around the middle and near the lower bound has longer
settling time. Such response can be caused by different
behavior of the plant throughout the state ranges. That
means, several models are necessary to describe plant be-
havior sufficiently. Therefore, possibility how to eliminate
oscillations, is to control the plant as a hybrid system,
which is not possible due to restricted amount of the
memory.

To reduce long settling time, one can approximate time
delay in model (13) by Taylor series or Padé approxima-
tion. This approach results in the better but more complex
model with more regions, thus impossible to apply on PLC.
The maximum amount of regions is function of the number
of state variables. Therefore, if one wants more regions,
either a simpler model is required or region reduction
techniques have to be employed (Kvasnica et al., 2011;
Kvasnica and Fikar, 2010).

Real data presented in Figs. 6–7 show that the MPC
controller utilizes the predictions to change the value of
the input signal in the same period as the reference was
changed, such that output signal is steered towards this
reference. Experiment also proved that MPC controller
with time-varying reference can be implemented on the
PLC in a real time.

6. CONCLUSIONS

In this paper we have shown how MPC can be imple-
mented on a programmable logic controller with severe
limitations on allowed memory storage. The approach was
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Fig. 6. Control of the fan heater tracking time-varying
reference.
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Fig. 7. Control of the fan heater with disturbance during
the tracking of time-varying reference.

based on the pre-calculating the solution to the MPC op-
timization problem just once, for all possible initial condi-
tions. The result is then given in the form of a lookup table.
Such a table was subsequently encoded as a binary search
tree for its efficient evaluation in real time. Experimental
results confirm that the controller provides satisfactory
performance while respecting design constraints.
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Abstract: This paper presents the H∞ synthesis of control for an active suspension design based on an 
extended quarter-car model. The usage of automobile active suspension has two main reasons, to increase 
ride comfort and to improve handling performance. Both this requirements are contradictory. To obtain the 
model performances and solve the H∞ synthesis the Matlab software with the Robust Control Toolbox has 
been used. The benefits of controlled active suspensions compared to passive ones are here emphasized. 

 

1. INTRODUCTION 

Vehicle suspension has been a hot research topic for many 
years due to its important role in ride comfort, vehicle safety, 
road damage minimization and the overall vehicle 
performances. To meet these requirements, many types of 
suspension systems, ranging from passive, semi/active, to 
active suspensions, are currently being employed and studied. 
It has been well recognized that active suspension has a great 
potential to meet the tight performance requirements 
demanded by users. Therefore, in recent years more and more 
attention has been devoted to the development of active 
suspensions and various approaches have been proposed to 
solve the crucial problem of designing a suitable control law 
for these active suspension systems. In many control 
applications, it is expected that the behaviour of the designed 
system will be insensitive (robust) to external disturbance and 
parameter variations. It is known that feedback in 
conventional control system has the inherent ability of 
reducing the effects of external disturbances and parameter 
variations. In this paper, the H∞ control design problem is 
converted into a convex optimization problem described by 
linear matrix inequalities LMI, Zhou (1998).   

The H∞ method addresses a wide range of the control 
problems, combining the frequency and time-domain 
approaches. The design is an optimal one in the sense of 
minimization of the H∞ norm of the closed-loop transfer 
function. The H∞ model includes coloured measurement and 
process noise. It also addresses the issues of robustness due 
to model uncertainties, and is applicable to the SISO system 
as well as to the MIMO system, Gawrovski (2004). In this 
paper is present the H∞ control design for quarter-car active 
suspension system. 

2. THE SUSPENSION MODEL 

The usually used quarter-car model has two degrees-of-
freedom see Fig.1. It includes the vertical motion of the 
sprung mass m2 which represents the car body with 
passengers and the unsprung mass m1 which corresponds to 
the mass of the wheel and suspension. The disturbance input 

w is the road profile. x1 represent the positions of the sprung 
mass and x2 the positions of the unsprung mass.  

 

Fig. 1. Extended quarter car with active suspension 

Table 1: The values of Parameters in quarter-car 

Description Units Values 
Body (sprung)  Mass m2 (kg) 350 
Axle (unsprung) Mass m1 (kg) 35 
Suspension Stiffness k1 (N/m) 200 000 
Suspension Stiffness k2 (N/m) 14 000 
Tire Damping b1 (Ns/m) 500 

Tire Damping b2 (Ns/m) 1600 
Damper Stiffness k3 (N/m) 250 000 

 

2.1 Rheological damper model 

Usually the suspension is modelled by means of a linear 
damper and a spring. However also the real spring has 
basically a linear characteristic, the real damper has a 
nonlinear and a considerable hysteresis caused primarily by 
the oil compressibility (bulk modulus – β=0,8 (Pa)). These 
properties can by well modelled by means of the Maxwell 
element Fig.2., Guglielmino (2004). 
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Fig. 2. Rheological damper model (Maxwell element) 

The spring k3 represents the mentioned stiffness of the 
dampers hydraulics circuit and can by calculated as  
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where dp = 0,022 (m) is the diameter damper rod and V ≈ 
0,0003 (m3) is the mean volume of the damper pressure and 
expanse chambers.  

The rheological damper properties for different damper 
values b2 are shown in Fig 3. 
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Fig. 3. Characteristic of a rheological damper model   

2.2 State space modeling 

The state space representation of the controlled system of an 
extended quarter car model Fig.3 can be formalized as 
following: 

 

uDwDxCz

uDwDxCy

uBwBAxx

22212

12111

21

++=
++=

++=&

                           (2) 

 

where the state vector x, output vector y and vector of 
measurement z are defined as following: 

 

[ ]Txxxxxwxx 3211211 &&&−−=                  (3) 

[ ]TdynFxxxy 122 −= &&                              (4) 

[ ]Txxxxz 1221 −= &&                                (5) 
 

The state space matrices are defined following: 
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2.3 Suspension performances and weighting filters  

In this paper, the following performance aspects of quarter-
car suspension system are taken into account: 

1. Ride comfort – can be quantified by the car body 
acceleration 2x&&  

2. Suspension deflection limitation – the travel space does 
not need to be minimal but its peak value need to be 
constrained.  
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3. Road holding ability – in order to ensure a firm 
uninterrupted contract of wheels to road, the dynamic 
tyre. 

The feedback structure is shown in Fig. 4. It includes the 
input W1 and output W2 weighting functions, the extended 
quarter car model P(s) and the controller model K(s).  

 

 

Fig. 4. The active suspension control scheme  

 
The input weight (13) includes the road disturbance filter and 
the weight for the actuator force. 
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Where the constants Aw represents the power of chosen road 
type and the WButter0,5Hz represents a classics high pass 
Butterworth analogue filter with a cut-off frequency 0,5(Hz). 
uc represents the value of the critical force produced by the 
controlled actuator. 

The output weights (14) for the optimized values y and for 
the measured values z are:  the matrix of weighting functions 
is chosen as: 
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where Wacc is the weighting filter of acceleration, definite in 
norm ISO 2631. 
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Where the values represent: ac – critical weighted 
acceleration acting on the human body chosen from the ISO 
2631, xc – critical suspension deflection given by the 
suspension design and FDc – critical dynamic tyre force 
gravity of the static weight which is acting on the tyre. 
Dividing each of the optimized parameters with his critical 
value, we are used normalization and so the weighted and 
normalized optimized parameters will have no units. 

The magnitude frequency characteristics of the road and 
sprung mass acceleration filters are shown in Fig.5.  
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Fig. 5. Bode plot of Wroad and Wacc filters 

3. H∞ CONTROLLER DESING 

When open loop is denoted Tyw,, then a standard optimal H∞  
controller problem is to find admissible controller K such that 

∞yuT is minimal. The problem of finding a suboptimal H∞ 

controller can be formulated: for given γ > 0 find all 
admissible controllers K, they exits, such that 

 

∞yuT < γ        (18) 

 

3.1 Solution 

The solution of this problem requires the solving of two 
Ricatti equations, one for controller and one for the observer, 
Gawrovski (2004). 
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Fig. 6. The central H∞ closed-loop system 

The control law is given by 

 

xKu c
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and the state estimator equation by  
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where 
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The controller gain is Kc as for the LQG case, and the 
estimator gain is eKZ∞ instead of Ke  as for the LQG case, 

with 
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The terms X∞ and Y∞ are solutions to controller and estimator 
Ricatti equations 
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We do not carry out these calculations by hand – the tools 
supplied by Matlab Robust Control Toolbox just do that. 

4. SIMULATION RESULTS 

In the next chapter are results in frequency and time domain 
compared. The results have bean solved using the model 
shown in the Fig. 1 and its parameters are stated in the Tab. 
1. 

4.1 Frequency Response Simulations 

In the next figures the performance magnitudes of the 
considered active and passive vehicle suspensions are 
compared. In Fig.7 the weighted acceleration of the car body 
is shown. We can read that the active suspension system has 
better comfort performances from all around the first system 
eigenfrequency. After the second eigenfrequency the 
performance of the passive system is better but that is not so 
important region of frequencies for the comfort criterion an 
also in real model it is very difficult to control vibrations at 
so high fervencies. So the active system would acting anyway 
like a passive one.   
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Fig. 7. Bode plot of the weighted and normalized car body 
vertical acceleration – Comfort criterion 
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Fig. 8.  Bode plot of the normalized suspension deflection –
Reliability criterion 

In the Fig. 8 the frequency response of the suspension 
deflection is shown. However there is an increase of the 
deflection magnitude on the active suspension according to 
the magnitude of the passive suspension, but at this criterion 
the most important thing is the maximal value in the whole 
region of the frequencies - H∞ norm and this criterion is 
significantly better achieved with the active suspension. 

At the last frequency response Fig. 9 is magnitude of the 
normalized dynamic tyre force. Here we can see that a 
significantly improvement by means of the active suspension 
was achieved and that from all at the first system 
eigenfrequency. 
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Fig. 9. Bode plot of the normalized dynamics tyre force – 
Road holding criterion 
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Fig. 10. Bode plot of the actuator  

4.2 Time response simulations  

Also a time response has been calculated which shows how 
the passive and active suspension systems are responding by 
crossing a road bump disturbance see Fig. 11 – 14. 
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Fig. 11. Time response of the vertical acceleration (active, 
passive suspension and road disturbance) 
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Fig. 12. Time response of the suspension deflection 
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Fig. 13. Time response of dynamic tyre force 

In the next table the suspensions performance values 
calculated via the H2 and H∞ norms from the previous time 
responses are shown. 

Table 2: Performance values of passive and active suspension  

Suspension 
performances (-) 

passive 
H2  

active 
H2 

passive 
H∞ 

active 
H∞ 

Car body acceleration 0.7476 0.4342 3.6275 2.1830 

Suspension deflection 0.2509 0.1824 0.7866 0.7434 

Dynamic tire force 0.2420 0.1517 0.9494 0.7974 
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Fig. 14. Time response of actuator force  

  CONCLUSION 

From the simulations results we can clearly see that the active 
controlled suspension with H∞ controller offers a much 
better suspension performances as the classics passive 
suspension model. These results have been confirmed also 
even if we have extended the simple quarter car model with 
the damper stiffness which has brought one more degree of 
freedom into the system and also mead the simulation model 
more realistic. 
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Abstract: The problem of decoupling a linear system by dynamic compensation into 
multi-input multi-output subsystems is studied by applying proper and stable fractional 
representations of transfer matrices. A necessary and sufficient condition is given for a 
decoupling and stabilizing controller to exist. The set of all controllers that decouple and 
stabilize the system is determined in parametric form.  Decoupling optimal controllers 
are then obtained by an appropriate selection of the parameter. 

Keywords: Linear systems, fractional representations, decoupling controllers, stabilizing 
controllers, optimal controllers. 

1 INTRODUCTION 

Decoupling is a way to decompose a complex system 
into non-interacting subsystems. In fact, certain ap-
plications necessitate controlling independently dif-
ferent parts of the system. Even if this is not required, 
the absence of interaction can significantly simplify 
the synthesis of the desired control laws. 

The decoupling problem has received much attention 
in the literature. For linear systems, different ap-
proaches have been used and control laws of various 
structure and complexity applied. 

The basic form of decoupling into single-input single-
output subsystems is often referred to as the diagonal 
decoupling. This problem was posed by Voznesenskij 
(1936) and studied by Kavanagh (1957), Strejc 
(1960), Mejerov (1965), and Wolovich (1974). The 
studies were related to the inversion problem of ra-
tional matrices. Attention was paid to the existence of 
proper rational transfer matrices. The issue of stabil-
ity, however, was not properly addressed. 

A deeper insight was provided by the state-space ap-
proach. The pioneering work is due to Morgan 
(1964), who posed the problem of decoupling by 
static state feedback. Falb and Wolovich (1967) es-
tablished a solvability condition while Gilbert (1969) 
related this condition to state feedback invariants of 
the system. Descusse and Dion (1982) then inter-

preted this condition in terms of system’s structure at 
infinity.  

The use of restricted static state feedback, namely the 
static output feedback, in decoupling was studied by 
Howze and Pearson (1970), Howze (1973), Denham 
(1973), Hazlerigg and Sinha (1978), Filev (1982b), 
Descusse and Malabre (1982), and Descusse, Lafay 
and Kučera (1984). This is a very restricted problem, 
whose solution is hard to obtain, but it is very useful 
in applications. 

A more general form of decoupling into multi-input 
multi-output subsystems is referred to as the block 
decoupling. This problem was introduced by Won-
ham and Morse (1970) and Basile and Marro (1970). 
Using a geometric approach, they determined the 
solvability of the problem by static state feedback in 
several special cases. An alternative algebraic ap-
proach based on the structure algorithm was pre-
sented by Silverman and Payne (1971). Relationships 
between the two approaches were studied by Filev 
(1982a). 

The decoupling by dynamic state feedback was stud-
ied via the geometric approach by Morse and Won-
ham (1970), who obtained a deep insight into the 
internal structure of the decoupled system. By this 
time, the problem of decoupling by dynamic state 
feedback was solved, including stability or pole dis-
tributions that may be achieved while preserving a 
decoupled structure. The status of noninteracting con-
trol was reviewed by Morse and Wonhan (1971).  
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A comeback of the transfer function methods in the 
study of block decoupling is witnessed through the 
works of Koussiouris (1979), Hautus and Heymann 
(1983), and Kučera (1983). A dynamic state feedback 
was shown to be equivalent with combined dynamic 
output feedback and feedforward reference compen-
sation, often referred to as a two-degree-of-freedom 
controller. To address stability issues, the Youla-
Kučera parameterization of all stabilizing controllers 
was invoked. The basic results are reported by 
Kučera (1983), Hautus and Heymann (1983), and 
Gómez and Goodwin (2000). The class of all decoup-
led transfer matrices that can be achieved by a stabi-
lizing controller was parameterized by Desoer and 
Gündeş (1986) and Lee and Bongiorno (1993). This 
result has made it possible to derive the H2-optimal 
decoupling controller, which minimizes the perform-
ance deterioration due to decoupling. 

The two-degree-of-freedom controller structure is 
ideally suited to decoupling since only one of the 
degrees of freedom is affected by the decoupling re-
quirement. This is not true for a pure feedback, or a 
one-degree-of-freedom controller. This case is con-
siderably more difficult to solve, as shown by Ham-
mer and Khargonekar (1984), Lin (1997), Youla and 
Bongiorno (2000), Bongiorno and Youla (2001), and 
Park (2008a).  

Finally, the decoupling in the generalized plant 
model, which covers a broad range of control prob-
lems in a unified setting, was considered by Park 
(2008b). Such a plant model can accommodate non-
square plant and non-unity feedback cases with one-
degree-of-freedom or two-degree-of-freedom control-
ler configuration. The benefits of such a general 
problem formulation consist in a unified treatment 
rather than in simplicity of the solution. Indeed, ma-
trix operations need to be converted to vector opera-
tions with vectors of a much larger dimension, which 
result from the Kronecker and Khatri-Rao products of 
matrices. 

This paper adopts the most general setting that is 
meaningful for decoupling: a system in which the 
measurement output may be different from the output 
to be decoupled and a dynamic controller that fea-
tures both feedback and feedforward parts. The class 
of all such controllers that decouple and stabilize the 
system is determined in parametric form and the pa-
rameter is used to obtain the H2-optimal controller. 
The solution is simple and direct. The controller con-
figuration implies that decoupling and stability are 
two independent issues. 

2 PROBLEM FORMULATION 

Consider a linear, time-invariant, differential system 
governed by the input-output relation 

                                  ,uSy y=                               (1) 

 
where u is the q-vector input, y is the p-vector output 
and Sy is the transfer matrix of the system. We as-
sume that Sy is a proper rational matrix over R(s), the 
field of rational functions.  

Let p1, ..., pk be a given set of positive integers that 
satisfy 

ppk
i i =∑ =1 . 

System (1) is said to be decoupled, or more specifi-
cally (p1, ..., pk)-decoupled, if there exist positive 
integers q1, ..., qk satisfying 

qqk
i i =∑ =1  

such that Sy has the block diagonal form 
















=

k

y

S

S
S 

1

: , 

where Si is pi × qi. 

This is not a generic property of the system, but it can 
be achieved by a suitable compensation. To this ef-
fect, let z denote the m-vector output of the system 
that is available for measurement and let it be related 
with the input by the equation 

                                  uSz z= ,                              (2) 

where Sz is a proper rational matrix over R(s). 

The most suitable linear, time-invariant, differential 
controller can then be described by the equation 

                               zKvKu zv += ,                       (3) 

where v is an external reference input of appropriate 
dimension, say r. As it is seen in Fig. 1, the transfer 
matrices Kv and Kz represent the feedforward and the 
feedback parts of the controller, respectively. We 
assume that both Kv and Kz are proper rational matri-
ces over R(s).  

The decoupling problem is then to find matrices Kv 
and Kz such that the transfer matrix 

                        vzzy KSKIST 1)( −−=                     (4) 

from v to y be suitably block diagonal. 

Obviously, unless additional provisions are made, the 
decoupling problem is trivial as it could be solved by 
Kv = 0. Thus it is necessary to impose certain admis-

 

 

 

 

 

Fig. 1. Control system 
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sibility condition on the decoupling controller to 
make the problem meaningful, for example 

                              yST rank  rank =                      (5) 

over R(s). This condition is equivalent to the preser-
vation of the class of controlled output trajectories. 
We thus require that no essential loss of control oc-
curs through the decoupling process. 

Another requirement, frequently imposed on the de-
coupled system in practice, is that of stability. This 
requirement means that the states of the system go to 
zero from any initial values. 

3 PRELIMINARIES 

A stable system gives rise to a proper and stable 
transfer function. In order to study stability of the 
decoupled system it is convenient to express the 
transfer matrices of the given system and those of the 
controller in the following factorized form 

                             1: −








=








A

C
B

S
S

y

z                            

                   [ ] [ ]RQPKK vz −= −1: ,                   

where 









C
B

A,  

are proper and stable rational matrices that are right 
coprime and 

[ ]RQP −,  

are proper and stable rational matrices that are left 
coprime. 

These proper and stable fractional representations 
exist and are unique up to right and left multiplica-
tion, respectively, by a unimodular matrix. Recall that 
a proper and stable rational matrix is said to be uni-
modular if its inverse exists and is proper and stable. 

The system equations (1) and (2) and the controller 
equation (3) then take the form 

                             uA
C
B

y
z 1−









=








,                        (6) 

                       [ ] 







−= −

v
z

RQPu 1 .                    (7) 

The overall system transfer function reads 

                         RQBPACT 1)( −+= .                    (8) 

The fundamental assumption we make here is that the 
part of the given system that is not controllable from 
u is stable and the part of the given system that is not  

jointly observable from y, z is stable. Similarly, we 
assume that the controller is realized in such a man-
ner that its part that is not jointly controllable from v, 
z is stable and its part that is not observable from u is 
stable. 

The issue of stability of the overall system is then 
solved as follows. 

Lemma1. The overall system described by (6) and (7) 
is stable if and only if the matrix PA + QB is uni-
modular. 

Proof. In the overall system, inject inputs x and w as 
shown in Fig. 2. Then the overall system is stable if 
and only if the nine transfer matrices between the 
inputs v, w, x and the outputs u, y, z given by 

[ ]



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

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

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
−

v
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x

RQPQBPA
C
B
A

y
z
u

1)(  

are all well defined and proper and stable rational. 
This statement follows from the assumption of stabil-
ity of the uncontrollable and unobservable parts of 
the system. 

Now, in view of the coprimeness assumptions on A, 
B, C  and P, Q, R  these transfer matrices are well de-
fined and stable if and only if PA + QB is a unimodu-
lar matrix.                                                                  □                                                                             

4 PROBLEM SOLVABILITY 

A simple necessary and sufficient condition will now 
be established for a system to be decoupled and sta-
ble. 

Based on the partition (p1, ..., pk), write 

                                   















=

kC

C
C 

1

: ,                          (9) 

where Ci is a pi × q submatrix.  

Theorem 1. Given system (1), (2) in fractional form 
(6) and partition (9), there exists an admissible con-
troller (3) such that the overall system is 

 

 

 

 

 

 

Fig. 2. Control system with the complete set of in-
dependent inputs and outputs 
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(i) stable if and only if  

A and B are right coprime,              (10) 

(ii) decoupled if and only if 

∑ =
=k

i i CC1 rank rank .                    (11) 

Proof. (i) Let the overall system be stable. By Lemma 
1, the matrix PA + QB is unimodular whence A and B 
must be right coprime. 

Conversely, let the matrices A and B of (6) be right 
coprime. Then there exist proper and stable rational 
matrices P and Q such that 

                             IQBPA =+                          (12) 

with P invertible and the inverse of P proper. 

Then controller (3) in fractional form (7) that is de-
fined by the matrices P and Q from (12) and by an 
arbitrary proper and stable rational matrix R satisfy-
ing rank CR = rank C is admissible since, by (8), 

ySCCRT rank rank rank rank === . 

The resulting system (1), (2) and (3) is stable in view 
of Lemma 1 and identity (12). 

           (ii) Let (7) be an admissible decoupling con-
troller for system (6). Denote 

RQBPAK 1)(: −+= . 

The block diagonal property of the matrix T then im-
plies 

∑ =
= k

i i KCCK 1 rank rank  

and the admissibility of the controller gives 

....,,1,rank rank kiCKC ii ==  

Therefore (11) holds. 

The sufficiency will be proved by constructing a suit-
able R. Denote 

kiCr ii ...,,1,rank : == . 

Then there exists a pi × pi unimodular proper and 
stable rational matrix Ui such that 

                              






 ′
=

0
i

ii
C

UC ,                         (13) 

where the rows of iC′ are linearly independent over 
R(s) and where the zero matrix has pi – ri rows and 
may be empty. If (11) holds, then 
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kC

C
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:                            

has linearly independent rows over R(s). Hence there 
exists a q × q unimodular proper and stable rational 

matrix U ′ such that 

                   










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


=′′

0

0
:

1

kD

D
UC  ,               (14) 

where Di is an ri × ri diagonal proper and stable ra-
tional matrix and where the zero matrices have q – r 
columns with r defined by 

∑ =
= k

i irr 1: . 

Define an admissible controller (7) by the matrices P 
and Q from (12) and by the matrix R formed by the 
first r columns of U ′ . The transfer matrix (8) 
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
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0
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1

kD

D

kU

U
CRT      (15) 

is block diagonal. The resulting system is therefore 
decoupled and the external reference input v has di-
mension r.                                                                  □                                                                                             

The interpretation of these solvability conditions is as 
follows. Condition (10) corresponds to the stability of 
the subsystem of the given system that is not observ-
able at the measured output z. Condition (11) calls for 
the linear independence of any two outputs of the 
given system that belong to different blocks. The 
solvability of the decoupling problem thus strongly 
depends on the partition (p1, ..., pk), that is to say, 
upon the allocation of the outputs into the blocks. 

5 CONTROLLER PARAMETERIZATION 

When a decoupling and stabilizing controller exists, 
we shall parameterize the class of all such controllers. 

The control system (6), (7) is stable if and only if PA 
+ QB is a unimodular matrix by Lemma 1. Thus sta-
bilization involves only the feedback part Kz of the 
controller, which surrounds the measurement subsys-
tem Sz. As a result, the parameterization of Kz 
amounts to the well-known Youla-Kučera parame-
terization of feedback stabilizing controllers For de-
tails, see Kučera (1975), Youla, Jabr and Bongiorno 
(1976), Kučera (1979), Desoer et al. (1980), and 
Vidyasagar (1985). 

Let QP ,  be any solution pair of equation (12). Then 
the solution class of (12) is given by 

                   AWQQBWPP −=+= , ,               (16)         

where A and B are left coprime, proper and stable 
rational matrices such that 

                              11 −− = BABA                            (17) 
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and W is an arbitrary proper and stable rational ma-
trix parameter. 

The class of all stabilizing proper rational Kz is then 
obtained in the form 

        )()( 11 AWQBWPQPK z −+−=−= −− ,         (18) 

where the parameter W is constrained so that the in-
verse of BWP + exists and is proper rational.  

Once the control system (6) and (7) is stabilized, it is 
decoupled if and only if T = CR by (8). Thus decoup-
ling involves only the feedforward part Kv of the con-
troller. 

Partition the q × q unimodular matrix U ′ defined in 
(14) as 

[ ]rqr UUU −′′=′ , 

where rU ′ has r columns and rqU −′  has q – r columns 
and may be empty. The class of all decoupling proper 
rational Kv is then given by RPKv

1−= with P deter-
mined in (16) and  
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k
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V

V
UR 

1

,                    (19) 

where Vi is an arbitrary ri × ri proper and stable ra-
tional matrix parameter. The matrices V1, ..., Vk in 
turn parameterize the class of achievable block-
diagonal transfer matrices (8) as follows 
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                                                                              (20) 

The parameterization of decoupling stabilizing con-
trollers reveals that decoupling and stabilization are 
two independent issues. That is why the controller 
described by (3) is called the two-degree-of-freedom 
controller. However, this is no longer true for one-
degree-of-freedom controllers, e.g., for the error-
actuated controllers described by )(1 wvQPu −−= − in 
place of (7). 

6 OPTIMAL CONTROLLERS 

The decoupling constraint can deteriorate system’s 
performance. The bonus of having a parameterized 
solution set is that the lost performance can easily be 
optimized. Optimal decoupling controllers can be 
obtained by an appropriate choice of the parameters 
V1, ..., Vk and W.  

Suppose that the control objective is for each block 
of outputs yi to track the corresponding block of ref-
erence inputs vi. Thus we suppose that pi = ri for i = 
1, ..., k, i.e., there are as many reference inputs as 
controlled outputs in each block. The tracking error 
for each block is given by 

iiiii vHyve =−=: . 

In view of (20), Hi has the generic form 

                                  iii VFIH −= ,                      (21) 

where Fi := Ui Di and Vi are proper and stable rational 
matrices with Fi fixed and Vi an arbitrary parameter 
to be specified. 

The benefits of controller parameterization will now 
be demonstrated in the case of H2 control design. It 
turns out that only the parameters V1, ..., Vk are sub-
ject to selection whereas W is free and can be inde-
pendently selected to accommodate additional design 
specifications. 

Suppose that for each block, the reference-to-error 
transfer function Hi is to have least H2 norm defined 
by 

2
1

)()( trace: 2
1

2 




= ∫

∞

∞−

∗ ωωωπ djHjHH iii , 

where the asterisk denotes the conjugate transpose. 
Thus, )(:)( sHsH T

ii −=∗ for any complex argument s. 

To achieve this task, determine the inner-outer fac-
torization of Fi, 

OIi FFF = , 

where FI is inner and FO is outer. Since Fi is square 
and nonsingular,  FI  satisfies IFF II =∗ and FO is free 
of zeros in Res > 0. 

Since FI is inner, left multiplication by ∗
IF preserves 

the H2 norm, 

222 iOIiIi VFFHFH −== ∗∗ . 

Observe that IFI =∞∗ )( . Separate the strictly proper 

part, ∗
IspF , of ∗

IF as follows 

∗∗ += IspI FIF  

and note that, by definition, ∗
IspF has poles only in Res 

> 0. Then 
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2

2

2

2

2

2
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VFIF
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because the cross terms contribute nothing to the 
norm. This is a complete square in which only the 
second term depends on Vi . Therefore, a unique Vi 
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that attains the minimum of the norm for subsystem i 
is  

                                    1−= Oi FV .                           (22) 

However, only a proper and stable Vi is admissible. It 
follows that the H2 control problem for subsystem i 
has a solution if and only if FO is unimodular. The 
minimum norm is then given by 

22
min Ispi

V
FH

i
= . 

7 AN EXAMPLE 

Consider a system defined by (1), (2) with the trans-
fer matrices 
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Thus the measurement output z is different from the 
output y to be decoupled in that it involves a non-
unity feedback sensor. 

The task is to determine a two-degree-of-freedom 
controller (3) that (1, 1)-decouples and stabilizes the 
system. 

The first step is to obtain a proper and stable frac-
tional representation (6) for the system. Standard 
calculations yield 
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Now apply Theorem 1. Since A is right coprime to B, 
a stabilizing controller exists. Since the rank of C 
equals the sum of the ranks of the rows of C, an ad-
missible decoupling controller exists as well. 

All stabilizing and decoupling controllers will be 
parameterized using the fractional representation (7). 
To obtain the feedback part of the controller, we con-
sider any particular solution of equation (12), for 
example 
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A left coprime fractional representation that satisfies 
(17) is given by 
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Thus the solution class (16) of equation (12) is 
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To obtain the feedforward part of the controller, note 
that U1 = U2 = 1 and the unimodular matrix defined in 
(14) equals 


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Thus (19) yields 
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The matrices P, Q in (23) and R in (24) define the 
class of all controllers that solve the given problem. 
The parameters V1, V2 are free proper and stable ra-
tional functions and W is permitted to range over 
proper and stable rational 2 × 2 matrices so that the 
inverse of P exists and is proper. Obviously, this 
means that P(∞) is to be a nonsingular matrix. 

The decoupled transfer matrices that can be achieved 
in this example are given by (20) as 
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The optimal controller that minimizes the H2 norm of 
the reference-to-error transfer matrix is determined 
from (22), channel by channel. Clearly V1 = 1. To 
optimize V2, the inner-outer factorization of 
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Thus, from (22), 
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It follows from (24) that the unique optimal R is  
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and the overall system has the transfer function 
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8 CONCLUSION 

An optimal H2 decoupling control problem has been 
studied in the most general setting, for systems in 
which the measurement output may be different from 
the output to be decoupled and for dynamic control-
lers that feature both feedback and feedforward parts. 
The class of all such controllers that decouple and 
stabilize the system has been determined in paramet-
ric form and the parameter has been used to obtain 
the H2-optimal controller.  

The main contribution of the present paper is in a 
streamlined and transparent exposition and a simple 
and direct solution. This is primarily because of the 
following facts. The adopted controller configuration 
is ideally suited to decoupling since stability and non-
interaction can be treated as two independent con-
straints. The problem is formulated and solved using 
an algebraic approach, namely the notion of proper 
and stable fractional representations for system’s 
transfer matrices. The parameterization of the de-
coupling controllers is achieved via the Youla-Kučera 
parameterization of all stabilizing controllers. Finally, 
the H2 norm involved in the optimization is mini-
mized using the completion of the squares, which is a 
simple algebraic technique. 

A large body of literature exists on decoupling and 
related topics. In technical details, the present paper 
draws inspiration from the work of Hautus and Hey-
mann (1983) for the formulation of the problem, from 
Kučera (1983) for the algebraic treatment of stability, 
from Desoer and Gündeş (1986) for the parameteriza-
tion of the decoupled system, and from Lee and Bon-
giorno (1993) for the optimal control.  
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Two-state bilinear predictive control for
hot-water storage tank
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Abstract: The paper presents original predictive algorithm for use in two-state (or binary)
input control of nonlinear systems which are described with state-constrained bilinear models.
It is shown in the paper, that instead of non-linear continuous-time model, non-stationary
linear discrete-time model can be used to predict the system response. On the other hand, state
constrains can be attached to the criterion index to be minimized in the predictive control law.
This inclusion assures the closed-loop stability of the control system and simplifies minimization
problem. The proposed algorithm is particularly valuable for applications in heating systems
where bilinearity follows from the heat exchange due to flow of liquid medium and constrains
concern temperature regime. Application of the algorithm to control a hot water tank is
presented in the paper. The tank is modeled with stratified model.

Keywords: bilinear models, predictive control, non-linear state observer, stratified models,
hot-water tank.

1. INTRODUCTION

High hopes that were associated with non-linear predictive
control to be a general control methodology proved to
be futile at the turn of the century. Great ferment that
the works of Michalska and Mayne (e.g. Michalska and
Mayne (1993)) raised in the middle of nineties collapsed
after confrontation with requirements of a real-world ap-
plications. The biggest problem posed optimization task
which needs to be solved in every sampling period thus the
applications have been restricted to slow processes Kwon
and Han (2005). This problem was clearly stated at the
end of nineties (Allgower and Zheng (2000), ”Nonlinear
Model Predictive Control: Challenges and Opportunities”
by D. Mayne, pp. 23–44), and still remains unsolved. On
the other hand special cases of nonlinearities has been
studied meanwhile Rossiter (2004). One of the most deeply
explored is the case of linear dynamics and input/state
constrains Maciejowski (2002).

In the same spirit this paper explores bilinear systems with
state constrains and two-state input signals as yet another
special case of nonlinear system to be controlled. There are
number of processes being modeled with bilinear models.
The most important group of such systems form heat
transfer processes where the energy is transported with
liquid fluids ASHRAE (2009). The bilinear model of heat
exchange arises due to states (temperatures) are multiplied
by the control signal (liquid flow). Additionally, states
are constrained by technological requirements and inputs
are constrained because heat sources and pumps can be
only switched on or off. Usually control systems apply
simple relay controllers where so called cut-off method
allows for compliance with constrains. Quality of the relay-
based control can be hardly improved. There are only few

knobs to be used as hysteresis or dynamical corrections
Skoczowski (1981).

The paper presents original predictive algorithm for use
in two-state input control of nonlinear systems which are
described with state-constrained bilinear models.

Bilinear models are described in sec. 2. Based on these
models the predictive control algorithm with two-state
input and state constrains is derived in sec. 3. Discrete
in time nature of predictive control needs discretization
of the bilinear model. It is shown in sec. 3, that instead
of non-linear continuous-time model, non-stationary linear
discrete-time model is obtained. This technique is similar
to so called successive linearization (e.g. in L. Magni and
Allgower (2009), M. Cannon et.all. ‘Successive Lineariza-
tion NMPC for a Class of Stochastic Nonlinear Systems’,
pp. 249-262). However, proposed method uses exact model
and does not impose linearization errors. State prediction
on the assumed horizon is made on the basis of obtained
model. It follows form the general theory of nonlinear
predictive control Rossiter (2004) that closed-loop stability
is assured by augmenting the criterion function to be
minimized with final state weighting. This is done here
by inclusion of the constrains into the criterion function
as a penalty term.

Sec. 4 presents state observer for bilinear systems. This is
the case of application example namely heating systems
where bilinearity follows from the heat exchange due to
flow of liquid medium and constrains concern temperature
regime. Application of the algorithm to control a hot water
tank is presented in sec. 5. The tank is modeled with
so-called stratified model. Usually it is not possible to
measure all states which follow from the stratification thus
observer is necessary.
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2. BILINEAR PROCESSES

Bilinear systems are the special nonlinear systems where
linearity concerns separately state and control variables
but not jointly. The general form of the bilinear model
can be represented by the following:

Ẋ(t) = AX(t) + B0U(t) +

m∑

k=1

BkX(t)uk(t) + E(t) (1)

where X ∈ Rn and U ∈ Rp (uk represents k-th element
of U). It is clear that A ∈ Rn×n, B0 ∈ Rn×p and Bk ∈
Rn×n, k = 1, 2, . . . , m. Operating point is assumed zero
(the model (1) represents deviations from the operating
point). Term E(t) represents disturbances. It is assumed,
that after sampled, disturbances can be modeled by white
noise. This assumption allows for optimal in mean-square
sense prediction of the state by using the model (1) with
disturbances term omitted (optimal prediction of white
noise is equal to zero).

Modern system theory made possible and stimulated ex-
pansion and deepening of research so that the intrinsic lim-
its of linear models appear more and more evident. There
are number of disciplines where bilinear models found
applications e.g. industrial processes, biology, economics,
ecology agriculture etc. This type of nonlinear dynamical
models have been rigorously explored in the last three
decades. It has been shown Mohler (1991) that bilinear
systems are better controllable in general then linear sys-
tems. They offer better possibility in control performance.
Still interest in these systems is very high. The structural
theory is fairly well established and in particular there are
several satisfactory contributions on controllability, mainly
for homogeneous in the state bilinear systems. Also, with
respect to mathematical modeling problems, the available
results are quite definite.

3. PREDICTIVE TWO-STATE CONTROL OF
BILINEAR SYSTEM WITH CONSTRAINS

In two-state control it is assumed that elements uk of the
control vector variable U can achieve only 0 or 1 value.
Inequality state constrains are also involved, and can be
expressed in general form as

ΩX(t) ≤ Xcon. (2)

Matrix Ω allows to easily limit on the maximum value
of state variable (e.g. temperature cut-off) as well as the
value of the acceptable range of states (e.g. output temper-
ature of the heating system). Control predictive algorithm
is formulated as discrete in time and zero-order holder of
the control signal is assumed. The essence of the predictive
control algorithm synthesis is solving of the optimization
task in every sampling period. The objective function of
the optimization task is formulated as a difference between
predicted state trajectory and reference trajectory (usually
equal to assumed set-points in the future) according to
assumed prediction horizon. The optimizing criterion is
the function of future controls, however, after optimization
task is solved, only first element of the solution (nearest
control) is applied and the whole procedure is repeated in
the next sampling period (receding horizon technique).

Let the current moment in time is denoted by ti, and
sampling period Ts. Then: ti+j = ti + j · Tp. Usually
objective function is defined in the following quadratic
form:

J(U(ti+j)|j=0,1,...,N−1) =

N∑

j=1

eT
x (ti+j)Qex(ti+j) +

(3)
+ UT (ti+j−1)RU(ti+j−1)

where

ex(ti+j) = X(ti+j − Xsp) (4)

is j-step prediction of the difference between states X
and their set-points Xsp. Positive (semi)definite matrices
Q and R as well as the prediction horizon N form the
algorithm’s parameters. Constrains (2) of the optimization
task should be fulfilled in every sampling period ti+j , j =
1, 2, . . . , N . Obviously, in general it is not possible to assure
the existence of such control sequence U(ti+j)|j=0,1,...,N−1,
that the constrains are fulfilled because initial conditions
can be out of the constrains. Thus it is much simpler
to include the constrains into the criterion function and
allows penalty method for searching the optimal solution.
This also simplifies the searching algorithm because the
optimization task is now constrains-free. Finally, the cri-
terion function takes the form

J(U(ti+j)|j=0,1,...,N−1) =

N∑

j=1

eT
x (ti+j)Qex(ti+j) +

(5)
+ UT (ti+j−1)RU(ti+j−1) + ϕ(ΩX(ti+j) − Xcon)

where ϕ is scalar penalizing function with the vector
argument equal to exceeding the limits.

The above formulation of the predictive control algorithm
allows for simple inclusion of requirements to keep the
states within the proper range. There are two ways to do
that:

• Determine set-points for the certain state and choose
the proper weighting matrix Q in (5) depending on
the role of the state in the system.

• Form the constrains (2) in such a way, that the range
of certain state is properly narrowed.

The predicted states in objective function (5) should be
determined from the model (1). Zero-order holder allows
for the following representation of (1):

Ẋ(t) =

(
A +

m∑

k=1

uk(ti+j−1)Bk

)
X(t) + B0U(t),

(6)
t ∈ [ti+j−1, ti+j ].

Equation (6) is linear and its solution at the end of the
sampling period is as follows:

X(ti+j) = Φi+j−1X(ti+j−1) + Γi+j−1U(ti+j−1) (7)

where

Φi+j−1 = e(A+
∑

m

k=1
uk(ti+j−1)Bk)Tp (8)

Γi+j−1 =

Tp∫

0

e(A+
∑

m

k=1
uk(ti+j−1)Bk)τdτB0. (9)
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Starting with initial state X(ti) the succeeding iterations
are performed according to (7 – 9) for j = 1, 2, . . . , N to
determine the whole trajectory of the state on the horizon
N .

Number of possible control vector values on the horizon
N is equal to m · 2N . If the sampling period is not to
short then the prediction horizon need not to be large and
the optimization task can be solved by bruteforce method.
Similar approach was used in Ogonowski (2011b)

It should be emphasized that in every sampling period
matrices Φi+j−1 and Γi+j−1 have to be determined. These
matrices depend on input signal and change in every step.
Thus the model (7) is nonstationary. Calculation of Φi+j−1

and Γi+j−1 needs application of special algorithms e.g.
squaring and scaling Higham (2005). If sampling period
is short and complex calculations are not possible then
simplified model can be applied by using Euler method of
integration:

X(ti+j) = A′
i+j−1X(ti+j−1) + B′

0U(ti+j−1) (10)

where

A′
i+j−1 =

(
A +

m∑

k=1

uk(ti+j−1)Bk

)
Tp (11)

B′
0 = B0Tp. (12)

4. STATE OBSERVER FOR BILINEAR SYSTEM

To calculate state prediction it is necessary to start iter-
ation of the model (7) or (10) with current measurement
of the state X(ti). Often the only part of X is measured.
Then the state observer is necessary. The theory of bilinear
model state observer is well established (e.g. Hara and
Furuta (1976)). Assume that s elements of X vector is
measured. The state vector can be ordered to keep them
on the top, to simplify the notation:

Y (t) = (Is 0)X(t) (13)

where Is is s-dimensional unity matrix. Y represents then
vector of measured states. Equation (1) can be factorized
as follows

Ẋ(t) =

[
A11 A12

A21 A22

]
X(t) +

[
B0,1

B0,2

]
U(t) +

(14)

+

m∑

k=1

[
Bk,11 Bk,12

Bk,21 Bk,22

]
X(t)uk(t)

where A11, Bk,11 ∈ Rs×s, A12, Bk,12 ∈ Rs×(n−s), A21, Bk,21

∈ R(n−s)×s, A22, Bk,22 ∈ R(n−s)×(n−s), B0,1 ∈ Rs×m,

B0,2 ∈ R(n−s)×m. In Hara and Furuta (1976) it was
proven, that if the following two conditions are kept

Re [eig (A22 + HA12)] < 0 (15)

Bk,22 + HBk,12 = 0 k = 1, 2, . . . , m (16)

then there exists state observer of minimal order which is
realized with the following dynamical system:

Ż(t) = ÂZ(t) + B̂0Y (t) +

m∑

k=1

B̂kY (t)uk(t) + ĜU(t) (17)

X̂(t) = ĈZ(t) + D̂Y (t) (18)

where

Â = A22 + HA12 (19)

B̂0 = A21 + HA11 − (A22 + HA12)H (20)

B̂k = Bk,21 + HBk,11 (21)

Ĝ = B0,2 + HB0,1 (22)

Ĉ =

[
0

In−s

]
(23)

D̂ =

[
Is

−H

]
. (24)

It was proven that the error X̂(t) − X(t) and all its
derivatives tends to zero independently on U and initial
conditions X(t0) and Z(t0).

5. APPLICATION

The proposed algorithm is particularly valuable for appli-
cations in heating systems where bilinearity follows from
the heat exchange due to flow of liquid medium. Con-
strains concern temperature requirements. Application of
the presented predictive algorithm will be now shown on
the example of 300 liters hot water tank. The tank is
equipped with one heating coil pipe placed in the upper
part of the tank. The coil is fed with on-off controlled
boiler (16200 W) throughout water as a heating medium.
The tank has been equipped with measurement system
Ogonowski (2010) containing termo-elements and hot wa-
ter flow meter. The tank is modeled with stratified model.

5.1 Model of the hot water tank

Hot water tank is a vertically standing cylinder equipped
with M heating pipe coils distributed in different parts
along the vertical axis. Cold water water enters the tank
bottom and is charged on top. Thus temperature gradient
occurs. After division of the cylinder onto S layers the
basic heat balance can be written as follows:

Qwn =

M∑

m=1

Qm(n) − Qun − Qsn, (25)

where Qwn is the heat accumulated in the n-th layer,
Qm(n) is the heat transmitted by the m-th source to the
n-th layer, Qun is the heat applied from n-th layer and
Qsn is the heat loses of the n-th layer to the surroundings.
Let consider single layer which is driven with a heat source
transmitting Qp through the heating medium of the flow
Fz with enter temperature Tzi and exit temperature Tzo.
Could water has got the temperature on the input equal
to Twi and on the output Two. The tank is surrounded by
the environment of the temperature Tsur. Heat exchange
describes the following two differential state equations:

ρCwV
dTwo

dt
= ρCwFz(Tzi − Tzo) − ρCwFw(Two − Twi) −

−λA

d
(Two − Tsur), (26)

ρCwVw
dTzi

dt
= Qp−ρCwFz(Tzi−Tzo)−

λwAw

dw
(Tzi−Tsur),

where ρ, Cw represents density and specific heat of the
water respectively, V , Vw are the volumes of the layer and
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pipe coil, λ, λw are heat permeability coefficient of the tank
wall and pipe coil respectively. In general, by division of
the both sizes of (26) by ρCwV and ρCwVw, and taking
into account heat exchange between layers, one can derive
the following:

dT n
wo

dt
= bn

1Fn,m
z (T n

zi − T n
wo) − bn

2Fw(T n
wo − T n−1

wo ) −

bn
3 (T n

wo − Tsur) − bn
4 (T n

wo − T n−1
wo ) + bn

5 (T n+1
wo − T n

wo),(27)

dT m
zi

dt
= pn

1Qm
g − pn

2Fm
z (T m

zi − T n
wo) − pn

3 (T m
zi − Tsur),

where superscript n denotes number of layer, n + 1 is
the number of upper layer and n − 1 is the number of
lower layer. m is the number of heat source which is
directly coupled with the n-th layer. In equation (27)
physical coefficients has been exchanged with constants b
and p. First evaluation of b and p can follow from physical
meaning. The final ones, however, have to be identified
because stratified model is simplification of the real plant
which has got a distributed parameter nature. Addition-
ally, dependent variable Tzo has been excluded from the
above equations which is possible under assumption that
heat transfer driving force is the average temperature Tzi

and Tzo Marlin (1995).

5.2 Parameter identification

Simple method for identification of (27) model bases on
distinguishing the periods of time where some parts of
the model remain zero. This follows from specific of the
model (27) e.g. if heat source or pump does not work then
respective signals Fz or Fw are zero. The model (27) can
be identified part by part with properly chosen data.

It is assumed three-layered structure of the model thus the
model takes form:

dT 3
wo

dt
= b3

1Fz(Tzi − T 3
wo) − b3

2Fw(T 3
wo − T 2

wo) −

−b3
3(T

3
wo − Tsur) − b3

4(T
3
wo − T 2

wo), (28)

dT 2
wo

dt
= b2

1Fz(Tzi − T 2
wo) − b2

2Fw(T 2
wo − T 1

wo) −

−b2
3(T

2
wo − Tsur) − b2

4(T
2
wo − T 1

wo) + b2
5(T

3
wo − T 2

wo), (29)

dT 1
wo

dt
= −b1

2Fw(T 1
wo − Twi) − b1

3(T
1
wo − Tsur) +

+b1
5(T

2
wo − T 1

wo), (30)

dTzi

dt
= p1Qg − p2Fz(Tzi − T 3

wo) − p3(Tzi − Tsur). (31)

Formulation (28)-(31) can be transformed to (1) with the
following:

X =

⎡
⎢⎢⎣

T 1
wo

T 2
wo

T 3
wo

Tzi

⎤
⎥⎥⎦ , U =

[
Fz

Qg

]
,

A =

⎡
⎢⎢⎣

−(b1
3 + b1

5) b1
5 0 0

b2
4 −(b2

3 + b2
4 + b2

5) b2
5 0

0 b3
4 −(b3

3 + b3
4) 0

0 0 0 −p3

⎤
⎥⎥⎦ ,

(32)

B0 =

⎡
⎢⎣

0 0
0 0
0 0
0 p1

⎤
⎥⎦ , B1 =

⎡
⎢⎣

0 0 0 0
0 −b2

1 0 b2
1

0 0 −b3
1 b3

1
0 0 p2 −p2

⎤
⎥⎦ , B2 = 04×4

E(t) =

⎡
⎢⎢⎣

b1
3Tsur + b1

2Fw(Twi − T 1
wo)

b2
3Tsur + b2

2Fw(T 1
wo − T 2

wo)
b3
3Tsur + b3

2Fw(T 2
wo − T 3

wo)
p3Tsur

⎤
⎥⎥⎦ .

Note, that disturbance vector E(t) is added to the right
hand side of (1). E contains two components. The first de-
pends on Tsur and changes sufficiently slow to be accepted
as constant. The second depends on Fw and changes much
faster (see Figure 1). Analysis of Fw shows its white char-
acter. This justifies assumption, that disturbances term
can be omitted in prediction.

It can be easily verified that if the heating is off (Qp, Fz =
0) and no hot water is use (Fw = 0) then all state are equal
to Tsur. Assuming Tsur = const one can use deviation
model where X means deviations from Tsur.
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Fig. 1. Example of data for identification. T 3
wo - blue, T 2

wo
- green, Tzi - red, Fw - black.

Figure 1 presents example of data. There are three temper-
atures measured: hot water (output of the tank) T 3

wo – blue
line, temperature at half height of the tank T 2

wo (green) and
temperature of the heating medium Tzi (red). Lower part
of the tank keeps constant temperature T 1

wo = 10oC which
need not to be measured. Tsur = 25.5oC was assumed
constant as well. On-off control signal were boiler power
Qg = 0 or 16200 and heating medium flow Fz = 0 or 0.5.
It is interesting to notice the behavior of T 3

wo temperature:
if the heating is off (Tzi decreases) and hot water use
appears (black line) then T 3

wo increases for some time while
T 2

w0 decreases. This phenomenon follows form placement
of the measurement element – close, but outside of the
tank. If the pump is off the pipe gets colder despite of the
high inner temperature. After disturbance occurs pipe gets
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warmer despite temperature of cold water at the input of
the tank is much lower then the inner temperature.

After carefully chosen periods it became possible to deter-
mine parameters of three-layer model Ogonowski (2011a)
as presented in Table 1.

Table 1. Parameters of three-layer model.

Layer/
Parameter

n = 1 n = 2 n = 3

b1 0 0.019 0.025

b2 0.73 0.071 0.067

b3 0.00005 0.00093 0.0058

b4 0 0.00076 0.0049

b5 0.00001 0 0

p1 0.13

p2 0.015

p3 0.005

5.3 Standard rely control

In practice, standard control system of hot water tank uses
two relays. The first (with hysteresis) stabilizes T 2

wo on the
prespecified set-point T 2

wo,sp. The second realizes so called
cut-off algorithm: if Tzi exceeds Tzi,cut then the boiler is
switched off, however pump is still on until the first rely
is on. This very simple algorithm is robust and ensures
the maintenance of hot water volume on some level due
to middle temperature is stabilized instead of the output
one. The only drawback seems indirect stabilization of
the output temperature. Thus, T 2

wo,sp has to be properly
chosen (usually by trial and error method).
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Fig. 2. Results of the standard on-off control performance.
T 3

wo - red, T 2
wo - green, Tzi - cyjan, Fw - black, Qp -

blue (scaled to 10-15), Fz - magenta (scaled to 20-25).

Figure 2 demonstrates the results of the standard control
under real-world operations. This means not only real-
world experimentation in the environment sense, but also
that the control system was tested during normal using of
the tank. Disturbances (hot water use) caused a decrease
in output temperature and control system reaction. Set
point for middle temperature is T 2

wo,sp = 28oC and is kept

properly (green). Mean value of the output temperature
T 3

wo is equal to 46oC (red). Variance if T 3
wo is relatively

large, however, one should remember that T 3
wo is controlled

indirectly.
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Fig. 3. Detail of the figure 2.

Detail of Figure 2 is presented in Figure 3 and explains
on-off algorithm performance. After T 2

wo reached 28oC
(green), pomp Fz (magenta) and boiler Qp (blue) gets on
(time 3.98). Tzi (cyjan) increases fast and after reached
cut-off temperature Tzi,cut = 54oC signal Qp starts switch-
ing. In this time Fz remains on because T 2

wo < T 2
wo,sp =

28oC. After T 2
wo reached 300C (28+2oC of hysteresis) both

control signals are off. Then, due to succeeding use of hot
water (black disturbances) T 2

wo decreases and the next
reaction of the controller takes place (time about 4.03).
Note the phenomenon of temporary increase of T 3

wo after
hot water use.

5.4 Predictive control

Observer. Standard relay control does not need T 3
wo

measurement (only T 2
wo and Tzi are necessary). Thus

the tanks are not equipped with inner (i.e. placed in
the probe) measuring thermoelement. Even if the outer
measurement is possible (i.e. using clip-on temperature
sensor) the phenomenon described above disturbs the
result significantly thus the measurement can be hardly
used for control. To conclude, observer of T 3

wo is necessary.
In fact, there is also T 1

wo to be observed because it is not
measured. However, bottom part of the tank has constant
temperature, or it changes in significantly small range,
thus the result of the observation has little influence on
the control system.

According to (13) the states are rearranged to the following
form:

X =

⎡
⎢⎢⎣

T 2
wo

Tzi

T 3
wo

T 1
wo

⎤
⎥⎥⎦ (33)
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and vector of measurement Y can be written as:

Y (t) = (I2 0)X(t) (34)

where I2 is unity matrix of 2 × 2 size. The task of the
observer is to determine

X̂ =

⎡
⎢⎢⎣

T 2
wo

Tzi

T̂ 3
wo

T̂ 1
wo

⎤
⎥⎥⎦ (35)

which elements T̂ 3
wo and T̂ 1

wo tends sufficiently fast to
T 3

wo and T 1
wo independently on initial conditions and

disturbances. The matrices of the model (14) are as follows

A11 =

[
−(b2

3 + b2
4 + b2

5) 0
0 −p3

]
, A12 =

[
b2
5 b2

4
0 0

]

(36)

A21 =

[
b3
4 0

b1
5 0

]
, A22 =

[
−(b3

3 + b3
4) 0

0 −(b1
3 + b1

5)

]

B0,1 =

[
0 0
0 p1

]
, B0,2 =

[
0 0
0 0

]
(37)

B1,11 =

[
−b2

1 b2
1

0 −p2

]
, B1,12 =

[
0 0
p2 0

]

(38)

B1,21 =

[
0 b3

1
0 0

]
, B1,22 =

[
−b3

1 0
0 0

]

and B2,11 = B2,12 = B2,21 = B2,22 = 02, where 02 is zero
matrix of 2 × 2 size.

It can be easily checked that the condition (16) takes the
form:

H =

⎡
⎣ h11

b3
1

p2
h21 0

⎤
⎦ (39)

Characteristic equation of a matrix

Â = A22 + HA12 =

[
h11b

2
5 − b3

3 − b3
4 h11b

2
4

h21b
2
5 h21b

2
4 − b1

3 + b1
5

]
(40)

has got the following form

λ2 + αλ + β = 0 (41)

where:

α = −h11b
2
5 + (b3

3 + b3
4) − h21b

2
4 + (b1

3 + b3
4), (42)

β =h11b
2
5(b

1
3+b1

5)+h21b
2
4(b

3
3+b3

4)+(b1
3+b1

5)(b
3
3+b3

4) (43)

It follows from the Hurwitz criterion that the condition
(15) is fulfilled if

α > 0 i β > 0 (44)

This can be transformed into two cases:

If b2
5 = 0

⎧
⎨
⎩

h11 −arbitral

h21 <
b1
3 + b1

5

b1
4

(45)

If b2
5 �= 0

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h11 < −b2
4

b2
5

h21 +
b3
3 + b3

4 + b1
3 + b1

5

b2
5

h11 < −b2
4(b

3
3 + b3

4)

b2
5(b

1
3 + b1

5)
h21 +

b3
3 + b3

4

b2
5

(46)

Derivation of (45) and (46) used fact, that bk
i ≥ 0.

Using parameters of the model given in Table 1 one
obtains: h21 < 0.0789 and h11 to be freely chosen. The
choice influences convergence of the observer. Speed of
the convergence follows from eigenvalues of Â. In the case
discussed (b2

5 = 0 – see Table 1), the eigenvalues are equal
to:

λ1 = −b3
3 − b3

4

(47)
λ2 = h21 − b1

3 − b1
5

It is clear form (47) that λ1 does not depend on H , thus
the speed of convergence can be shaped to a small extent
by changing only λ2. Finally the following values has been
chosen:

H =

[
0 1.667

−10 0

]
. (48)

Example of application. Set-points have been deter-
mined for the states as follows:

Xsp =

⎡
⎢⎢⎣

T 2
wo,sp

Tzi,sp

T 3
wo,sp

T 1
wo,sp

⎤
⎥⎥⎦ =

⎡
⎢⎣

28
54
46
10

⎤
⎥⎦ . (49)

Sampling time has been chosen Ts = 1 min. The model
(1) has been discretized with simple Euler method (10).
Constrains can be summarized as

ΩX̂ = [0 1 0 0]

⎡
⎢⎢⎣

T 2
wo

Tzi

T̂ 3
wo

T̂ 1
wo

⎤
⎥⎥⎦ ≤ 54oC (50)

One can notice that the control system influences of Tzi

in two ways (set-point and constrains). This problem
does not disappear after inclusion of the constrains into
the criterion function (5). However, proper choice of the
weighting matrix Q transfres the responsibility of Twzi

control on the penalizing function:

Q =

⎡
⎢⎣

q1 0 0 0
0 0 0 0
0 0 q2 0
0 0 0 0

⎤
⎥⎦ , q1 ≥ 0, q2 ≥ 0. (51)

Note, that the second row and column is zero. Control
weighting matrix is assumed to be diagonal as well

R =

[
r1 0
0 r2

]
, r1 ≥ 0, r2 ≥ 0. (52)

Penalizing function is assumed to the Heaviside one

ϕ
(
ΩX̂(·) − Xcon

)
= α1(Tzi(·) − 54oC), α > 0. (53)

The above formulated algorithm has bee tuned by trial and
error method using simulations which has been conducted
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with the disturbances that had been measured during relay
control experiment (see Figure 2). The results of tuning are
as follows: N = 4, α = 150, q1 = q2 = 1.36, r1 = r2 = 0.12.
Figure 4 presents the results of the predictive control
algorithm performance.
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Fig. 4. Results of the predictive control algorithm perfor-
mance. T 3

wo - red, T 2
wo - green, Tzi - cyjan, Fw - black,

Qp - blue (scaled to 10-15), Fz - magenta (scaled to
20-25).

Obviously, there is no possibility to use the same dis-
turbance signal as in relay case, because experiment in
real-life environment can not be repeated. However, it can
be noted significantly better stabilization of the output
T 3

wo temperature of the hot water (red line). On the other
hand, stabilization of the middle T 2

wo temperature is worse
(green) but yet this state is not important from the user
needs view point. This can be seen e.g. between 2.5 and 3.5
[day]. Even in the absence of hot water outlets, reaction
of the control algorithm takes place. This is due to the
existence of feedback from observed T 3

wo which decreases
because the tank cools down.

One would expect increase of the fuel consumption due to
more frequent reaction of the control system when com-
pare with the standard relay controller. This is not true.
After much longer tests it became clear that predictive
control is significantly economical. Long term observations
proved about 9.5% fuel save when compare with relay
control. The reason probably follows from the fact that
predictive control takes into account energy price while
minimizing objective function due to the term UT RU .
Standard controller does not take into account energy
consumption at all.

6. CONCLUSION

Predictive control algorithm with state constrains allows
for much better control performance then standard relay
controllers. However, it is paid for with difficulty of tuning.
There are number of parameters that should be properly
chosen. What is more, quality of control depends on the

quality of the model, because the prediction depends di-
rectly on model accuracy and indirectly on precision of
observer which in turns depends on the model. Two further
directions of research seems necessary to be undertaken.
The first is multilayering of the control system structure
which allows for application of upper-layer optimization of
the controller parameters and operating point. The opti-
mization can directly take into account fuel consumption.
The second direction is adaptation of the model (or model
self-tuning). It is possible due to structure of the model
is known (stratification). Additional problem could be
robustness of the control system on the model inaccuracy.

The paper presents application of the proposed algorithm
to three layered model. The volume of the tank being
tested allows for such stratification. Large industrial tanks
need more precise stratified model which are build with
greater number of layers. The theory, however remains the
same and can be directly used.
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Abstract: AutoGenU is a Mathematica program to automatically generate simulation pro-
grams for Nonlinear Model Predictive Control (NMPC). It analytically evaluates the Jaco-
bians necessary to calculate the optimality condition in the NMPC realized using Continua-
tion/Generalized Minimum Residual (C/GMRES) method. However, in the case of the LHC
Superfluid Helium Cryogenic System, which is distributed parameter system, these Jacobians,
expressed directly in terms of inputs, states and co-states become complex expressions due
to cascading relations between internal variables of the circuit’s model. A semi-automatic
code generation procedure based on AutoGenU is presented, where intermediate variables are
introduced and the chain rule is applied to evaluate the Jacobians, thereby avoiding complex
expressions. In addition, the ODE set describing the system state dynamics is stiff, thus the
dynamics time integration step is small. The intermediate variables are available at each step
and are used to evaluate the optimality condition more precisely at low additional computing
cost. The observed computational cost of the semi-automatically generated code is slightly lower
than that of automatically generated and the controller performance is similar in both cases.
However, the generation of semi-automatic code requires significantly less memory, and is much
faster, widening the applicability of code generation for complex systems.

Keywords: Nonlinear Model Predictive Control, Nonlinear Receding Horizon Control,
Automatic Code Generation System, Distributed Parameters System, Stiff system

1. INTRODUCTION

AutoGenU is a Mathematica program to automatically
generate simulation programs for Nonlinear Model Pre-
dictive Control (NMPC) also known as Receding Horizon
Control (RHC). Once the state equation, the performance
index and some other simulation conditions are specified
by a user as an input file in Mathematica R© Format, then
AutoGenU.nb loads the input file, executes such necessary
operations as partial differentiation, and generates a C
source file. The generated source file is ready for com-
pilation and execution. The simulation program employs
a fast optimization algorithm, Continuation/Generalized
Minimum Residual (C/GMRES) (Ohtsuka (2000)). Au-
toGenU has been applied to generate the NMPC for the
Superfluid Helium Cryogenic Circuit (SHCC) at the Large
Hadron Collider (LHC) 1 . More precisely, a simulation
independent implementation of the NMPC based on the
C/GMRES optimization (Ohtsuka (2004)) has been sep-
arated from the simulation program. Then, this C code
has been used in Matlab R© simulations, accessed via MEX
functions, (Noga et al. (2010)) and also it has been inte-

1 The LHC is the newest particle accelerator and collider at the
European Organization for Nuclear Research (CERN)

grated into the PVSS II R© SCADA of the LHC cryogenic
system as a prototype implementation of NMPC for the
SHCC.

A 106.9 m long Standard Cell of the SHCC is composed
of eight, main superconducting magnets of the LHC,
submerged in a bath of superfluid helium (Brüning et al.
(2004)). The magnets are cooled via an over 100 m long
Bayonet Heat Exchanger integrated into the magnets
(Lebrun et al. (1997)). Our system corresponds to a Sub-
Sector of the SHCC that is composed of two Standard Cells
that share common helium bath (Gubello et al. (2006)).
The system state x(l, t) is the magnet temperatures as a
function of time t and is spatially distributed over the Sub-
Sector length 0 ≤ l ≤ 2× 106.9 m. Its dynamics has been
modeled as a function of a distributed value of cooling
power of two heat exchangers that is a function of helium
saturation temperature a(l, t) and mass flow rate b(l, t) in
each heat exchanger (Noga (2007), Noga et al. (2010)).
After spatial discretization of x, a and b using a Finite
Volume approach with N = 10 intervals, the dynamics of
discretized state
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dx1/dt = f1(x1, x2, a1, b1)
dxi/dt = fi(xi−1, xi, xi+1, ai, bi) (i = 2, ..., N − 1)
dxN/dt = fN (xN−1, xN , aN , bN ),

(1)
with saturation temperature

a1 = aI,1
ai+1(ai, bi) (i = 1, ..., N/2− 1)
aO,1(aN/2, bN/2)
aN/2+1 = aI,2
ai+1(ai, bi) (i = N/2 + 1, ..., N − 1)
aO,2(aN , bN )

(2)

and He II mass flow rate
b1 = bI,1
bi+1(ai, bi, xi) (i = 1, ..., N/2− 1)
bO,1(aN/2, bN/2, xN/2)
bN/2+1 = bI,2
bi+1(ai, bi, xi) (i = N/2 + 1, ..., N − 1)
bO,2(aN , bN , xN ).

(3)

Please note the presence of a Two-Point Boundary Value
problem, since the boundaries are the He II mass flow rates
at heat exchanger inlets that are the model manipulated
variables

bI,k = uk (k = 1, 2) (4)

and the saturation temperature at the outlets aO,k. The
saturation temperatures are equal in a Sub-Sector aO,k =
aSS . Due to the spatial discretization scheme chosen, the
saturation temperature at the inlets aI,k is solved to satisfy
the boundary conditions at the outlets aO,k using the
Newton method with n-th iteration

(aI,k)n+1 = (aI,k)n−(daO,k/daI,k)−1n [(aO,k)n−aSS ]. (5)

In order to evaluate the necessary optimality condition
in the NMPC (Ohtsuka (2004)), AutoGenU analytically
calculates the Jacobians Hu and Hx of the Hamiltonian

H = L(x, u) + λT f(x, u, t) + µT C(x, u, t) (6)

with respect to vectors of system inputs u(t) and states
x(t). Here, t is time, L is a performance index that
appears in the cost functional to be minimized during the
optimization,

ẋ = f(x, u), C(x, u) = 0 (7)

represent the system state dynamics and constraints re-
spectively and λ(t) and µ(t) are the Lagrange multipli-
ers. In case of the SHCC , the Jacobians Hu and Hx

expressed directly in terms of inputs and states become
very complex and the automatic code generation fails due
to excessive operational memory needed. However, the
automatic generation of each component of the Jacobians
separately has been successful. One method to significantly
reduce the complexity of the Hu and Hx expressions is to
introduce intermediate variables and use the chain rule to
evaluate the Jacobians. A number of intermediate vari-
ables corresponding to internal model variables has been
chosen to exploit the model structure. Since the choice of
the intermediate variables and the implementation of the
chain rule are done by hand, the resulting code generation
procedure is semi-automatic.

The set of ODEs describing the SHCC state dynamics is
stiff. In the C/GMRES version for systems with stiff dy-
namics, the residuum of the optimality condition is calcu-
lated using integrals of the JacobianHu over the prediction
horizon grid (Noga et al. (2010)). The grid corresponds to

intervals with constant control signal. The automatically
generated Hu is expressed directly in terms of system
inputs and states and thus has high computational cost,
thus the integrals are calculated using simple quadratures
such as one-point rectangular or two-points trapezoidal,
where Hu is evaluated exclusively at the horizon grid.
However, once the intermediate variables are introduced
and then available at each state integration step, which in
case of stiff system is much shorter than the grid interval,
the Hu may be evaluated at each step at low additional
computational cost, resulting in a more precise calculation
of the optimality condition.

This paper presents the semi-automatic procedure of
NMPC code generation for the SHCC based on Auto-
GenU. This section introduced AutoGenU and the mo-
tivation for the use of intermediate variables in case of the
SHCC. Next, the choice of intermediate variables and the
implementation of the chain rule are described in detail.
Then the evaluation of the optimality condition using the
intermediate variables is presented. Finally the perfor-
mance of the semi-automatically generated NMPC code
is compared against that generated automatically. The
low memory required by the semi-automatic generation
process is highlighted.

2. SEMI-AUTOMATIC CODE GENERATION

During automatic code generation using symbolic mathe-
matics, the cascading relations between i-th and (i−1)-th
variable a and b in Eqs. (2) and (3) enable propagation of
complex expressions. This is especially visible in case of the
Hamiltonian, Eq. (6), that involves the system dynamics
f , Eq. (1), and, trough the index L, helium mass flow
rates at the heat exchanger outlets calculated from Eq.
(3). Its Jacobians Hu and Hx expressed directly in terms
of inputs and states become very complex and the auto-
matic code generation fails due to excessive operational
memory needed. However, automatic generation of C code
for each component of the Jacobians separately requires
less memory and has been successful.

A method to avoid the propagation that significantly
reduces the complexity of the expressions for Hu and Hx is
to use ai and bi as intermediate variables. The components
of Hu and Hx, which are the Jacobians fx, fu, Cx, Cu, Lx
and Lu, are calculated using the chain rule

dfi
dxj

=
∂fi
∂xj

+
∂fi
∂ai

dai
dxj

+
∂fi
∂bi

dbi
dxj

(8)

dfi
duk

=
∂fi
∂ai

dai
duk

+
∂fi
∂bi

dbi
duk

, (9)

recalling that b1 = u1 and bN/2+1 = u2, see Eq. (4).
The Jacobians of intermediate variables with respect to
the states and inputs are calculated as follows. At the dis-
cretization points along the heat exchanger i = 1, ..., N/2−
1, N/2 + 1, ..., N − 1



dai+1

dxj
dbi+1

dxj


 =



∂ai+1

∂ai

∂ai+1

∂bi
∂bi+1

∂ai

∂bi+1

∂bi







dai
dxj
dbi
dxj


+

[
0

∂bi+1

∂xi
δi,j

]

(10)
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


dai+1

duk
dbi+1

duk


 =



∂ai+1

∂ai

∂ai+1

∂bi
∂bi+1

∂ai

∂bi+1

∂bi







dai
duk
dbi
duk


+

[
0

∂bi+1

∂uk

]
(11)

with Kronecker delta δi,j . At the outlets of the k-th heat
exchanger (i = N/2, N)



daO,k
dxj

dbO,k
dxj


 =



∂aO,k
∂ai

∂aO,k
∂bi

∂bO,k
∂ai

∂bO,k
∂bi







dai
dxj
dbi
dxj


+

[
0

∂bO,k
∂xi

]
(12)




daO,k
duk

dbO,k
duk


 =



∂aO,k
∂ai

∂aO,k
∂bi

∂bO,k
∂ai

∂bO,k
∂bi







dai
duk
dbi
duk


+

[
0

∂bO,k
∂uk

]
(13)

At the inlets of k-th heat exchanger, the manipulated
inputs are the boundary conditions, see Eqs. (3) and (4),
thus

dbi/dxj = 0 (i = 1, N/2 + 1)
dbi/duk = 1 (i = 1, k = 1 and i = N/2 + 1, k = 2)
dbi/duk = 0 (i = 1, k = 2 and i = N/2 + 1, k = 1),

(14)
however the saturation pressure in Eq. (2) is fixed at the
outlet, thus

daO,k/dxj = 0
daO,k/duk = 0

(15)

and the partial derivatives at the inlet is calculated as

dai/dxj = −(∂aO,k/∂ai)
−1 ∂aO,k/∂xj

dai/duk = −(∂aO,k/∂ai)
−1 ∂aO,k/∂uk.

(16)

Here the Jacobians ∂aO,k/∂xj and ∂aO,k/∂uk are found
as daO,k/dxj and daO,k/duk using da1/dxj = 0 and
daN/2+1/duk = 0, see Eqs. (10) and (11). The partial
derivatives ∂aO,k/∂ai are calculated in an iterative manner
similar to Eqs. (10)–(13).

All other partial derivatives in Eqs. (8)–(13), are generated
automatically as in AutoGenU. However, as demonstrated,
the choice of the intermediate variables and the implemen-
tation of the chain rule are done by hand, thus the resulting
code generation procedure is semi-automatic. Regarding
other components of Hu and Hx, the cost function L is
a sum of terms among which some are independent of
the intermediate variables and the corresponding parts
of the gradients Lx, Lu can be generated automatically.
However, the helium mass flow rate at the heat exchanger
outlets is minimized, thus enters the performance index
and corresponding parts of the gradients have been gen-
erated similarly to and using some sub-expressions of the
fx, fu. In the system, the Jacobians of the constraints, Cx
and Cu, do not involve the intermediate variables and can
be generated automatically.

The semi-automatic code generation procedure is much
faster and requires much less operational memory than the
automatic used in AutoGenU. The observed generation
time was seconds vs. 30 min. and the maximum memory
used to store all the data for the Mathematica session was
7.9 MB vs. 1034 MB. This makes it possible to apply
this type of the semi-automatic code generation process
to more complicated systems.

Fig. 1. Comparison of the performance of the automati-
cally and semi-automatically generated controllers.

3. C/GMRES OPTIMALITY CONDITION

In NMPC an open loop optimal control problem is solved
over the future prediction time t′ horizon taken from the
current time t to t+ T (Ohtsuka (2004)):

minimize J̄ = φ+

∫ t+T

t

L+λT (f − ẋ) +µT C dt′, (17)

with the predicted state trajectory starting at current
state: x′(0, t) = x(t). Based on the optimized, predicted
future input trajectory u′(t, t′), the feedback control is
realized by applying only its initial part u(t) = u′(0, t)
and continuously repeating the optimization using current
measurements and receding the time horizon as the time
passes.

In case of stiff dynamics, the state/costate integration step
must be very short and in order to separate its length
from the control horizon discretization grid t′i, i = 1..Nt′ ,
u′(t′, t) and µ(t′, t) are parameterized using Nt′ discrete
inputs u∗i (t) and Lagrange multipliers µ∗i (t) (Noga et al.
(2010))
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u′(t′, t) =

Nt′−1∑

i=0

σi(t
′) u∗i (t) (18)

µ(t′, t) =

Nt′−1∑

i=0

σi(t
′) µ∗i (t) , (19)

with basis window functions:

σi (t′) =

{
1 if t′i ≤ t′ < t′i+1
0 otherwise.

(20)

The necessary condition for an extremum of J̄ , Eq. (17),
are: the constraints (7), the costate dynamics

dλ/dt′ = −HT
x (x′, u′, λ, µ) (21)

λ (t+ T, t) = φTx (x′(t+ T, t)), (22)

with the Hamiltonian H as in Eq. (6), and a nonlinear
equation (Bryson and Ho (1975); Ohtsuka (2004); Noga
et al. (2010)),

F (U(t), x(t), t) = 0, (23)

F := [Hu,0 C
T
0 · · · Hu,Nt′−1 C

T
Nt′−1]T , (24)

U(t) := [u∗T0 µ∗T0 · · · u∗TNt′−1 µ
∗T
Nt′−1]T , (25)

with the integrals

Hu,i :=

∫ t′i+1

t′
i

Hu dt′, Ci :=

∫ t′i+1

t′
i

C dt′. (26)

For a given sequence of u∗i (t) and µ∗i (t), dx′/dt′ is inte-
grated over the finite horizon t < t′ < t+T , starting from
x(t). Then dλ/dt′ is integrated backwards from t+T back
to t. Finally, Hu,i and Ci are evaluated and assembled into
the residuum of the necessary optimality condition F .

Since Hu expressed directly in terms of system inputs
and states has high computational cost, the integrals
Hu,i are calculated using simple quadratures such as one-
point rectangular or two-points trapezoidal, where Hu is
evaluated exclusively at the horizon grid. However, once
the intermediate variables are introduced and are then
available at each state integration step, the Hu may also
be evaluated at each step at low additional computational
cost, resulting in a more precise calculation of the optimal-
ity condition. Also the derivative daO,k/daI,k employed
in the Newton iteration, Eq. (5), is calculated using the
intermediate variables.

The performance of the C/GMRES controller generated
using automatic and semi-automatic procedure has been
simulated, see Fig. 1. In the simulation, the predic-
tion horizon length increases at the beginning to reach
max(T ) = 50 min and is discretized with Nt′ = 10 in-
tervals. The time step for system dynamics integration
is 62 times shorter than the horizon grid interval, thus
the integrals Hu,i and Ci are evaluated using one point
and 62 points in automatic and semi-automatic code,
respectively. The observed computational cost of the semi-
automatically generated code is slightly less than that of
automatically generated and the controller performance is
similar in both cases.

4. CONCLUSIONS

AutoGenU automatically generates the C code of the
Jacobians Hx and Hu, required to evaluate the necessary

optimality condition in NMPC. For the case of the SHCC,
which is a distributed parameter system, the Jacobians
expressed using symbolic mathematics directly in terms of
system inputs, states and co-states are complex due to the
propagation of expressions along the cascading structure of
the discretized system model. Based on AutoGenU, a semi-
automatic NMPC code generation procedure has been
developed for the SHCC, where intermediate variables
are used to avoid this propagation, thereby reducing the
complexity of the Jacobians. In the case of a stiff system,
the time step of the system state dynamics integration is
small and the intermediate values, which are available at
each step, are used to evaluate the optimality condition
more precisely at low additional computational cost. The
observed computational cost of control update calculated
using the semi-automatic code is slightly less than that
generated automatically and the controller performance
is similar in both cases. However, this semi-automatic
code generation process requires significantly less memory,
which makes it possible to apply the code generation
process with analytically calculated Jacobians to more
complicated systems.
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Abstract: Two simple techniques are presented and compared for predictive control of TITO (Two-
Input, Two-Output) processes to improve the decoupling effect. These techniques are applied for 
GPC (Generalized Predictive Control) and PFC (Predictive Functional Control). According to the first 
technique the controller parameters are tuned in synchronization to a reference signal change. Accord-
ing to the second one the controller parameters are set dependent on the actual control error. The sec-
ond method makes the synchronization to a reference signal change superfluous and its realization is 
therefore very easy. 

Keywords: Generalized predictive control, predictive functional control, controller parameter adapta-
tion, control error-dependent controller parameters 

1. INTRODUCTION 

Improvement of the decoupling effect in multivariable 
processes is an important issue. It is desired that change of 
one reference signal would affect mainly on the corre-
sponding controlled variable, while the effect on the others 
with constant reference signal would be reduced, i.e. the 
control error of the other controlled variables would be 
minimized (Maurath, Seborg and Mellichamp, 1986). 
MIMO (Multi-Input, Multi-Output) controllers can handle 
this problem using manually designed decoupling control-
lers or MIMO predictive controller which enhances the 
decoupling automatically.  

The question arises how the decoupling can be improved 
without complicated multivariable controller design. In this 
paper two different methods are recommended for multi-
variable control of stable aperiodic processes. The TITO 
controller is realized by GPC (Generalized predictive con-
trol) (Clarke et. al., 1987) and PFC (Predictive Functional 
Control) (Richalet and O’Donavan, 2009).    

The paper is structured as follows. In section 2 the TITO 
GPC algorithm is shown. In section 3 the TITO PFC algo-
rithm is shown. In section 4 a TITO process is controlled by 
both predictive control algorithms with fixed controller 
parameters. In sections 5 and 6 two different methods are 
shown how the controller parameters of the two predictive 
control algorithms can be adapted to decrease the coupling 
effect. The results are summarized in the conclusion. 

2. GENERALIZED PREDICTIVE CONTROL 

The cost function of a TITO predictive control is:  
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with the denotations:  

 )|1( kndky eiri  : reference signal of the i-th 

output ne steps over the dead time di,  

 )|1(ˆ kndky eii  : predicted i-th output signal ne 

steps over the dead time.   

The tuning parameters of the control algorithm in (1) are: 

 112  ieie nn : length of the prediction horizon for the i-

th output,  

 uin : length of the control horizon of the i-th input, 

 yi : control error weighting factor of the i-th output,  

 ui : control increments weighting factor of the i-th input. 

The control increments vector in the control horizon from 
k  to 1 uink  which has to be optimized is: 
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The predicted i-th output vector in the future time domain 
(prediction horizon) from iei ndk 11  to iei ndk 21  

can be divided into free and forced responses: 
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The predicted forced i-th output vector in (3) is:  
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whereas ijH  is the matrix of step response coefficients of 

the process model, and 0)( khij  if 0k . 

For the TITO process, the predicted vectors (in the predic-
tion horizon) of the reference signals, process outputs, free 
responses and forced responses are respectively: 

  TT
r

T
rr 21,yyy  : predicted reference signals,   

 TTT ]ˆ,ˆ[ˆ 21 yyy  : predicted outputs,  

 TT
free

T
freefree ]ˆ,ˆ[ˆ 21 yyy  :   predicted free responses,  

 TT
forc

T
forcforc ]ˆ,ˆ[ˆ 21 yyy  : predicted forced outputs.  

The predicted vector of the forced responses is: 

 uH
u
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
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



2

1

2221

1211
2
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2

2

1
1

ˆ

j
jj

j
jj

forc
         (6) 

The cost function (1) becomes:  

   
u

uΛuyyΛyy


 MINJ u
T

ry
T

r ˆˆ      (7) 

with the diagonal weighting matrices (for simplicity) of the 
control errors and the control increments:  

IIdiagΛΛdiagΛΛ 2121 ,, yyyy
T
yy  ; 

IIdiagΛΛdiagΛΛ 2121 ,, uuuu
T
uu    

and I  is the identity matrix. 

Substituting of free and forced responses vectors results in:  

   

u
uΛu

uHyyΛuHyy






MIN

J

u
T

freery
T

freer ˆˆ
     (8) 

Unconstrained minimization of the cost function (8) accord-
ing to the whole sequence of input increments in the control 
time domain leads to:  

  
  0uΛΛ
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u

u
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d
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)(
 

which results in  

   freery
T

uy
T yyΛHΛHΛHu ˆ

1



              (9) 

According to the receding horizon technique only the actual 
control signals will be used and the computation is repeated 
in the next control step:  

T
actual kukuk )](,)([)( 21 u       (10) 

3. PREDICTIVE FUNCTIONAL CONTROL 

The principle of SISO PFC with constant reference signal is 
that the controlled variable achieves the reference trajectory 
at the target point using one change in the manipulated 
variable. The desired change in the controlled variable 
during the prediction horizon np (from the actual time k) is 

calculated from the change of the reference trajectory and 
compared to the predicted change of the non-delayed model 
output to define the required control signal, see Fig. 1. 

Fig. 1. PFC principle of processes with dead time

The aim of the control equation is: 

)()|(ˆ)]|(ˆ)[1(

)()|(ˆ)|(ˆ)|(ˆ

kyknkykdkyy

kyknkykdkykndky

mpmmr
n
r

mpmmpm
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


   (11) 

with the denotations: 

 )|(ˆ kndky pm  : predicted controlled variable pn  steps 

over the dead time md , 

 ry : reference signal (supposed constant in the future), 

 )|(ˆ knky pm  : predicted non-delayed model output pn  

steps over the actual time, 

 r : reduction ratio of the bias between the reference 

signal and its trajectory. 

The controller parameters (for sampling time t ) are: 

 )(ln/3 rc tT  : desired closed loop settling time 

 pn : prediction horizon ( 1 ) 

The control equation of PT1 (proportional, 1st-order) proc-
ess with dead time (chosen for simplicity) is described as: 

)()]|(ˆ[)( 10 kykkdkyykku mmr   (12) 

where: 

)]()([)()|(ˆ mmmm dkykykykdky   (13) 

 
])(1[

1
0

p

p

n
mm

n
r

aK
k






  , 
mK

k
1

1  : controller coefficients 

 am: discrete-time model parameter 

 Km: static gain of the model 

In case of n-th order aperiodic processes the transfer func-
tion of the non-delayed model can be partitioned in parallel 
connection of n first-order models with the corresponding 
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parameters miK , and mia , of i-th sub-model. (If the model 

has multiple poles then different but very similar poles have 
to be assigned to each multiple pole.)  

The basic algorithm can be easily extended for this case, as 
well (Khadir and Ringwood, 2008):   
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where: 
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and, discrete-time equation of i-th sub-model is: 

)1()1()1()( ,,,,,  kuaKkyaky mimimimimi   (15) 

The algorithm is extended for TITO processes with the 
following tuning parameters: 

 )(ln/3 rici tT  : desired closed loop settling time of 

the i-th controlled variable, 

 pin : prediction horizon of the i-th controlled variable.  

The discrete dead time of i-th output signal is supposed as: 

),(max 21 mimiim ddd   

where ijmd  is the discrete dead time of the model with j-th 

input signal and i-th output signal. 

Thus, these relations can be defined: 
)()()( 2211 mimimimiimim dkydkydky       (16) 

whereas ijmy  is the non-delayed model output, and 

)( ijmijm dky   should represents )(kyij , thus: 
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)]()(ˆ[)()(ˆ imimimiimi dkykkykykdky    (18) 

From (18), the predicted increment of i-th controlled vari-

able pjn  step ahead the instant imdk   is defined as: 
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  (19) 

The predicted increment of i-th process model output pjn  

step ahead the current k is defined based on (17) as: 
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  (20) 

This equation in (20) can be reformulated using free and 
forced responses: 
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whereas: 
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Based on (19) and (21), PFC goal leads to these two control 
equations (for i=1 and 2): 
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The free and forced responses of the process model with j-
th input signal and i-th output signal (which is partitioned in 
parallel connection of nij first-order sub-models) are: 


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The solutions of these equations (22) in the two manipu-

lated variables )(kuu ii  ; i=1,2 are calculated (if they are 

unique) in every control step using the same algorithm. 
Otherwise when the solutions are not unique (one equation 
of two variables which has infinite solutions) the tuning 
parameters can be changed in order to get a unique solution 
of the control equations, or the solution with minimum 
increments can be defined by solving this criteria function: 
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whereas u2 and 
1

2

du

du
 are defined from one of the two 

equivalent linear equations (22) of the variables u1 and u2. 

4.  DECOUPLING PREDICTIVE CONTROL OF A TITO 
PROCESS 

In order to illustrate the problem of coupling a TITO proc-
ess is considered with set of the sampling time t=0.1 min. 
The sub-processes are aperiodic with different static gains 
Kij, time constants Tij, and dead times Tdij. All processes 
have some (nij) equal time constants:    
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 P11: K11=1.5,   T11=1.0 min,   n11=2,  Td11=0.1 min 

 P12: K12=0.5,   T12=0.5 min,   n12=4,  Td12=0.5 min 

 P21: K21=0.75, T21=0.5 min,   n21=3,  Td21=0.8 min 

 P22: K22=1.0,   T22=2.0 min,    n22=1,  Td22=0.2 min 

The step responses of the processes were shown in Fig. 2.  

 

Fig. 2.  Step responses of the TITO sub-processes 

TITO predictive control was used; see the scheme in Fig. 3. 

 

Fig. 3. TITO predictive control scheme 

The control scenario was:  

 at t=1 min stepwise increase of the reference signal of y1 
from 0 to  1,  

 at t=10 min stepwise increase of the reference signal of y2 
from 0 to 1. 

4.1 GPC of TITO process 

GPC of TITO process is shown in Fig. 4 with the following 
controller parameters:   

 start of control error horizons: ne11=ne12=0  

 end of control error horizons: ne21=40 and ne22=30  

 length of control horizons: nu1=nu2=3 

 weighting factors of the control errors y1=y2=1 

 weighting factors of the control increments u1=u2=0.5 

The control of the reference signal changes is fast and ape-
riodic. The maximal control error of the controlled variable 
y1 is about 6.5% (related to the changes of the reference 
signal yr2), and is about 16.5% maximal control error of the 
controlled variable y2 (related to the changes of the refer-
ence signal yr1). 

 
a) GPC of output y1 

 
b) GPC of output y2 

Fig. 4. GPC of TITO process  

4.2 PFC of TITO process 

PFC of TITO process is shown in Fig. 5 with the following 
controller parameters: settling times Tc1 = 2 min. and Tc2 = 
1.5 min. and prediction horizons np1 = np2 = 3. 

The control of the reference signal changes is fast and ape-
riodic. The maximal control error of the controlled variable 
y1 is about 5.2% (related to the changes of the reference 
signal yr2), and is about 22% maximal control error of the 
controlled variable y2 (related to the changes of the refer-
ence signal yr1).  

 

a) PFC of output y1 
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b) PFC of output y2 

Fig. 5. PFC of TITO process  

Fig. 4 and 5 shows that the rising times and the maximal 
control error related to the coupling effect are similar with 
GPC and PFC for this set of controller parameters, although 
PFC has a smaller number of the controller parameters and 
less calculations than GPC. The manipulated variables of 
the process with GPC and PFC have a similar shape Also. 

5.  REFERENCE SIGNAL CHANGE-DEPENDENT 
ADAPTION OF THE CONTROLLER PARAMETER 

The time point of the reference signal change in known 
sometimes by the technology in advance. Otherwise it can 
be detected with methods of signal analysis. 

5.1 Reference signal change-dependent adaptation of GPC 
parameters 

The control equation of GPC shows that the increasing of 
the control error weighting factor of one controlled variable 
shall reduce the control error in that variable. Therefore 
increasing of the control error weighting factor of the con-
trolled variable whose reference signal was kept constant 
reduces the control error in this variable. 

This technique is illustrated in Fig. 6 for reference signal 
changes. The weighting factors of both control errors were 
changed stepwise from y1=y2=1 to y1=2 and y2=5 for 
that variable whose reference signal was kept constant in 
the moment of the other reference signal change. The dura-
tion of the weighting factors change was 5 min which is 
about 2 min longer than the settling time of the controlled 
process. 

The plots show that the two controlled variables are better 
decoupled. The maximal control error of the controlled 
variable y1 is about 5.6% (related to the changes of the 
reference signal yr2), and is about 8% maximal control error 
of the controlled variable y2 (related to the changes of the 
reference signal yr1). 

The critical point of the manual controller parameters adap-
tation is the detection of the reference signal change. Nev-
ertheless a method which does not care about the time point 
of the reference signal change would be preferable. 

 
a) GPC of output y1 

 
b) GPC of output y2 

Fig. 6. TITO GPC with reference signals changes-
dependent adaptation of y 

5.2. Reference signal change-dependent adaptation of PFC 
parameters 

The main controller parameter with PFC is the settling time 
Tc.. The decoupling ability with a TITO process can be 
improved by tuning the settling times (Tc1 and Tc2). Decreas-
ing of the desired settling time of the controlled variable 
whose reference signal was kept constant accelerates the 
control and hence reduces the control error in this con-
trolled variable. 

Fig. 7 illustrates this case for reference signal changes. The 
desired settling time of the first controlled variable was 
changed stepwise from Tc1=2 min to Tc1=1 min and the 
desired settling time of second controlled variable was 
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changed stepwise from Tc2=1.5 min to Tc2=0.75 min. The 
desired settling times were changed for that controlled 
variable whose reference signal was not changed in the 
moment of the change of the other reference signal. The 
duration of the changes were equal to the desired settling 
times for both. The maximal control error is about 4% (re-
lated to the changes of yr2) in the controlled variable y1, and 
about 18% (related to the changes of yr1) in the controlled 
variable y2. The plots show that the two processes are fast 
and better decoupled than with constant settling times but 
worse than with GPC in Fig. 6. 

 

a) PFC of output y1 

 

b) PFC of output y2 

Fig. 7. TITO PFC with reference signals changes- depend-
ent adaptation of Tc 

 

6. CONTROL ERROR-DEPENDENT ADAPTATION OF 
THE CONTROLLER PARAMETERS 

The synchronisation at the reference signal change can be 
performed automatically if the highlighted controller pa-
rameters were decentralized functions of the control errors. 

6.1 Control error-dependent adaptation of GPC parameters 

The control error of the controlled variable whose reference 
signal was changed increases faster than the control error of 
the other variable whose reference signal was kept constant. 
Consequently, if the control error weighting factors are set 
inverse proportional to the control error for both controlled 
variables then the weighting factor of the controlled vari-
able whose reference signal was kept constant will be 
higher than the weighting factor of the controlled variable 
whose reference signal was changed.  

The following dependence of the weighting factors on the 
control error were supported (Schmitz, et. al., 2007):  

 dampyii

yi
yi ke ,

max,

)(1 





  

with y1,max=2, y2,max=5, y1,damp=20 and  y2,damp=25 in this 
case.  

Fig. 8 shows that the weighting factors of those controlled 
variables whose reference signal was changed were tempo-
rarily significantly reduced and the other weighting factor is 
remained big, this behaviour is in opposite to Fig. 6. 

The control is slightly slower than with the changing of the 
weighting factors at the reference signal changes (Fig. 6) 
but the control is still fast and the decoupling is better than 
before. The automatic adaptation of the control error 
weighting factors shows about 3.2% maximal control error 
(related to the changes of yr2) in the controlled variable y1, 
and about 3.1% (related to the changes of yr1) in the con-
trolled variable y2.  

 
a) GPC of output y1 
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b) GPC of output y2 

Fig. 8. TITO GPC with control error-dependent adaptation 
of y 

6.2 Control error-linear dependent adaptation of PFC 
parameters 

The settling times can be set proportional to the related 
control error; therefore the settling time of the controlled 
variable whose reference signal was changed will be higher 
than the settling time of the controlled variable whose ref-
erence signal was kept constant. Consequently the con-
trolled variable whose reference signal was not changed 
will be controlled faster, that acts as a forced decoupling.  

The following linear dependence of the desired settling 
times on the control error were applied in the simulation:  

)()( min,max,min, keTTTT icicicici     

with Tc1,max=2 min; Tc2,max=1.5 min; Tc1,min=0.2 min and 
Tc2,min=0.15 min.  

Fig. 9 shows that the desired settling times of those con-
trolled variable whose reference signal was changed were 
temporarily significantly increased and the other settling 
time is remained small, this is in opposite to Fig. 7. 

The maximal control error is about 3.2% (related to the 
changes of yr2) in the controlled variable y1, and about 
16.3% (related to the changes of yr1) in the controlled vari-
able y2. 

This shows that the automatic adaptation of PFC parame-
ters is not as good as the automatic adaptation of GPC pa-
rameters but the decoupling effect became much better in 
comparison with the manual adaptation in Fig. 7. And as 
mentioned already the realization of this control error-
dependent adaptation is easier than detecting changes in the 
reference signals. 

 

a) PFC of output y1 

 

b) PFC of output y2 

Fig. 9 TITO PFC with control error-linear dependent 
adaptation of Tc 

6.3 Control error-exponential dependent adaptation of PFC 
parameters 

The settling times can be set as an exponential function in 
the other control error; therefore the settling time of the 
controlled variable whose reference signal was kept con-
stant will be smaller than the settling time of the controlled 
variable whose reference signal was changed, (Zabet, 
Haber, 2010).  

The following exponential dependence was designed:  

  jijikeTTT jdampcjcici  ;2,1,)(exp ,max,
 

Tc1,max=2min; Tc2,max=1.5min; Tc1,damp=10 and Tc2,damp=5.  
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Fig. 10 shows that the desired settling times of those con-
trolled variables whose reference signal was kept constant 
were temporarily significantly reduced in the moment of 
the other reference signal change as in Fig. 7. 

The maximal control error of y1 is about 3.1% (related to 
the changes of yr2), and about 16% (related to the changes 
of yr1) in the controlled variable y2. This shows that this 
automatic adaptation method is worse than with GPC con-
troller but the decoupling effect became better in compari-
son with the linear dependency adaptation method (Fig. 9). 

 

a) PFC of output y1 

 

b) PFC of output y2 

Fig. 10 TITO PFC with control error-exponential de-
pendent adaptation of Tc 

CONCLUSION 

TITO predictive control was illustrated with two different 
predictive control algorithms: GPC and PFC. The controller 

parameters in both methods were first fixed in the simula-
tion of the TITO control.   

New simple methods were presented for reducing the de-
coupling effect of the TITO GPC/PFC control with proper 
adaptation of the controller parameters. The two methods 
(1) reference signal change-dependent controller parameters 
as an event dependent adaptation method, and (2) control 
error-dependent controller parameters as a signal-dependent 
adaptation method were designed and simulated. Both 
methods have shown improved decoupling effects. 

With GPC algorithm the controlled variables were perfectly 
decoupled by both adaptation methods. The second method 
(control error-dependent adaptation) was prior to the first 
method (reference signal change-dependent adaptation).  

The decoupling became better with both adaptation meth-
ods using the PFC algorithm; this fact is clarified more for a 
slower controlled variables. With the first method the con-
trol error was a bit smaller than without any adaptation. In 
the second method the linear dependency (control error-
linear dependent adaptation) was better than the first 
method, but a bit worse than with exponential dependency 
(control error-exponential dependent adaptation). 

The adaptation of GPC controller parameters has more 
affect on the decoupling feature than the adaptation of PFC 
controller parameters for the studied set of parameters. 

Among the two controller parameter adaptation method the 
second one (control error dependent-adaptation) is easier to 
realize in practice. The presented idea can also be extended 
for processes with more than two controlled variables.  
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Abstract: In this work we propose to reduce memory footprint of explicit MPC controllers by
eliminating a significant portion of controller’s regions in which the value of the optimal control
action attains saturated values. Such regions are then separated by a suitable function, which
serves to recover the original control behavior. As a consequence, complexity of explicit MPC
feedback laws is reduced considerably without sacrificing optimality.
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1. INTRODUCTION

Implementing MPC in the Receding Horizon fashion
(RHMPC) requires, at each sampling instance, obtaining
the optimal control input by solving a suitable optimiza-
tion problem. Difficulties arise when the sampling time is
too short to perform the optimization on-the-fly. One way
around this problem is to precompute the optimal control
action u∗ for all feasible initial conditions x in form of an
explicit feedback law u∗ = κ(x). As shown in Bemporad
et al. (2002), for a rich class of MPC problems the feedback
function κ takes the form of a piecewise affine (PWA)
function, which is defined over a set of polytopic regions.
Computing u∗ on-line then reduces to a mere function
evaluation. However, the number of regions of κ, which is
problem-dependent, tends to be large, easily exceeding the
storage capacity of a selected implementation platform.
Therefore, it is important to keep the number of regions
as low as possible.

One way to reduce complexity is to construct a sub-
optimal replacement function κ̃ ≈ κ of substantially lower
complexity, see e.g. Bemporad and Filippi (2003); Jo-
hansen and Grancharova (2003); Grieder et al. (2004); Cy-
chowski and O’Mahony (2005); Jones and Morari (2009);
Scibilia et al. (2009). Another line of research is concerned
with finding such a replacement κ̃ which is simpler than
the original function, but maintains the equivalence κ(x) =
κ̃(x) for all points x of interest, as elaborated in Baotic
et al. (2008); Geyer et al. (2008); Wen et al. (2009).

In Kvasnica and Fikar (2010) we have shown how to find a
simpler, equivalent feedback law u∗ = κ̃(x) by exploiting
geometric properties of explicit MPC solutions. Specifi-
cally, we have demonstrated that in majority of controller’s
regions the optimal control action is saturated either at the
allowable maximum or minimum limits. Such regions can
subsequently be eliminated and replaced by “extensions”
of the regions in which the control action is unsaturated.

Such a procedure leads to an equivalent controller κ̃ which
is defined over, on average, 1.3Nunsat regions, where Nunsat

is the number of unsaturated regions. In this work we show
how to construct the function κ̃ which is always defined
over Nunsat regions. This is achieved by separating the
saturated regions by a suitable function, which serves to
recover equivalence between κ̃ and the original feedback
κ. Two types of separating functions are considered: poly-
nomials and piecewise affine separators encoded as binary
search trees.

This paper is structured as follows. Theoretical concepts of
explicit model predictive control are outlined in Section 3.
The general idea of complexity reduction employing the
concept of separating functions is elaborated in Section 4.
Polynomial separators are then reviewed in Section 5,
which also reviews various approaches to computing the
separating polynomial. Construction of piecewise affine
separators is reviewed in Section 6. Finally, in Section 7 we
demonstrate viability of the presented approach by means
of a large case study with the main focus on the states
with one input variable.

2. DEFINITIONS

The interior of a set R is denoted by int (R). Given
a function κ, dom(κ) denotes its domain. A set of n
elements R := {R1, . . . , Rn} will be denoted as {Ri}n

i=1
and its cardinality by |R|. A polytope is the bounded
convex intersection of c closed affine half-spaces, i.e. R :=
{x ∈ Rnx | Fx ≤ g}. We call the collection of polytopes

{Ri}R
i=1 the partition of a polytope R if R =

⋃R
i=1 Ri,

and int (Ri) ∩ int (Rj) = ∅ for all i 6= j. Each polytope Ri

will be referred to as the region of the partition. Function
κ : R → Rnz with R ⊆ Rnx , R being a polytope, is called
piecewise affine over polytopes if {Ri}R

i=1 is the partition
of R and

κ(x) := Kix + Li ∀x ∈ Ri, (1)
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with Ki ∈ Rnz×nx , Li ∈ Rnz , and i = 1, . . . , R. PWA
function κ(x) is continuous if Kix + Li = Kjx + Lj holds
∀x ∈ Ri ∩ Rj , i 6= j.

3. EXPLICIT MODEL PREDICTIVE CONTROL

We consider the class of discrete-time, stabilizable linear
time-invariant systems

xk+1 = Axk + Buk, (2)

which are subject to polytopic constraints x ∈ X ⊂ Rnx

and u ∈ U ⊂ Rnu . Assume the following constrained finite-
time optimal control problem:

min
UN

N−1∑

k=0

xT
k+1Qxxk+1 + uT

k Quuk (3a)

s.t. xk+1 = Axk + Buk, xk ∈ X , uk ∈ U , (3b)

where xk and uk denote, respectively, state and input pre-
dictions over a finite horizon N , given the initial condition
x0. It is assumed in (3a) that Qx = QT

x � 0, Qu = QT
u ≻ 0,

i.e. that (3) is a strictly convex quadratic programming
(QP). The receding horizon MPC feedback then becomes
u∗(x0) = [1 0 · · · 0]U∗

N , where the optimal control actions
U∗

N := [uT
0 , . . . , uT

N−1]
T can be found by solving (3) as

a QP for a given value of the initial condition x0. For
problems of a modest size (typically for nx < 5), it is
also possible to characterize the optimal feedback u∗(x0)
explicitly as a PWA function of x0 Bemporad et al. (2002)
by solving (3) as a parametric quadratic program (pQP).

Theorem 3.1. (Bemporad et al. (2002)). The RHMPC
feedback u∗(x0) for problem (3) is given by u∗(x0) =
κ(x0) where: (i) the set of feasible initial conditions Ω :=
{x0 | ∃u0, . . . , uN−1 s.t. (3b) hold} is a polytope; (ii)
κ : Ω → U is a continuous PWA function defined over
R regions Ri, i = 1, . . . , R; (iii) Ri are full-dimensional
polytopes Ri = {x | Fix ≤ gi}; and (iv) {Ri}R

i=1 is a
partition of Ω.

The advantage of such an explicit representation is obvi-
ous: obtaining the optimal control action for a given x0

reduces to a mere evaluation of the function κ(x0), which
is henceforth denoted as the explicit RHMPC feedback law.
The crucial limitation, however, is that the number of
regions tends to be large, often above the limits of typical
control hardware implementation platforms. Method rep-
resented in Kvasnica et al. (2011) deals with the problem
how to replace the feedback function κ by a different
function κ̃ which requires significantly less memory for its
implementation in real-time arrangement and maintains
the equivalence κ̃(x0) ≡ κ(x0) ∀x ∈ Ω.

4. COMPLEXITY REDUCTION VIA SEPARATION
OF REGIONS

Denote by κ and κ the maximal and minimal values which
the PWA function κ attains over its domain Ω. Since the
set of admissible inputs U in (3) is assumed to be closed
and bounded, and since all regions Ri, i = 1, . . . , R are
bounded polytopes, κ and κ are always finite and can be
computed by solving 2R linear programs of the form

κi = max{Kix + Li | x ∈ Ri}, i = 1, . . . , R, (4a)

κi = min{Kix + Li | x ∈ Ri}, i = 1, . . . , R, (4b)

with κ = max{κ1, . . . , κR}, κ = min{κ1, . . . , κR}. Then
the regions of κ(x) can be classified as follows.

(1) If Ki = 0 and Li = κ, then region Ri is saturated at
the maximum,

(2) if Ki = 0 and Li = κ, then region Ri is saturated at
the minimum,

(3) otherwise the i-th region is unsaturated.

Denote by Imax and Imin the index lists of regions sat-
urated at the maximum and minimum, respectively, and
by Iunsat the index list of unsaturated regions. With this
classification, the RHMPC feedback u∗ = κ(x) can be
written as

u∗ = κ(x) =





Kix + Li if x ∈ RIunsat ,

κ if x ∈ RImax ,

κ if x ∈ RImin.

(5)

Evaluation of κ(x) for any x ∈ Ω is therefore a two-stage
process. First, the index r of region Rr which contains
x needs to be identified. Then, the value of κ(x) is either
computed by Krx+Lr if r ∈ Iunsat, or κ(x) = κ (κ(x) = κ)
if r ∈ Imax (r ∈ Imin). Identification of the index r
can either be done by searching through all regions Ri,
i = 1, . . . , R sequentially, or by evaluating a corresponding
binary search tree (Tøndel et al., 2003). In either case,
the required memory storage is proportional to the total
number of regions R.

If the number of saturated regions is non-zero, a simpler
representation of κ can be obtained. Notice that, since
the regions Ri are non-overlapping due to Theorem 3.1,
for any x ∈ Ω, x /∈ RIunsat , κ(x) can only take two
possible values: either κ(x) = κ, or κ(x) = κ. This fact
can be exploited to derive a new PWA function κ̃(x) which
maintains the equivalence κ̃(x) = κ(x) for all x ∈ Ω, and
requires less memory for its description compared to the
memory footprint of κ(x).

Proposition 4.1. Let a function p : Rnx → R which
satisfies p(x) > 0 for all x ∈ RImax and p(x) < 0 for
all x ∈ RImin be given. Define

κ̃(x) =





Kix + Li if x ∈ RIunsat ,

κ if p(x) > 0,

κ if p(x) < 0.

(6)

Then, for all x ∈ Ω, κ̃(x) = κ(x).

Proof. Follows directly from (5) and from the definition
of p.

With a separator p at hand, u∗ = κ(x) can be evaluated by
only looking at the unsaturated regions RIunsat . If x ∈ Rr,
r ∈ Iunsat, then u∗ = Krx + Lr. Otherwise, based on
the sign of p(x), one either takes u∗ = κ or u∗ = κ. The
separating function p always exists. Since κ is continuous
by Theorem 3.1, regions Rj and Rk cannot be adjacent
for any j ∈ Imax, k ∈ Imin, and therefore they can always
be separated by a (possibly discontinuous) function p.

As will be evidenced later, a typical explicit RHMPC
feedback laws u∗ = κ(x) exhibits usually significantly
smaller number of unsaturated regions in comparison to
the number of saturated ones, i.e. |Iunsat| ≪ |Imax|+|Imin|.
Therefore κ̃ will require significantly less memory than
κ, and will be faster to evaluate too, if p is a “simple”
separator of the two sets RImax and RImin . Various types of
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separators can be considered, either continuous (e.g. linear
or polynomial), or discontinuous (e.g. piecewise linear or
piecewise polynomial). In this work we have opted for the
polynomial type of separating functions p and the problem
which we aim at solving is formally stated as follows.

Problem 4.2. Given a RHMPC feedback law u∗ = κ(x)
with κ as in (5), construct the replacement feedback (6)
by finding the multivariate polynomial

p(x) :=
∑

i1+···+in≤δ

(αi1,...,iδ
xi1

1 · · ·xin
n ), (7)

of minimum degree δmin such that p strictly separates the
sets of regions RImax and RImin , i.e. p(x) > 0 ∀x ∈ RImax

and p(x) < 0 ∀x ∈ RImin .

Solving Problem 4.2 is, however, nontrivial, since the sets

RImax = {x | x ∈ ∪iRi, i ∈ Imax}, (8a)

RImin = {x | x ∈ ∪jRj , j ∈ Imin}, (8b)

can in general be non-convex. Even deciding whether they
are convex or not is an NP-hard problem (Bemporad et al.,
2001).

5. POLYNOMIAL SEPARATION

Given are the (non-convex) sets RImax and RImin as in (8),
each of which consists of a finite number of polytopes Rk.
The knowledge of whether the sets are convex or not is
not relevant here. Denote by Vk the vertices of Rk and fix
some integer δ ≥ 1 in (7). Then the necessary condition
for the existence of a polynomial p which strictly separates
RImax and RImin is feasibility of the following optimization
problem:

ǫ∗ = max
ǫ,αi

ǫ (9a)

s.t. p(Vi) ≥ ǫ, ∀i ∈ Imax, (9b)

p(Vj) ≤ −ǫ, ∀j ∈ Imin. (9c)

ǫ ≥ 0. (9d)

The optimal value ǫ∗ then denotes the maximal separation
gap between the two sets of points VImax and VImin . It is
important to notice that (9) is a linear program since, for
some fixed argument x = vk, vk ∈ Vk, p(x) in (9b)–(9c)
are linear functions of the coefficients αi. If the LP (9)
is infeasible, then no strict polynomial separator p of the
form of (7) exists for a given degree δ.

If δ = 1 in (9) then having ǫ∗ > 0 is also sufficient for the
linear function p(x) := α0 + α1x to strictly separate the
sets RImax and RImin (Boyd and Vandenberghe, 2004).
Consider therefore δ > 1. If (9) is feasible with ǫ∗ > 0,
then one of the two possible scenarios can occur. In an
ideal case, solving for coefficients of p from (9) by only
considering separation of VImax and VImin will also provide
a separator for the sets RImax and RImin , as shown in
Fig. 1(a). In a more general case, though, strict separation
of vertices is not sufficient for p(x) to separate all points
from the associated sets.

An additional certification step therefore has to be per-
formed. At this point we remind that all regions of RImax

and RImin are polytopes described by Ri = {x | Fix ≤ gi}.

RImax

RImin

p(x)

(a) Strict separation of ver-
tices can sometimes imply
strict separation of the as-
sociated sets.

RImax

RImin

p(x)

(b) In general, p(x)
correctly separating VImax

and VImin
does not imply

strict separation of RImax

from RImin
.

RImax

RImin

p(x)

x̃1

x̃2

(c) Finding points that vi-
olate borders requires solv-
ing the problem (10).

RImax

RImin

p(x)

(d) Adding the offending
points to VImax and resolv-
ing (9) leads to a new sep-
arating polynomial p(x).

Fig. 1. Sets RImax and RImin, vertices VImax (squares),
vertices VImin (circles), and the polynomial separator
p(x).

Consider the k-th facet of Ri, i.e. {x | fi,kx − gi,k = 0}
where fi,k and gi,k are the k-th rows of the respective
matrices Fi and gi. Denote by x̃i,k all solutions to the
polynomial equation p(x) = fi,kx − gi,k, restricted to
x ∈ Ri:

x̃i,k = {x | p(x) − fi,kx + gi,k = 0, x ∈ Ri}. (10)

Clearly, if x̃i,k = ∅ ∀i ∈ Imax ∪ Imin and ∀k, then p
as a solution to (9) strictly separates RImax and RImin

(cf. Figure 1(a)). On the other hand, the situation in
Figure 1(c) corresponds to the case where there exist some
points x̃i,k for which the polynomial p(x) intersects the k-
th facet of the i-th region, i.e. when x̃i,k 6= ∅ for some i
and k. In such a case, the existence of any such point x̃i,k

provides a certificate that p(x) does not separate RImax

from RImin .

When at least one offending point x̃i,k exists, it can be
added to the corresponding set of vertices in (9b)–(9c). I.e.,
if x̃i,k 6= ∅ for some i ∈ Imax, then VImax = VImax ∪ x̃i,k.
Otherwise, if i ∈ Imin, then VImin = VImin ∪ x̃i,k. Resolving
the LP (9) with the updated list of vertices will then give
a new polynomial p for which the certification is repeated,
cf. Figure 1(d). If more offenders are found, they are
added to the list of vertices and the procedure is repeated.
Otherwise, an empty solution to (10) provides a certificate
that p(x) strictly separates RImax from RImin, whereupon
the procedure terminates. The discussed mechanism can
be formally stated as Algorithm 1, reported next.

Remark 5.1. Vertex enumeration in Step 1 of Algorithm 1
is considered a hard problem in general. However, for
the type of small-dimensional problems considered here,
enumerating V does not pose any significant technical
difficulty and the vertices can be easily computed e.g. by
CDD (Fukuda, 1997) in a matter of seconds.
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Algorithm 1 Construction of a polynomial separator

INPUT: Sets RImax and RImin as in (8), polynomial
degree δ.

OUTPUT: Separating polynomial p as in (7).
1: Get the lists of vertices VImax and VImin.
2: repeat
3: Solve the LP (9) and obtain coefficients α0, . . . , αδ.
4: if ǫ∗ > 0 then
5: Compute the list of offending points x̃i,k

from (10).
6: Insert x̃i,k to VImax or VImin.
7: else
8: No strict polynomial separator of degree δ exists,

abort.
9: end if

10: until x̃i,k 6= ∅.
Remark 5.2. There is no theoretical guarantee that the
iterations between Steps 2–10 will terminate in finite time.
However, for more than 500 random problems reported in
Section 7, the number of iterations newer exceeded 10.
Even more importantly, in 90% of cases Algorithm 1
terminated after a single iteration.

Solving Problem 4.2 involves finding a strict separator p
of the minimum degree δmin. This can be achieved e.g. by
using bisection, i.e. by running Algorithm 1 multiple times
for various values of δ until a feasible solution is obtained
and δ is minimized.

The list of offending points x̃ in Step 5 can be obtained by
solving (10) in several ways, as reviewed in the sequel.

5.1 Certification via Root Finding

The list of offending points x̃i,k in Step 5 of Alg. 1 can be
found by interpreting (10) as a problem of finding roots of
the polynomial p(x)−fi,kx−gi,k, constrained to x ∈ Ri for
a particular index i. If nx = 1, then the roots can be found
conveniently e.g. using the roots command of MATLAB.

If nx = 2, then the problem can be solved as follows.
Consider the k-th defining hyperplane of polytope Ri,
i.e. fi,kx − gi,k = 0. Each point on this hyperplane can be
expressed as

{x | fT
i,k(x − x0,k) = 0}, (11)

where x0,k is any point on such hyperplane, e.g. a suitable
vertex of region Ri. This representation can in turn be
expressed as

{x | x = x0,k + f⊥
i,k}, (12)

where f⊥
i,k represents the orthogonal complement to fi,k,

i.e. the set of all vectors orthogonal to it

f⊥
i,k = {v | fT

i,kv = 0} (13)

Substituting the orthogonal representation (12) into the
definition of p(x) and fi,kx + gi,k = 0 converts (10) into a
problem with only one variable:

p(v) − fi,k(x0,k + f⊥
i,kv) − gi,k = 0. (14)

Consequently, the roots command can be used to find
all roots ṽi,k of (14), from which x̃i,k can be recovered
from (12). The method is applied on the new polynomial
to compute roots v. Note that only real roots need to be
considered. Since the procedure does not limit the roots

x̃i,k to a particular domain (Ri in our case), it is necessary
to obtain all roots of (14) and subsequently exclude those
which do not belong to Ri.

5.2 Nonlinear Programming Approach to Certification

Although the root finding procedure is easy to implement,
it is limited to 1D and 2D situations, only. Another option
to find out whether the list of offenders x̃ is non-empty
is to consider (10) as a feasibility problem with linear
inequality constraints (x ∈ Ri) and nonlinear equality
constraint (p(x) = fi,kx − gi,k). Such an approach is
applicable to arbitrary dimensions of x. Recalling that
Ri = {x | Fix ≤ gi}, the list of offenders is non-empty
iff there exists a solution to the following problem:

find x (15a)

s.t. p(x) = fi,kx − gi,k, (15b)

Fix ≤ gi, (15c)

which can be solved e.g. by fmincon of MATLAB. The
practical disadvantage of such a formulation lies in the
fact that equality constraints are sensitive to numerical
noise.

An alternative way is to reformulate (15) as an NLP
with nonlinear objective function and linear inequality
constraints. Recall that a valid separator has to guarantee
that p(x) > 0 for all x ∈ RImax . Similarly, p(x) < 0 is
required for all x ∈ RImin. Let

f∗
i,max = min p(x) (16a)

s.t. Fix ≤ gi, (16b)

and

f∗
i,min = max p(x) (17a)

s.t. Fix ≤ gi. (17b)

The it immediately follows that if f∗
i,max < 0 for some

i ∈ Imax (or if f∗
i,min > 0 for some i ∈ Imin), then

the point x∗
i as an optimal solution to (16) or (17) is a

valid offending point which shows that p(x) is not a strict
separating polynomial.

6. SEPARATION BY BINARY TREES

An another alternative is to separate the sets RImax and
RImin by a (possibly discontinuous) piecewise linear func-
tion p, as shown in different context by Fuchs et al. (2010).
There the authors search for a separator represented as a
binary search tree. Each node k of the tree represents one
linear separator of the form pk(x) := αk,1x − αk,0. The
task then becomes to find the coefficients such that pk

correctly separates as many elements of RImax and RImin

as possible. The misclassified elements are treated in a
recursive fashion while building a tree. The search for pk

at each level of the tree can be cast as a mixed-integer
linear program

min
∣∣∣
∑

Ri −
∑

Lj

∣∣∣ +
∑

|Ri + Lj − 1| (18a)

s.t. Ri = 1 ⇔ {pk(x) ≥ ǫ ∀x ∈ Ri, i ∈ Imax}, (18b)

Lj = 1 ⇔ {pk(x) ≤ −ǫ ∀x ∈ Rj , j ∈ Imin},(18c)
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where ǫ > 0 is a given minimal separation gap introduced
to avoid the trivial solution αk,1 = αk,0 = 0. Binary
variables Ri (Lj) denote whether or not the corresponding
region of RImax (RImin) is correctly classified by a linear
separator pk, while minimizing the number of incorrectly
separated regions by (18a). The crucial downside of such
an approach is that a total of |Imax|+ |Imin| binaries needs
to be introduced. If the number exceeds ∼ 700 (which is
considered a small case by our standards), the size of the
MILP (18) becomes prohibitive to be solved even using
state-of-the-art solvers, such as CPLEX.

Therefore we propose a different method of finding the
linear separators pk(x) := αT

k,1x− αk,0 at each level of the

tree by solving a convex relaxation of (18):

min
u,v,α

1T u + 1T v (19a)

s.t. αT
k,1xi + αk,0 ≥ 1 − ui, i = 1, . . . , Vmax, (19b)

αT
k,1yi + αk,0 ≤ −(1 − vi), i = 1, . . . , Vmin,(19c)

u � 0, v � 0, (19d)

where xi (yi) represent extremal vertices of regions satu-
rated at maximum Rmax (regions saturated at minimum
Rmin), and ui and vi are nonnegative support vector clas-
sifiers of xi and yi, respectively.

When u = v = 1 in (19b) and (19c), we recover original
constraints αT

k,1xi − αk,0 ≥ 0 and αT
k,1yi − αk,0 ≤ 0

as a feasible nonstrict linear discriminant of two sets of
points. Think of ui as a measure how much the constraint
αT

k,1xi−αk,0 ≥ 0 is violated and the same holds for vi. The
goal is to find αk,1, αk,0 and sparse u and v that satisfy
inequalities (19b) – (19c), maximize the slab, and minimize
the number of misclassified points. In other words, (19)
is a relaxation of the number of points misclassified by
the function αT

k,1z − αk,0, plus the number of points that

are correctly classified but lie in the slab of width {z |
−1 ≤ αT

k,1z − αk,0 ≤ 1} given by 2/‖αk,1‖2 (Boyd and

Vandenberghe (2004)).

The Algorithm 2 shows a pseudocode of the recursive
function used to build a binary tree. Inputs to the function
are 2 sets of saturated regions (Rmin, Rmax) which are
immediately transformed into 2 sets of extremal vertices
(Vmin, Vmax). Acquired PWA function splits points into
correctly and incorrectly classified ones, where regions
corresponding to the misclassified points are searched.
If the sets are empty, algorithm reached a leaf nodes,
otherwise the solution is referred as node and function is
recalled with new sets of regions. Steps of the Algorithm 2
are depicted in Fig. 2.

7. EXAMPLES

7.1 Illustrative example

Consider a 2-state 1-input system given by

x+ =

[
0.755 0.680
0.651 −0.902

] [
x1

x2

]
+

[
0.825

−0.139

]
u, (20)

which is subject to constraints X = {[ x1
x2 ] | − 10 ≤ [ x1

x2 ] ≤
10} and U = {u ∈ R | −1 ≤ u ≤ 1}. The MPC problem (3)
was formulated with prediction horizon N = 10, Qx = 1

Algorithm 2 Construction of a PWA form of separator
p(x)

INPUT: Sets RImax and RImin as in (8).
OUTPUT: Separator p encoded as a set of linear func-

tions.
1: function BINARYTREE(RImin , RImax)
2: Get the lists of vertices Vmin and Vmax.
3: Solve the LP (19) and create a new node in the tree

defined by pk(x) := αT
k,1x − αk,0.

4: Find misclassified points Vmin, Vmax and keep corre-
sponding regions Rmin, Rmax.

5: if Rmin 6= ∅ then
6: return BINARYTREE(Rmin, RImax).
7: end if
8: if Rmax 6= ∅ then
9: return BINARYTREE(RImin , Rmax).

10: end if
11: end function
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(d) 4th iteration

Fig. 2. Illustration of finding a PWA separator by Algo-
rithm 2. At each iteration a new node is created which
contains a linear separator pk correctly separating as
many points as possible. Shown are the vertices Vmax

(green stars), vertices Vmin (red circles), misclassified
points (black x-marks), and the linear separator pk(x)
(continuous line) at each iteration.

and Qu = 1 and solved as a parametric QP according to
Theorem 3.1. Using the MPT Toolbox (Kvasnica et al.,
2004), the explicit RHMPC feedback u∗ = κ(x) was
obtained in 4 seconds 1 as a PWA function defined over
225 regions. The domain of κ consists of 29 unsaturated
regions, 98 regions where κ(x) = 1, and 98 regions where
κ(x) is saturated at −1.

As can be clearly seen from Figure 2(a), no linear sepa-
ration between the sets of points VImax and VImin could
be found. A polynomial separator p(x) = −x1 − x2 +
0.6103x1x

2
2 − 0.2076x2

1x2 + 0.0458x3
1 + x3

2 of the minimal
degree δmin = 3 was then found by applying bisection in
conjunction with Algorithm 1. The algorithm converged
within of one iteration. The vertices in Step 1 were com-

1 On a 2.4 GHz CPU with 4GB of RAM using MATLAB 7.9 and
MPT 2.6.3
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Fig. 3. Final form of a binary tree division. Linear sepa-
rators pk(x) represents each of the nodes from binary
tree.

puted by CDD in 0.01 seconds. Coefficients of the poly-
nomial were obtained by solving the LP (9), which took
0.7 seconds using CPLEX. Implementing the certification
in Step 5 using root finding (cf. Section 5.1) took 1.85
seconds, while the NLP-based certification of Section 5.2
took 6.55 seconds.

A binary separation tree can also be constructed by
recursively solving LP problems (19). For the sets of
points depicted in Figure 2, the procedure generated a
tree consisting of four nodes:

p1(x) = −0.38x1 + 1.96x2 (21)

p2(x) = 0.019x1 + 1.75x2 − 0.34 (22)

p3(x) = −2.26x1 + 3.87x2 + 9.12 (23)

p4(x) = −0.22x1 + 0.37x2 − 1.0 (24)

The tree is rooted at p1, with p2 visited if p1(x) < 0 and
p3 if p1(x) > 0. The next node is rooted at p2, with p4

visited if p2(x) > 0 which betrays the unbalanced binary
tree. The total runtime of LPs (19) was 4.7 seconds with
CDD.

However, as can be seen from Fig. 3, a binary tree with
just 3 nodes would be sufficient to correctly separate
the corresponding vertices. However, Algorithm 2 finds 4
nodes. This is due to the fact that Alg. 2 attempts to
find, at each iteration, a best subdivision of the points by
solving the LP (19). No effort is made to minimize the
cardinality or the depth of the resulting PWA tree. This
can, however, be achieved by an adequate post-processing
procedure.

The total memory footprint of κ (which consists of the
regions Ri and the feedback laws Kix + Li) with 225
regions, is 27 kilobytes. On the other hand, by devising
a separator p, the storage requirements of κ̃ drops to a
mere 3.5 kilobytes. Here, the unsaturated regions RIunsat

contribute by 2.8 kB, the associated feedback laws by 0.7
kB, and the memory footprint is just 24 bytes for the
polynomial separator, and 48 bytes for the binary tree.
It follows that complexity of the on-line implementation
of the RHMPC feedback law can be reduced by a factor
of 7.7 by using the modified feedback u∗ = κ̃(x) instead of
the original function u∗ = κ(x).

Table 1. Comparison of total runtimes for
different routines in polynomial separation

(δmin = 3), selected problems.

No. of Runtime [sec]
regions fmincon roots

189 6.15 2.73

199 5.69 2.85

225 7.82 2.96

257 7.61 3.46

495 14.23 6.36

Table 2. Number of nodes and runtimes nec-
essary for rooting, comparison of LP (19) with

MILP algorithm of Fuchs et al. (2010)

No. of regions LP MILP

total sat unsat
No. of total No. of total
nodes runtime nodes runtime

[sec] [sec]

189 172 17 4 4.2 3 8.6

199 154 45 4 6.7 3 7.0

225 196 29 4 6.7 3 9.1

257 208 49 4 5.0 4 17.3

283 244 39 5 6.1 4 23.7

319 260 59 4 5.6 3 12.5

495 460 35 5 13.7 48 1176.9

7.2 Random examples

Next, we have analyzed a large number of random RHMPC
feedback laws κ generated by solving problem (3). We
have considered 100 random problems with 2 states and
1 input. For each PWA function we have constructed the
replacement κ̃ as in (6). Both polynomial and binary tree
separation were considered.

The purpose of this study was twofold. First, we have
investigated how the root-finding approach to certification
compares to the more general NLP-based procedure of
Section 5.2. Table 1 shows that the root finding procedure
performs twice as fast as the NLP approach. Moreover,
it illustrates how the computation scales with increasing
complexity of the problem. It should be noted, though,
that the NLP procedure is applicable to arbitrary dimen-
sions, while the root finding approach is limited to 2D
scenarios only.

Next, we compared the runtime needed to construct a
PWA separator, encoded as a binary search tree, using
the MILP procedure of Fuchs et al. (2010) and by the
convex LP relaxation (19). The results summarized in
Table 2 show that the LP relaxation is significantly more
efficient, for it being able to construct the PWA separator
even for large scenarios. Note also that the number of
unsaturated regions (denoted by unsat) is significantly
smaller in comparison to the number of saturated regions
(sat).

8. CONCLUSIONS

Given an explicit RHMPC feedback function κ, we have
shown how to construct its simpler replacement κ̃ which
maintains the equivalence κ(x) = κ̃(x) for all x ∈
domκ(x). The mechanism was based on devising a func-
tion p(x), which separates regions over which κ attains
a saturated value. The replacement κ̃ then requires only
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the storage of the unsaturated regions of κ, along with
the separator p. We have shown how to build such a p
by solving a linear optimization problem, followed by a
certification step which requires solution to a polynomial
equation. Two approaches to such a certification were
proposed: one based on finding roots of a polynomial,
and second one based on solving a nonlinear programming
problem. By means of a case study we have illustrated
how different approach to certification influence the total
computation time. When a piecewise affine separator is
desired, we have proposed to use a convex relaxation of the
separation problem, which is significantly more efficient
compared to the approach based on solving a mixed integer
separation problem.
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Abstract: In the presented paper two quality parameters are used to represent the state of a heat exchanger. 
The remaining lifetime can be estimated by trend regression. Also of interest is the uncertainty of the 
predicted lifetime which is determined by the confidence interval of the parameter estimation. These 
algorithms developed are used in this paper in an off-line evaluation of the measurements on a heat 
exchanger in a refinery. It is shown that the time point of the heat exchanger cleaning can be predicted. So 
the presented method can be used for planning the cleaning time point in advance and saving money in 
maintenance. 

 

1. INTRODUCTION 

In practice there is always a risk that the pipes of a heat 
exchanger become clogged with solid particles due to strong 
temperature differences. During the operation it is not 
possible to look into the interior of the heat exchanger. So the 
state of heat exchanger has to be monitored based on 
measurable quantities. Such measurements are temperature, 
flow and pressure drop. These measures allow not only the 
description of the current state but the planning of 
maintenance in due time. Most methods, which are known in 
the literature, are based on models. The models can be 
separated into two groups. In the first case, the models are 
based on multivariate regression, PCA, neural networks and 
so on. An advantage of all these methods is that they can be 
used without detail knowledge about the inner states and 
chemical reactions in the heat exchanger. All these models 
commonly need fault free training data to generate e.g. the 
regression model. Also there are disadvantages. If the heat 
exchanger leaves the normal working point, probably a neural 
network becomes bad, or a fault with no effect on the used 
principal components will be not detected, because not all 
possible conditions can be realized with a real plant. In the 
other case physical models based on inlet and outlet are used. 
There are several methods, which try to observe the inner 
state of the heat exchanger. Using complex physical models 
can cause problems with the generalization far from the 
working point. However, if there is only one question: “Is the 
heat exchanger in a normal condition?” a simple model can 
be used. In this paper, two quality parameters both based on 
an easy physical model are compared. The first one is ε  the 

degree of efficiency and the second one is UAF  a 
combination of the heat transmission coefficient with the 
inner surface and the flow. Big advantages of these methods 
are that they can be used without any training data and the 

observation can start from any state of the heat exchanger. A 
great and important target of the conditioning monitoring is 
to predict the time interval until a detected disturbance 
reaches a tolerance level and becomes a fault. The dwell time 
of the fluids in the heat exchanger is very small against a 
normal observation period. In addition, if there are complex 
chemical and physical reactions it is probably not possible to 
predict the future with an exact model. As explained before 
the two quality parameters ε  and UAF  are observed and 
the remaining lifetime is estimated by trend regression. The 
quality of the regression can be observed by using statistical 
tests like a t-test. Also of interest is the uncertainty of the 
predicted lifetime which is determined by the confidence 
interval of the parameter estimation. The presented method is 
used with real measurements from an oil refinery. The target 
is to predict the time points of the cleaning on-line. Thereby 
the measurements are evaluated in on-line mode. Also it is 
shown that the quality parameter UAF allows a better 
prediction than with the classical degree of efficiencyε . 

2. METHODS AND THEORY 

In the following a counter current heat exchanger will be 
dealt with. In the actual application the inlet and the outlet 
flow are coupled on thermal side, see Fig. 1. The cold 

reactant with temperature ET1  enters the heat exchanger on 

the cold side. It is preheated by the product flow and it leaves 

the heat exchanger with temperature ET2  on the hot side. The 

hot product enters the heat exchange with temperature PT2  

on the hot side. The fluent is cooled down by the reactants 

and it leaves the heat exchanger with temperature PT1  on the 

cold side. In the following chapters both quality parameters 
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for the monitoring of the heat exchanger are presented. After 
that the method for rest live time prediction is shown. 

 

Fig. 1. Simplified flow diagram of the plant 

 

Fig. 2. Temperature profile of a current flow heat exchanger 
with tube length L 

2.1 Quality parameter – degree of efficiency 

Fig. 2 shows a typical temperature profile over a counter 
current heat exchanger. The state of the heat exchanger can 
be described by the ratio of the actually transferred energy 
and the maximum transferable energy. The actual amount of 
transferred energy is proportional to the temperature 
difference between inlet and outlet of the reactant, 

EEE TTT 12 −=Δ . The maximum transferable energy is 

proportional to the temperature difference between the fluid 

inlet temperatures, EP TT 12 − . For this definition the 

assumptions PE TT Δ>Δ  and 21 TT Δ>Δ  are used. The 

ratio of actual and maximal energy transfer is given by (1), 
where ε  is the degree of efficiency see Wagner (2005). 

 
EP

EE

TT

TT

12

12

−
−=ε  (1) 

The efficiency depends on the set point and the inner state of 
a heat exchanger. The set point is defined by the inlet 
temperatures and the rate of fluid flow. The inner state 
depends on the fouling. Therefore in the present paper nearly 
steady-state conditions are assumed for the inlet temperatures 
and the amount of fluid flow. In this case a change in the 
degree of efficiency is caused by fouling.  

2.2 Quality parameter – heat transfer coefficient 

As discussed above the quality parameter (degree of 
efficiency) depends on the set point and the inner state of the 
heat exchanger. Therefore an additional formulation will be 
used. The model equation for heat transfer can be written as 
(2) see Wagner (2005). 

 logTAUQ Δ⋅⋅=  (2) 

In (2) Q stands for the heat flow, U  for the coefficient of 
heat transmission, A for the surface of the heat exchanger and 

logTΔ  for the logarithmic mean temperature difference. The 

logarithmic mean temperature difference is defined in (3). 
Increasing fouling leads to a decreasing coefficient of heat 
transfer due to additional heat resistance; see (4). 
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In (4) α  denotes the heat transfer coefficient, s  the coat 

thickness and λ  the heat conductance coefficient. The index 
i  stands for the inner and a  for the outer side of the pipe 

and dep  denotes biomass coat or solid deposition. The heat 

flow Q  can be calculated from the measured process para-

meters by (5) see Friebel et al. (2009) and Wagner (2005). 

 EpEE TcFQ Δ⋅⋅=  (5) 

In (5) EF  stands for mass flow of the reactant, pEc :for the 

heat capacity of the reactant and ETΔ  for the temperature 

difference from outlet to inlet of the reactant, see Fig. 2. By 
combining (2) and (5) the quality parameter UA  can be 
defined as shown in (6) see Friebel et al. (2009). 

 
logT

T
cFUA E

pEE Δ
Δ⋅⋅=  (6) 

Simulations presented in Friebel et al. (2009) show that the 
quality parameter UA  is sensitive for fouling. This is a big 
advantage against the degree of efficiency because fouling 
can be distinguished from model input drift. This means the 
degree of efficiency is sensitive for  

• a drift in one or both of the inlet temperature, 
• a drift in one or both of  the fluid flows and 
• a drift in the model parameter UA  i.e. in the heat transfer. 

By analyzing the above listing it is clear that it is nearly 
impossible to differ among all possible combinations of 
drifts. Therefore, it is more practical to estimate the model 
parameter UA  at every steady-state sampling point k 
according to (6). In the special case where the flow of the 

reactant EF  cannot be measured the flow and pEc  are 

assumed constant. Then (6) can be transformed to (7) 

 
logT

T
UAF E

Δ
Δ=  (7) 

It is important to see that the parameter UAF  is sensitive to 
fouling and disturbances in the flow. 
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2.3 Extrapolation of a regression model 

Above a proper quality parameter for the heat exchanger is 
defined. The last question is: how long is the rest lifetime 
until a critical level is reached. Therefore a linear discrete-

time regression model is used, see (8). Here ku  is the 

independent variable and ky  the dependent variable, see 

Montgomery et al. (2001). In the following application the 
actual measurement is the best representation of the inner 
state of the heat exchanger. Therefore the point of origin is 
equal to the actual measurement. The regression model 

contains only the unknown parameter 1̂c . 

 kkkkkk euceyucy +=+== 11 ˆˆ  (8) 

With a simple extrapolation the rest lifetime predu  can be 

calculated, while the regression model predŷ  is equal to the 

tolerance limit toly . As it was shown in Friebel et al. (2009) 

the quality of the regression can be proven by a statistical t-
test. The uncertainty of a regression can be shown by his 
confidential intervals. With the assumption, that the 
uncertainty at the actual measurement is equal to zero the 
confidential limits for future measurements can be calculated 
by (9) see Montgomery et al. (2001) 
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Here σ  is the residual error, N  the amount of used data 
with the regression and t  the value of a t-distribution for a 

given significance levelα  and 1−N  degrees of freedom. 

By setting the left term in (9) equal to toly  and solving the 

equation the predicted rest lifetime predk uu =  can be 

calculated with its uncertainty regs . 
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Fig. 3. Estimation of the rest lifetime 

The principle of the calculation is shown in Fig. 3. The 

calculated uncertainties in time ms  and ps  have different 

values. For an easier interpretation in the practical use a 
middle uncertainty s  is defined in (10) 

 
2

pm ss
s

+
=      with     pm ss <  (10) 

3. APPLICATION 

3.1 Problem description 

As it is seen in Fig. 1 the reactant is preheated by the product 
and the product is cooled by the reactant. In Fig. 4a the tubes 
of a cleaned heat exchanger are shown. In Fig. 4b the 
problem with fouling, adhesion on the surface inside and 
outside the tubes is shown. On the right side in Fig. 4c the 
totally blocked tubes can be seen. Blocked tubes cause the 
following problems: 

• pressure drop over the heat exchanger increase 
• the maximal cooling power of the heat exchanger 

decreases  
• product have to be cooled additional before entering the 

storage 
• reactant have to be heated additional before entering the 

production unit 
Fouling costs some money. Normally a heat exchanger is 
observed by the degree of efficiency ε . To prevent the above 

listed problems the quality parameters UA  and UAF  are 
used.  

3.2 Problem solution 

Typical measurements (temperature) are shown exemplary in 
Fig. 5. In this analysis, several years are taken into account, 
but only some examples are shown in this paper. Therefore, 
the discrete time k does not start at one. The period starts and 
ends with a cleaning of the heat exchanger, all temperatures 
are low. The cleaning was performed if the degree of 
efficiency reached a value of e.g. 90%. Now the target is to 
predict these cleaning time point in order to plan a cleaning in 
advance. The temperatures of the production process are in a 
range between 350 and 450 °C see Friebel et al. (2010). The 
reactant is drawn with solid lines and the product in dashed 
lines.  

a)  b)  c)  

Fig. 4. Problems with fouling in a tube bundle heat exchanger 
a) clean surface and tubes, b) surface with fouling and 
c) blocked tubes after fouling see Friebel et al. (2010) 
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Fig. 5. Temperature measurements of the heat exchanger for 
a time period between the plant revisions 

It can be seen, that the product temperatures (dashed lines) 
increase over the time. Also the temperatures are noisy 

especially the product outlet PT1  and the reactant outlet ET3 . 

The reason is a periodical sinusoidal disturbance with a 
period of approximately 11 days, which is caused by the plant 
management. The problem is that the amplitude is not 
constant and also there are some stepwise phase shifts in the 
periodical signal. In Fig. 6 the degree of efficiency ε  and the 

model parameter UAF  calculated by (1) and (7) are shown 
for an interesting part of this time period.  

 

Fig. 6. Example for calculated  
a) degree of efficiency ε and b) model parameter UAF 

 

Fig. 7. Regression based lifetime estimation  
a) 19, b) 17, c) 15, d) 13 e) 11 and f) 9 weeks before 
shutdown. 

It can be seen, that the calculated degree of efficiency ε  is 
very noisy. The sinusoidal disturbance is clearly visible. But 
by observing the model parameter UAF  these disturbances 
are eliminated. In the model parameter some additional 
information can be detected. There are two steps which are 
marked with arrows. These steps are caused by not recorded 
technological handlings. It is not possible to detect both steps 
in the degree of efficiency. Because this signal is caused by 
periodical disturbances and the parameter is not so sensitive 
for this case. Therefore it is a good idea to use the model 
parameter UAF  instead the degree of efficiencyε . 
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Fig. 8. Two observation periods; a) and c) degree of 
efficiency (solid line) and filtered signal (dashed line), 
b) and d) predicted rest lifetime tpred versus real time treal 
until shutdown 

In Fig. 7 the calculated efficiency for another example is 
presented. The regression was carried out with 50 
measurements in the on-line mode. Fig. 7a shows the 
regression 19 weeks before the shutdown. The following 
figures show in turn the regression always two weeks later. 
The rest lifetime is predicted with a small uncertainty, 
because the interval limits on the tolerance level are close 
together. As a conclusion of Fig. 7 the following points can 
be marked out, see also Friebel et al. (2010). 

• The rest lifetime predt  could be predicted nearly exact 

several weeks before the shutdown. 
• With a t-test it could be shown, that the used regression 

model is always significant. 
• The corresponding significance values α  are nearly 0 %. 
• The confidence limits lie near to the predicted  

rest lifetime predt . 

In Fig. 8 two additional periods are analysed. The time until 

the next realized shutdown realt  is shown on the horizontal 

axis. In Fig. 8a the filtered and calculated heat exchanger 
efficiency is shown for a further period between two cleaning 
cycles. It can be seen, that the signal is not very noisy. In Fig. 

8b the predicted rest lifetime predt  is plotted on the vertical 

axis. In the ideal case the times predt  and realt  are equal, 

which is marked by the diagonal line. Two month before the 
shutdown an acceptable prediction is possible. In the second 
period in Fig. 8c it can be seen that calculated degree of 
efficiency temporally increases because of a not recorded 
technological handling. This has a direct impact on the 

 

Fig. 9. Model parameter UAF with a step caused by online 
cleaning in a) and the corresponding rest lifetime 
estimation in b) 

 

Fig. 10. Model parameter UAF for the time period from Fig. 
9 with considered step in a) and the corresponding rest 
lifetime estimation in b) 

prediction of rest lifetime in Fig. 8d. The trend is clearly 
visible along the diagonal line. Because of the noisy signal 
and the technological handling there are changes in sign of 
the slope.  

The calculated model parameter UAF  is sensitive for any 
not recorded technological handlings. During such a 
procedure some cleaning solution is added to the reactant. 
The result is a shortly better heat exchanger condition (higher 
value for the model parameter), because the amount of solid 
depositions decreases and the heat transfer increases. 

Fig. 9a shows the last section of the data form Fig. 6b. 
Around day 2840 a step in the model parameter UAF  was 
detected, see the arrow. The estimated rest lifetime is shown 
in Fig. 9b. It is easy to see that around the step in the model 
parameter the estimated rest lifetime becomes infinite large. 
In the period marked by the arrows no practical prediction is 
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possible. 100 and 80 days before the shut down the prediction 
were disturbed by additional changes in the inlet 
temperatures. 

In the new approach all regressions before the stepwise 
disturbance are calculated with the data from Fig. 9a. For all 
regressions after the stepwise regression the values before the 
disturbance are shifted upwards that the step in the model 
parameter disappeared. The new course of the model 
parameter is shown in Fig. 10a and the corresponding 
estimation of the rest lifetime is shown in Fig. 10b. It is easy 
to see that in this case in every time point a practical 
prediction is possible. It is important to know that Fig. 10a 
shows the model parameter for the view after day 2840. Fig. 
11 shows all data from Fig. 6b and also at the first step at day 
2720 a proper prediction is possible. The values in Fig. 11d 
are not infinite high; they are smaller than 1900 days. 

4. CONCLUSION 

In Friebel et al. (2009 and 2010) a simple method for lifetime 
estimation was presented and analyzed in some case studies. 
In the presented paper an additional representative parameter 
for the state of the heat exchanger is used with the explained 
method. The assumptions and simulations were tested by 
analyzing measurements of a real plant. By comparing the 
results and simulations the following results can be 
summarized.  

• The classical parameter for the observation of the state of 
the heat exchanger is the degree of efficiencyε . This 
quality parameter is sensitive for drifts in the inlet 
temperatures, the fluid flows and the heat transfer 
coefficient. 

• The model parameterUA , a combination of the heat 
transfer coefficient and the inner surface of the heat 
exchanger, is not sensitive for a drift in inlet temperature 
and fluid flows. 

• If the flow cannot be measured then only the observed 
parameter UAF can be calculated. Hereby a constant flow 
is assumed, otherwise a drift in flow and in the heat 
transfer cannot be differed.  

• Using the model parameter UAF  is better than using the 
degree of efficiencyε . 

• It would be better to use a quality parameter which is 
independent of the working point. Therefore the universal 
model parameter UA  should be preferred  if possible. 

• The prediction of the rest lifetime can be made by a simple 
linear regression. The quality of the regression can be 
proven with a statistical t-test. Also a statistical based 
uncertainty of the predicted rest lifetime can be 
formulated. 

• It is easier to detect and compensate the on-line cleaning in 
the model parameter UAF  than in the degree of 
efficiencyε . 

• By considering the steps caused by the on-line cleaning, 
the predicted rest lifetime becomes more practical with 
realistic predictions. 

Further research work is planned in order to detect and to 
consider the change in flow during the data recording. 

 

Fig. 11. Model parameter UAF for the time period from Fig. 
6b with considered step in a) and the corresponding rest 
lifetime estimation in b) 
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Abstract. This paper introduces new mathematical tools for stabiliza-
tion and asymptotic following in infinite platoons of vehicles in future
automated highway systems. The platoon description, behavior analy-
sis and control is approached in 2-D polynomial framework, that is, the
dynamics of the problem are described using a fraction of two bivariate
polynomials. In contrast to some previous works, the platoon here as-
sumes a leader (and an infinite number of followers), therefore the often
used bilateral z-transform should not be used here since it was developed
for doubly infinite vehicular strings. The unilateral z-transform seems
better suited. However, it brings about the need to take the boundary
conditions into consideration; among other, the leader vehicle comes into
the scene. The necessary formalism is introduced in the paper and used
to provide elegant alternative proofs of some well-known facts about the
platooning problem.

Keywords: Automated highway systems, automated guided vehicles,
multidimensional systems, multivariable polynomials, polynomial equa-
tions, polynomial methods.

In current studies automated highway systems [2], platooning is conceived
as a way of expanding the envelope of capacity and safety that can be achieved
by road vehicles. When the vehicles are organized in platoons, they can operate
much closer together than is possible under manual driving conditions. Each
highway lane can therefore carry several times as much traffic as it can today,
which should make it possible to greatly reduce highway congestion. Also, at
close spacing aerodynamic drag is significantly reduced, which can lead to major
reductions in fuel consumption and exhaust emissions. The high-performance
vehicle control system also increases the safety of highway travel, reduces driving
stress and tedium, and provides a very smooth ride.

In the microscopic description of the highway, vehicles are individually mod-
eled. The vehicles headway is defined as the time taken for the vehicle to traverse

? This work has been supported by the Czech Ministry of Education within a project
AMVIS ME10010.
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the inter-vehicle spacing ahead of it. There are various control policies for the
platoon characterized by different speed-spacing relationships that the vehicle
control system aims to guarantee. A popular control policy is that of constant
time headway which makes the desired ranges proportional to vehicle speeds.

When vehicles follow each other automatically in a lane, they behave like
a coupled system, the behavior of which depends on the control actions of the
individual vehicles. A phenomenon known as ”slinky effect” [2] where a small
tracking error or disturbance in the response of a lead vehicle gets amplified
as it propagates along the platoon or string of vehicles is commonly observed
in today’s driving. The longitudinal control system of each system has to be
designed so to guarantee platoon or string stability, which in turn implies the
absence of slinky effects.

As the highway lane capacity increases with the length of the platoon [2],
very long platoons are desirable. This fact is reflected in theoretical literature
differently: Either platoons with a finite number of cars are studied and then the
limit infinite case is taken. Or doubly infinite strings of vehicles are considered
allowing to apply bilateral transforms that neglect any boundary conditions.

Instead, we advocate the use semi-infinite platoons with a leader where
the leading vehicle is labeled by 0 and the follow-up cars are numbered by
1, 2, . . .. Positions, distances and velocities in the platoon are described by spa-
tial sequences of time functions corresponding to the equally indexed vehicles
{f(t, k)} = f(t, 0), f(t, 1), f(t, 2), . . . , t ∈ [0,∞). To handle such sequences,
we introduced an original joint unilateral Laplace and (shifted) unilateral z-
transform denoted LZ1which is defined by

LZ1 {f(t, k)} =

∫ ∞

0−

( ∞∑

k=1

f(t, k)z−k
)
e−st dt.

Application of the LZ1 transform opens the door to rich world 2-D polynomial
systems theory [5]. In addition, it reveals that the leading vehicle movement is
actually boundary condition for the coupled platoon system.

The transform has been employed to solve various problems of analysis and
control for platoons with leader [1, 6].
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Abstract: Oscillations are the most prominent indications of deteriorated controller perfor-
mance. Control loop oscillations are a common type of plant-wide disturbance and the root-
causes can be one or more among poorly tuned controllers, process or actuator non-linearities,
presence of model plant mismatch and oscillatory disturbances. This article addresses detection
and diagnosis of oscillations in measurements due to multiple sources under a framework of
internal model control. A pattern recognition based approach using cross wavelet transforms is
proposed to pinpoint the source(s) of oscillation in the control loops. The phase information
in wavelet domain between input and output signals is exploited to diagnose the source(s) of
oscillations.

Keywords: wavelet transform, oscillation, valve stiction, phase, pattern recognition

1. INTRODUCTION

It is well known that performance degradation in control
loops manifests as one or more of the following: (i) poor
set point (SP) tracking (ii) oscillations (iii) poor distur-
bance rejection and (iv) excessive final control element
variation. Oscillations are attributed to one or more among
poor controller tuning, process or actuator non-linearities,
presence of model plant mismatch or oscillatory distur-
bances. A tool to help the engineer should therefore au-
tomatically bring oscillatory loops to his or her attention,
characterize them and highlight the presence of plant wide
oscillations. Several authors have addressed the detection
of oscillatory measurements in process data. Early works
appear in Hägglund (1995) followed by (Thornhill and
Hägglund 1997, Forsman and Stattin 1999, Rengaswamy et
al. 2001, Tangirala et al. 2007). Hägglund (1995) proposed
a technique to detect oscillating loops “on-line” using the
IAE criterion. This method does not assume any particular
shape for oscillation and only requires the measurement to
deviate significantly from the set point. Hägglund (1995)
also proposed a diagnostic procedure for finding the source
of oscillation and eliminating it. The diagnostic procedure
is carried out by disconnecting the feedback (i.e. switching
the controller to manual mode). This approach is simple
and efficient and probably the most comprehensive pro-
cedure available for diagnosing root cause for oscillations.
However, switching the controller to manual mode may not
always be allowed, especially if the loop is deemed critical.
Further, it will not be possible to apply this approach
on thousands of loops in a routine fashion. Thornhill
and Hägglund (1997) presented an offline technique for
detecting oscillation using a regularity factor. This method
requires the user to specify the root-mean-square value of
the noise and a thresholds a nontrivial task when applied
to hundreds of loops.

Thornhill and Hägglund (1997) and Thornhill et al. (2003)
proposed a set of procedures to detect and diagnose oscil-
lating loops using offline data. They combine the tech-
niques of controller performance assessment along with
operational signatures (OP-PV plots) and spectral anal-
ysis of the controller error for diagnosis. This technique,
though not completely automated, can distinguish the
cause of oscillation as one of the following: (i) poor tuning
(ii) nonlinearity or (iii) external disturbance. However,
the downside lies in manually inferring the loop signa-
tures that are based on spectral analysis or on a map
of controller output (OP) versus process variable (PV)
and isolating the oscillating portion from the entire data.
Horch (1999) presented a simple, practical approach to
distinguish oscillating loops that are caused by external
disturbances and static friction. This approach is based
on cross-correlation between the controller output (OP)
and process output (PV). The cross-correlation technique
failed when the data had intermittent oscillations and the
set-point was also changing. Horch and Isaksson (1998)
also proposed a technique to identify stiction using nonlin-
ear filters. The method assumed that information such as
mass of stem, diaphragm area, and so on for each valve is
readily available. Since in a typical process industry facility
there can be thousands of control loops, it may be nearly
impossible to build/maintain a knowledge base of control
valves, making this technique difficult to implement.

Choudhury et al. (2004) used higher order statistics for de-
tecting nonlinearity in data and have extended the method
for diagnosing stiction by fitting an ellipse of the OP-PV
plot and inferring the stiction from an assumed stiction
model. The success of this approach lies in correctly iden-
tifying the oscillation period and its start and end point
in the OP-PV data. Tangirala et al. (2007) proposed non-
negative matrix factorization for detection and diagno-
sis of plant-wide oscillations based on source separation
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techniques. As can be seen, the task of detecting stiction
or other nonlinearities in valves from routine operating
data is a challenging task. To summarize, data driven
techniques that are presented in the literature till date are
useful in (a) assessing the performance of the controller
by calculating a figure of merits given that the cause of
poor-performance is only due to either an aggressive or
sluggishly tuned controller in pure feedback control, (b)
detecting oscillating loops with an user-specified param-
eter, and (c) limited diagnosis of the cause of oscillation
based on cross-correlation, power spectral analysis, or OP-
PV plots. The current approaches lack (a) the capability to
efficiently diagnose oscillations due to multiple sources, (b)
the ability to diagnose the causes of time-varying oscilla-
tions and (c) an automated means of oscillation diagnosis.

In this work, we have attempted to address some of the
aforementioned drawbacks by using wavelet and cross
wavelet transforms. This paper is organized as follows:
A brief introduction on wavelet transforms is given in
Section 2. Problem statement and proposed methodology
for an IMC framework are given in Section 3 followed
by simulation studies in Section 4. The paper ends with
concluding remarks in Section 5.

2. WAVELET ANALYSIS

The main benefit of wavelet analysis over Fourier anal-
ysis is that both time and frequency localization can be
achieved in the former. This is because wavelet analysis
employs a wave packet whereas Fourier analysis uses an
infinite wave train of sines and cosines. In recent years,
wavelet power transforms have become increasingly popu-
lar (Bloomfield et al. 2004) while the additionally available
phase information has remained untapped.

Wavelet analysis has become a common tool for analyzing
localized variations of power within a time series. By
decomposing a time series into time–frequency space, one
is able to determine both the dominant modes of vari-
ability and how those modes vary in time. The wavelet
transform can be used to analyze time series that contains
varying power at different frequencies. The term “wavelet
function” is used generically to refer to either orthogo-
nal or non-orthogonal wavelets. The term “wavelet basis”
refers only to an orthogonal set of functions (Torrence
and Compo 1998). The use of an orthogonal basis implies
the use of the discrete wavelet transform, while a non-
orthogonal wavelet function can be used with either the
discrete or the continuous wavelet transform. The contin-
uous wavelet transform was developed as an alternative
approach to the short-time Fourier transform because the
spectrogram is limited in resolution by the extent of the
sliding window function. The wavelet analysis is done in
a similar way to the short-time fourier transform (STFT)
analysis in which the signal is multiplied with a function
(i.e. the wavelet) similar to the window function in the
STFT and the transform is computed separately for differ-
ent segments of the time-domain signal. However, there are
two main differences between the STFT and continuous
wavelet transform (CWT). The Fourier transforms of the
windowed signals are not taken, and therefore single peak
will be seen corresponding to a sinusoid, i.e., negative
frequencies are not computed. The width of the window

is changed as the transform is computed for every single
spectral component, which is the most significant char-
acteristic of the wavelet transform. Throughout this work,
we use the standard Morlet wavelet: a Gaussian modulated
sine wave of the form (Torrence and Compo 1998)),

ψ(η) = π−1/4eiω0ηe−η
2/2 (1)

The quantity π−1/4 is a normalization factor, η =
n

s
is the

dimensionless time parameter, n is the time parameter and
s is the scale of the wavelet, ω0 = sω is the dimensionless
frequency parameter and ω is the frequency parameter.

It is to be noted that an infinite number of mother wavelets
are available, including the derivative-of-a-Gaussian (DOG)
and Paul wavelets. In this work, the complex Mor-
let wavelet is chosen since it yields a complex wavelet
transform, containing information on both amplitude and
phase. Since DOG wavelets are entirely real, they may not
be used for phase analysis, as their real transforms hold
only information on amplitude. Alternatively, the complex
Paul wavelet could be employed. However, as the Paul
function is more sharply defined in time (in comparison
to the more sinusoidal Morlet function), it is better suited
for studying pulse-like variations.

2.1 Continuous wavelet transform

The continuous wavelet transform is defined as follows:

W (a, τ) =
1√
a

∫
x(t)ψ∗

(t− τ)

a
dt (2)

where ψ(t) denotes the mother wavelet. The parameter
a represents the scale index which is the reciprocal of
frequency and the parameter τ indicates the time shifting
(or translation). High scales (low frequencies) correspond
to the global information of a signal that usually spans
the entire signal, whereas low scales (high frequencies)
correspond to detailed information of a hidden pattern in
the signal that usually lasts for a relatively shorter time.

The CWT has edge artifacts because the wavelet is not
completely localized in time. Cone of Influence (COI) has
been defined as the area in which the wavelet power caused
by a discontinuity at the edge has dropped by e−2 of
the value at the edge. Due to the edge effect, confidence
limits for the wavelet spectra are required and hence
to determine significance levels for wavelet spectra an
appropriate background spectrum is required. Red noise
spectrum is used as background spectrum and it has the
characteristic feature of increasing power with decreasing
frequency. In this work, continuous wavelet transform
and cross wavelet transform are performed using Morlet
wavelet to study the time-frequency properties of the of
the output sequences.

2.2 Wavelet scale Vs. Fourier period

The scale can be defined as the distance between oscilla-
tions in the wavelet, or it can be some average width of
the entire wavelet . The period (or inverse frequency) is
the approximate Fourier period that corresponds to the
oscillations within the wavelet. For all wavelets, there is
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a one-to-one relationship between the scale and period.
The relationship can be derived by finding the wavelet
transform of a pure cosine wave with a known Fourier
period, and then computing the scale at which the wavelet
power spectrum reaches its maximum.

For some wavelets the period has more meaning than oth-
ers. For the Morlet, which has several smooth oscillations,
the period is a well-defined quantity which measures the
approximate Fourier period of the signal. For the Morlet
wavelet , l=1.03a, where l is the Fourier period, indicating
that for the Morlet wavelet the wavelet scale (a) is almost
equal to the Fourier period.

2.3 Cross-wavelet transform (XWT)

The cross-wavelet transform between two time series X
and Y, with wavelet transforms Wx(f, τ) and Wy(f, τ)
is simply the multiplication of the first complex wavelet
transform with the complex conjugate of the second

Wxy(f, τ) =Wx(f, τ)W ∗y (f, τ) (3)

where f ≈ 1

a
when f0 = 2π for the Morlet wavelet. The

wavelet scale, a, is inversely proportional to the central
frequency of the wavelet (fo).

While a wavelet power spectrum depicts the variance of
a time series with times of large variance showing large
power, the cross wavelet power of two time series depicts
the covariance between these time series. Additionally,
cross wavelet power has a known distribution of confidence
levels which is proportional to the square root of the
product of two χ2 distributions (Torrence and Compo
1998). This allows cross wavelet power to be used as a
quantified measure of the similarity of power between two
time series.

2.4 Phase difference analysis

In complement to wavelet analysis, the phase spectrum
analysis can be used to characterize the association be-
tween signals. The phase difference provides information
on the sign of the relationship (i.e., in phase or out
of phase). As the Morlet wavelet is a complex wavelet,
the cross wavelet transform relation can be written in
terms its modulus |Wx(f, τ)| and its phase, φx(f, τ) =

tan−1
Imag(Wx(f, τ)

Real(Wx(f, τ)
. Similarly, with the cross wavelet

transform Wxy(f, τ) the phase relation between the time
series X and Y can be computed using the relation,

φxy(f, τ) = tan−1
Imag(Wxy(f, τ)

Real(Wxy(f, τ)
.

The estimation of phase spectrum in Fourier domain be-
tween two time series contains relatively large errors com-
pared to that computed in wavelet domain(?). Moreover,
phase difference is localized in time and frequency in
wavelet domain. The arrows in the cross-wavelet transform
plot indicate the direction of the phase difference between
the variables. The phase arrows pointing right indicate
that the variables are in-phase, pointing left indicate the
variables are anti-phase, down indicate phase lead of 90°

and up refer to phase lag of 90°. The direction of the
phase difference between the variables plays a crucial role
in diagnosing the source(s) of oscillation in the work.

2.5 Average angle

As we are interested in the phase difference between the
components of the two time series, it is necessary to
estimate the mean and confidence interval of the phase
difference. The circular mean of the phase are used over
regions with higher than 5% statistical significance that
are outside the COI to quantify the phase relationship.
This is a useful and general method for calculating the
mean phase. The circular mean of a set of angles (ai ,
i=1...n) is defined as

am = arg(X,Y ) (4)

with X =
∑n
i=1 cos(ai) and Y =

∑n
i=1 sin(ai). It is

difficult to calculate the confidence interval of the mean
angle reliably since the phase angles are not independent.
The number of angles used in the calculation can be set
arbitrarily high simply by increasing the scale resolution.
However, it is interesting to know the scatter of angles
around the mean. For this the circular standard deviation
is defined as

s =

√
−2 ln

R

n
(5)

where R =
√
X2 + Y 2. The circular standard deviation is

analogous to the linear standard deviation in that it varies
from zero to infinity. It gives similar results to the linear
standard deviation when the angles are distributed closely
around the mean angle. In some cases there might be
reasons for calculating the mean phase angle for each scale,
and then the phase angle can be quantified as a number
of years. The XWT phase angle within the 5% significant
regions and outside the COI has the mean phase 176±12
(where ± designates the circular standard deviation).

3. PROBLEM STATEMENT AND PROPOSED
METHOD

Oscillations in model based control loops occur due to
either one of (i) valve stiction (ii) model plant mismatch,
(iii) external oscillatory disturbances or combination of
any of these. It becomes vital to diagnose the causes of
oscillations in order to take the appropriate remedial ac-
tion. A procedure based on pattern recognition techniques
using cross wavelet transform is devised in this article
to diagnose the cause(s) of the oscillation. The problem
is setup in the internal model control (IMC) framework
(Figure 1). Cross wavelet transform of input and plant
and that of input and model output are computed and
thereby a specific pattern is sought for root cause diagnosis
of oscillation using the direction of wavelet phase difference
between the variables.

To illustrate the idea of cross-wavelet transform for an
input-output system, an open-loop process with Gp(s) =

1

10s+ 1
is considered. The process is simulated for a

sinusoidal input having two frequencies and the time
domain plots of input and output are given in Figure 2.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Thursday

445



Fig. 1. Schematic representation of internal model control
with actuator
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Fig. 2. Time domain behavior of input and output signals
considered for interpretation of wavelet analysis

Fig. 3. Cross wavelet transform between input and output
signals

The cross wavelet transform plot between two quantities
u and y is shown in Figure 3.

It is known from Figure 3 that the quantities u and y
show high common power at two frequencies between two
different time intervals (0.1 Hz, 0-511 and 0.2 Hz, 512-
1024) and the arrows indicate the direction of the wavelet
phase between u and y i.e., u leads y by 90° (pointing
down). Based on the properties of cross wavelet transform,
wavelet phase difference and linear time invariant systems

theory, the following methodology is proposed to diagnose
the source(s) of oscillation in a control loop.

The quantities controller output (u), process output (y)
and model output (ym) of an oscillating control loop are
obtained either from simulation or from industry. The
cross wavelet transforms, Wuy(f, τ) and Wuym(f, τ) are
computed. By comparing the direction of wavelet phase,
the following conclusions can be drawn.

Based on the properties of cross wavelet transform, wavelet
phase difference and linear time invariant systems theory,
the following methodology is proposed to diagnose the
source(s) of oscillation in a control loop.

• Valve stiction: If the oscillating source is only
due to valve stiction, the cross wavelet transform
plots should not only exhibit harmonics but also
discontinuities.

• Model plant mismatch: If the source is due to
model plant mismatch, which among the gain, time
constant and delay causes the oscillation needs to be
pinpointed.
Gain mismatch : Gain mismatch theoretically does
not affect the wavelet phase spectrum. Hence, the
phase difference between Wuy(f, τ) and Wuym(f, τ)
is zero at the fundamental frequency of oscillation.
Cross wavelet spectrum ratio is constant at non-zero
value at the frequency of oscillation. Further, the
average phase angles of Wuy(f, τ) and Wuym(f, τ)
estimated at the frequency of oscillation are theoret-
ically same. In addition to this, the arrows in cross
wavelet transform plots will be in same direction.
Time constant mismatch: Time constant mis-
match affects both cross wavelet spectrum ratio and

phase spectrum. The plots of both
|Wuy(f,τ)|
|Wuym (f,τ)| and

φuy(f, τ) − φuym(f, τ) clearly show that the time
constant mismatch significantly changes behavior of
absolute cross wavelet spectrum ratio and the phase
spectrum. Consequently, the average phase angles of
Wuy(f, τ) and Wuym(f, τ) estimated at the frequency
of oscillation are different. The arrows in cross wavelet
transform plots will be in same direction since the
effect of time constant mismatch on phase spectrum
is minimum.
Delay mismatch : Delay mismatch theoretically
does not affect the magnitude of cross wavelet phase
spectrum. Hence, cross wavelet spectrum ratio is
unity at the frequency of oscillation. In contrast, the
phase difference between Wuy(f, τ) and Wuym(f, τ)
is non-zero at the fundamental frequency of oscil-
lation and the average phase angles of Wuy(f, τ)
and Wuym(f, τ) estimated at the frequency of oscilla-
tion are different. Consequently, the arrows in cross
wavelet transform plots will be in opposite direction.

4. SIMULATIONS

A control system consisting of a process characterized

by the transfer function Gp =
Kp

τps+ 1
e−dpsand model

Gm =
Km

τms+ 1
e−dms is simulated with IMC controller

for a unit step change in the set point. The different
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Fig. 4. Time domain behavior of plant, model and con-
troller outputs for the valve stiction as the source of
oscillation.

case studies analyzed for the diagnosis of oscillation in a
control loop are (i) oscillation due to valve stiction (ii)
oscillation due to valve stiction and oscillatory disturbance
(iii) oscillation due to gain mismatch (iv) oscillation due
to gain mismatch and oscillatory disturbance and (v)
oscillation due to delay mismatch.

4.1 Diagnosis of valve stiction

A simple yet efficient one parameter model proposed by
(Hägglund 1995) is used to generate oscillations due to
valve stiction. The model is

x(t) =

{
x(t− 1) |u(t)− x(t− 1)| ≤ d
u(t) otherwise

(6)

Here u(t) and x(t− 1) are present and past valve outputs,
u(t) is the present controller output, and d is the valve
stiction band. The valve stiction band is expressed in
terms of the percentage or fraction of valve movement
corresponding to the amount of stiction present in the
valve. For instance, if 100 units of force are required to
open the valve completely from completely closed position
and 10 units of force is required to overcome the amount of
static friction in the valve, stiction band is 10% or 0.1. The
stiction band of 0.1 is used in the simulation. Model plant
mismatch is introduced by changing the values of gain,
time constant and delay appropriately in the process. The
sinusoidal disturbance of frequency 0.01 Hz is considered
for the simulation.

The cross wavelet transform computed between controller
output and plant output is compared with that computed
between controller output and model output. In the case
of oscillation due to valve stiction (Figure 4), the plots
of cross wavelet transform (Figures 6 & 7) not only
show harmonics but also discontinuities which are the
characteristics of a sticky valve. Figures 8 and 9 clearly
indicate the presence of the valve stiction as one of the
sources of oscillation between 800 and 1600 s and the
other being the oscillatory component of frequency 0.01
Hz throughout.

4.2 Gain mismatch

If the oscillation is only due to MPM, there will be clearly
a single frequency in the cross wavelet transform plot. The
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Fig. 5. Time domain behavior of plant, model and con-
troller outputs for the case oscillatory output and
valve stiction as the sources of oscillation

Fig. 6. Cross wavelet transform plot between u and yp
when the oscillation is only due to valve stiction.

Fig. 7. Cross wavelet transform plot between u and ym
when the oscillation is only due to valve stiction.

system is simulated to generate oscillation in the plant out-
put due to gain mismatch (Figure 10). The cross wavelet
transforms, Wuy(f, τ) and Wuym(f, τ) are estimated from
where the quantities, absolute cross wavelet transform ra-

tio
|Wuy(f,τ)|
|Wuym (f,τ)| , the phase difference, φuy(f, τ)−φuym(f, τ)

and average phase angles of Wuy(f, τ) and Wuym(f, τ) at
the frequency of oscillation are obtained. The value of
|Wuy(f,τ)|
|Wuym (f,τ)| is found constant at 2.4 (Figure 13), the phase

difference is zero (Figure 14) at the frequency of oscillation
and the average phase angles are −2.551 and −2.554. The
plots of Wuy(f, τ) and Wuym(f, τ) (Figures 11 & 12) show
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Fig. 8. Cross wavelet transform plot between u and yp
when the oscillation is due to oscillatory disturbance
and valve stiction.

Fig. 9. Cross wavelet transform plot between u and ym
when the oscillation is due to oscillatory disturbance
and valve stiction.
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Fig. 10. Time domain behavior of plant, model and con-
troller outputs for the case of gain mismatch as the
source of oscillation.

that the arrows are in same direction. This is also in line
with the fact that the phase spectrum is unaffected by the
changes in gain.

4.3 Time constant mismatch

The control loop whose outputs are given in Figure (15)
is analyzed for diagnosing the source(s) of oscillations.
Figures (18) and (19) indicate the presence of time con-
stant mismatch as the source of oscillation. Further, the

Fig. 11. Cross wavelet transform plot between u and yp
when the oscillation is gain mismatch

Fig. 12. Cross wavelet transform plot between u and ym
when the oscillation is gain mismatch
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Fig. 13. A plot of ratio of cross wavelet transforms when
the oscillation is due to gain mismatch.

closeness of the values of average phases angles (-2.4244
and -2.1488) strengthens the presence of time constant
mismatch. Figures (16) and (17) indicate that the arrows
are in the same direction. This is also expected in the case
of time constant mismatch as the source of oscillation since
the effect of time constant mismatch on phase spectrum is
minimal.

4.4 Oscillation due to delay mismatch

The control loop whose outputs are given in Figure 20
is analyzed for diagnosing the source(s) of oscillations.
The cross wavelet transforms, Wuy(f, τ) and Wuym(f, τ)
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Fig. 14. A plot of phase difference when the oscillation is
due to gain mismatch
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Fig. 15. Time domain plots of plant, model and controller
outputs for the case of time constant mismatch as the
source of oscillation

Fig. 16. Cross wavelet transform plot between u and yp
when the oscillation is due to time constant mismatch

are estimated from where the quantities, absolute cross

wavelet transform ratio
|Wuy(f,τ)|
|Wuym (f,τ)| , the phase differ-

ence, φuy(f, τ) − φuym(f, τ) and average phase angles of
Wuy(f, τ) and Wuym(f, τ) at the frequency of oscillation

are obtained. The value of
|Wuy(f,τ)|
|Wuym (f,τ)| is found unity (Fig-

ure 23), the phase difference is non-zero (Figure 24) at the
frequency of oscillation and the average phase angles are
−2.9498 and 1.751. These observations show the presence
of delay mismatch. Further, the plots of Wuy(f, τ) and
Wuym(f, τ) (Figures 21 & 22) indicate that the arrows are

Fig. 17. Cross wavelet transform plot between u and ym
when the oscillation is due to time constant mismatch
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Fig. 18. A plot of ratio of cross wavelet transforms when
the oscillation is due to time constant mismatch
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Fig. 19. A plot of phase difference when the oscillation is
due to time constant mismatch

in opposite direction strengthening the presence of delay
mismatch as the source of oscillation.

5. CONCLUSIONS

A pattern recognition technique combined with two key
measures namely, absolute cross wavelet transform ratio
and wavelet phase difference for the diagnosis of control
loop oscillations in internal model control systems due to
multiple sources has been developed. A diagnostic study
of oscillation due to either one of valve stiction, model
plant mismatch, oscillatory disturbance or combination of
these has been presented. The oscillations due to valve
stiction manifest as harmonics as well as discontinuities
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Fig. 20. Time domain plots of plant, model and controller
outputs for the case of delay mismatch as the source
of oscillation.

Fig. 21. Cross wavelet transform plot between u and yp
when the oscillation is due delay mismatch..

Fig. 22. Cross wavelet transform plot between u and ym
when the oscillation is due delay mismatch..

in the cross wavelet transform plots whereas oscillation
due to model plant mismatch leaves distinct signatures in
the phase information (arrows). If the oscillations are due
to gain mismatch, the absolute cross wavelet transform is
constant at non-zero value at the frequency of oscillation
and the wavelet phase difference is zero. Further, the
plots of Wuy(f, τ) and Wuym(f, τ) show the arrows are in
same direction which strengthens the finding of the gain
mismatch as the source of oscillation. If the oscillation is
due to time constant mismatch, both the quantities, the
absolute cross wavelet transform and the the wavelet phase
difference are affected. On the other hand, oscillation due
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Fig. 23. A plot of ratio of cross wavelet transforms when
the oscillation is due to delay constant mismatch
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Fig. 24. A plot of phase difference when the oscillation is
due to delay mismatch

to delay mismatch results in a directional change in the
phase difference while the absolute cross wavelet transform
ratio is unity at the frequency of oscillation.
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Abstract: The paper deals with approximation of systems with the dominant first order dynamics by the 
Integrator Plus Dead Time (IPDT) model based on the analysis of the nonsymmetrical oscillations with 
possible offset arising typically under relay control. The analytical derivation is illustrated by results 
achieved by identification of optical plant. The results are experimentally verified by PI controller tuned 
using the identification results. Process parameters in various operating points are analyzed and the 
robutst controller tuning based on performance portrait analysis is employed. 

Keywords: relay identification, integrator plant, nonsymmetrical oscillations. 

 

1. INTRODUCTION 

The relay feedback test is very popular approach used in  
several commercial autotuners. The current research in this 
area was closely analyzed in (Tao Liu, Furong Gao 2009). 
There are two types of relay tests, unbiased and biased. When 
using the unbiased test the process gain can be highly 
deflorated by a load disturbance. Many relay feedback 
methods have been proposed to reject static disturbances 
(Hang, Åström, & Ho, 1993; Park, Sung, & Lee, 1997, 1998; 
Shen, Wu, & Yu, 1996). Their approaches bias the reference 
value of the relay on–off as much as a static disturbance (that 
must be known in advance), in order to achieve the same 
accuracy as in the case of no disturbance. Nevertheless none 
of these approaches can be applied to large static disturbance, 
of which the magnitude is bigger than that of the relay. By 
inserting a proportional integral (PI) controller behind the 
relay for the test, (Sung and Lee, 2006) proposed an 
identification method for application against large static 
disturbance, larger than the magnitude of the relay. The 
drawback of the method is given be necessity to tune an 
additional controller. 

Another important question is related to the models used for 
approximating the plant dynamics. Almost 70 years ago, 
Ziegler and Nichols (Ziegler & Nichols, 1942) proposed to 
use the sustained oscillations for process dynamics 
characterization giving finally PID controller tuning, whereby 
the process dynamics approximation was equivalent to the 
use of the IPDT model. It is, however, well known that the 
method is appropriate also for dealing with many systems 
with more complicated and typically static dynamics. Several 
papers investigate the transition point when the designer 
should choose to use more complex models - the First Order 
Plus Dead Time (FOPDT) representing the first possible 
extension (Skogestad, 2003; Jones and Tham, 2004). Also 

Huba (2003) shows that for the relatively low ratio of the 
dead time and the plant time constant  it is enough to 
use the to Integrator Plus Dead Time (IPDT) approximations 
also for dealing with the FOPDT processes used in this paper. 
However, when using the IPDT approximation for the 
FOPDT process, the plant feedback that is around an 
operating point equivalent to a load disturbance will lead to 
assymmetrical behavior also in the case with symmetrical 
relay without additional load. So, in the relay identification 
this oscillation asymmetry is playing an important issue with 
respect to the precision of the whole approximation. For a 
noncompensated disturbance (including also the internal 
plant feedback around the operating point), the deformation 
of oscillations leads to increased influence of higher 
harmonics and to decreased precision of the identification 
both by using the describing functions method and the Fast 
Fourier Transform (FFT). The main advantage of 
constraining the plant approximation to the IPDT model 

pd TT /

( ) seKsS sT
s

d /−=  (1) 

is that both the experiment setup and the corresponding 
formulas remain relatively simple and more robust against 
measurement noise than when using the FOPDT model. 
There is no need to tune the PI controller before the 
identification, or to use the PI controller with an additional 
anti windup circuitry.  

Let us consider oscillations in the control loop with a relay 
with the output Mur ±= and a piecewise constant input 
disturbance constv = . Then, the actual plant input will be 
given as a piecewise constant signal vMu A +±= . Possible 
transients are shown in Fig. 2. 

     

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Thursday

452



  

 
Fig. 1 Relay identification with nonsymmetrical plant input 

 

Fig. 2 Transients of basic variables of the loop in Fig. 1  

By assuming relay switching from the positive relay output 
 to the negative value Mu = Mu −= (point 1) at the time 

moment , due to the dead time the influence of the 
positive plant input  will keep over interval 
with the length equal to the dead time value T

121 −it
( ) sKMvU +=2

d.. Then, after 
reaching output value  at the time moment 21y 121 −iτ  (point 
2) due to the effective plant input  the output 
starts to decrease. After the time interval t

( ) sKMvU −=1

1 it reaches the 
reference value w (point 3). Even though at this moment the 
relay switches to the positive value  the plant output 
continues to fall the time  longer and reaches the value 

 (point 4). The total length of the interval with negative 

relay output will be denoted as . Under virtue of the 
positive relay output the plant output starts to rise and reaches 
the reference value after the time  (point 5). The total 
duration of the positive relay output may be denoted as 

Mu =

dT

12y
−t

2t

  (2) dTtt +=+
2

As a result of the time delay, the plant output turnover time 
instants i21τ  are shifted with respect to the relay reversal 
moments  by . Similar time shift exists among time 
instants 

it21 dT

i12τ  and , i.e. it12

diidii TtTt +=+= 12122121 ; ττ  (3) 

For a single integrator it is possible to formulate relations 

( )
( ) 2122112

1211221

/;
/;
UywtTUwy
UywtTUwy

d

d

−==−
−==−

 (4) 

Period of one cycle may be denoted as 

22

2

21
42

vM
MTttTttP d

du
−

=++=+= −+  (5) 

For a known value of the relay amplitude M  and a known 
ratio of the positive and negative relay output duration over 
one cycle 

Mv
Mv

Tt
Tt

t
t

d

d

+
−
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+
+

==
−

+

1

2ε  (6) 

it is possible to express the identified disturbance as 

nvuv += 0  (7) 

This may be composed of the known intentionally set offset 
at the relay output and an unknown external disturbance 

 that may be identified as 
0u

nv

ε
ε

+
−

=
1
1Mv  (8) 

From (5) it then follows 
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The output mean value over one cycle period may be 
expressed as 
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Finally, one gets formula for the plant gain 
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It is also possible to calculate the plant gain by using the area 
A limited by  around over one period (5), when ( )ty w

( )
( ) 22

4

1
1

u
s MP

AK
εε

ε
+

+
=   (12b) 

In difference to (12a), this may also be used in the 
symmetrical case with  and . So, to get the 
model parameters (1) it is enough to calculate the mean plant 
output value over one cycle of relay switching (11), or the 
equivalent area A, the period of oscillation (5) and the ratio of 
time slots with positive and negative relay output (6). The 
approximation should remain valid also in the case of 
constant input disturbance . This may be considered 
to be composed of the intentionally introduced disturbance 

 and of the external disturbance  

0=v wys =

constv =

0u nv

nvuv += 0  (13) 

In this way it is possible to introduce an additional free 
parameter for tuning enabling to work in any working point 
with arbitrarily low relay module M. 

After carrying out the above procedure at least for two 
different reference signal values  and  and by 
evaluating changes of the identified disturbance values and 

 in dependence on the mean output values  and it 
is then possible to approximate the dependence  

1w 2w

1v

2v 1sy 2sy

( )syfv =  (14) 

If it has a negligible slope with respect to changes in , the 
system is sufficiently well approximated by the IPDT model.  

sy

2. REAL EXPERIMENT 

The thermo-optical plant laboratory model (Fig.3) offers 
measurement of 8 process variables: controlled temperature, 
its filtered value, ambient temperature, controlled light 
intensity, its derivative and filtered value, the fan speed of 
rotation and current. The temperature and the light intensity 
control channels are interconnected by 3 manipulated voltage 
variables influencing the bulb (heat & light source), the light-
diode (the light source) and the fan (the system cooling). 
Besides these, it is possible to adjust two parameters of the 
light intensity derivator. Within Matlab/Simulink or 
Scilab/Scicos schemes [10] the plant is represented as a 
single block and so limiting needs on costly and complicated 
software packages for real time control. The (supported) 
external converter cards are necessary just for sampling 
periods below 50ms. Currently, more than 40 such plants are 
used in labs of several EU universities. 

 

Fig. 3 Thermo-optical plant  

The thermal plant consists of a halogen bulb 12V DC/20W, 
of a plastic pipe wall, of its internal air column  containing 
the temperature sensor PT100, and of a fan 12V DC/0,6W 
(can be used for producing disturbances, but also for control).  

The optical channel has two outputs. The non filtered light 
intensity measured  by a photodiode and the filtered one, 
where the signal is filtered by an analogue low pass filter 
with time constant at about 20s.  

The non-filtered light channel represents a very fast process 
which can be approximated as memoryless plant. In an ideal 
case static feedforward control with inverse process gain 
should be sufficient for such process. However the filtered 
optical channel was used for the experiments, where the 
analogue first order filter is used to filter the non-filtered light 
channel output. We analyzed the system parameters in 
several working points. The input of the system is the bulb 
voltage which is limited to 5V. 

The following table shows the system parameters in all 
working points. Relay magnitude ranges from 3 to 5V and 
the setpoint (light intensity)  ranges from 10 to 35.  

Table 1.  Average system parameters 

w M Ks Td v 
35 5 0,581038 0,5505 -2,89034
30 5 0,564979 0,57954 -2,52964
20 5 0,536201 0,582476 -1,77778
10 5 0,475311 0,562213 -0,98358
30 4 0,57706 0,472195 -2,64252
20 4 0,522255 0,508156 -1,86067
10 4 0,468589 0,522159 -1,01576
30 3 0,602765 0,389834 -2,78204
20 3 0,56064 0,442128 -2,03024
10 3 0,536333 0,448577 -1,2376
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In Fig. 4, the measured and the approximated system output  
in one working point is compared.  
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Fig. 4 Measurement and simulation comparison 

 

3. PI CONTROLLER TUNING 

PI controller was employed to control the plant to verify the 
identification results. To improve control performance the PI-
controller structure from Fig. 5 was used.  
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Fig. 5 PI1-controller  

Performance portrait analysis was used to tune the controller. 
Upper left portrait shows the amount of an overshooting, the 
red area corresponds to controller tuning which yields 
overshooting up to 0.01%, the amount of overshooting grows 
to 5% in the blue area. The upper right portrait shows the 
control signal deviation from the defined shape. Lower 
portraits show the borders of the areas above.  
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Fig. 6 Performance portrait  

 

The following figures show the real experiment results for 
various setpoint changes. The controller was tuned to yield 
up to 0.1% overshooting.  
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Fig.6 Control results 
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The control results in Fig. 6 show fast transients without 
overshooting except the last downward setpoitnt step, where 
a small overshoot occurs which results from the 
approximation imperfection. The control signal consists of 
two control phases: one can observe an interval at the 
saturation followed by the control signal’s monotonic 
transition to the new steady state value.  

4. CONCLUSION 

New relay experiment identification method has been 
proposed for the IPDT plant. Stable optical plant with the 
first order dominant dynamics was used for illustrating and  
verifying the method by the real experiment. The method 
benefits from obtaining the load disturbance value without 
need of tuning a PI controller firstly. Sensitivity to the 
measurement noise that may lead to more complicated relay 
output than the considered period consisting of two pulses, 
can be at least partially eliminated by sampled-data relay 
control using longer sampling periods. 

In applying the proposed method to controlling optical plant, 
the relay test yields results depending on the working point 
that obviously points out on nonlinear plant behaviour. In this 
paper, the nonlinear properties were treated by a robust 
controller tuning. One of the strong advantages of the 
proposed method, however, is its possible extension to 
identifying FOPDT model, or a nonlinear model with 
dominant first order dynamics + dead time. Nevertheless, due 
to the simple analytical formulas the proposed algorithm is 
easy to implement online.   
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Abstract: The following paper describes the control of air/fuel ratio (AFR) of a spark
ignition engine utilizing the analytical model predictive controller based on the multi-model
approach. The multi-model approach employs the autoregressive model (ARX) network, using
the weighting of local models, coming from the sugeno-type fuzzy logic. The weighted ARX
models are identified in the particular working points and are creating a global engine model,
covering its nonlinearity. Awaited improvement of a proper air/fuel mixture combusted in a
cylinder is mostly gained in the transient working regimes of an engine. In these regimes, the
traditional control approach looses its quality, compared to steady state working regimes of an
engine. This leads to higher fuel consumption and level of emissions from an engine. Presented
results of the air/fuel ratio control are acquired from the real-time control of the VW Polo
1390cm3 engine, at which the original electronic control unit (ECU) has been replaced by a
dSpace system executing the model predictive controller. It has been proven, that the proposed
controller is suitable for the air/fuel ratio control giving sufficiently good and steady system
output.

Keywords: model predictive control, analytical solution, air/fuel ratio, SI engine, ARX models

1. INTRODUCTION

A run of a spark ignition engine (SI) is highly depen-
dent on the mixture of the sucked air and injected fuel
present in the cylinder, waiting to be ignited by the spark.
Incorrect ratio of this two components may lead to the
poor engine power, ineffective functionality of the catalytic
converter resulting in higher level of emissions polluting
the environment and in the extreme case this can lead to
the engine stoppage. Due to this reason it is crucial to
keep the air/fuel ratio (AFR) at the stoichiometric level,
which means, that both, the air and the fuel are completely
combusted. Due to above mentioned reasons and all the
time tightening emission standards the car producers are
improving the control of the air/fuel ratio.
Traditional control of air/fuel ratio is based on a feed-
forward control using predefined tables determining how
much fuel has to be injected into a cylinder, based on
the information from the mass air flow meter. This fuel
amount is subsequently corrected using the information
from the lambda probe, so the stoichiometric mixture can
be reached. Due to a lambda probe position (at the engine
exhaust) a delay arises, causing an improper feedback
correction at the unstable engine regimes, like acceleration,
or deceleration. On the other side, this kind of control
guarantees stability and robustness at all conditions and
therefore is still preferred by car producers, despite its
disadvantages in control.
The academic field have started to publish other kinds
of air/fuel control, mostly model-based ones. The model-

based approaches are bringing good quality of control, but
are also more sensitive to the model precision and issues
with stability and robustness appear. A survey through
popular "mean value engine modeling" is described in
Bengtsson et al. (2007). This analytical way of engine
modeling is very clear, but requires exact knowledge of the
system and the model error has to be taken into account
explicitly. Other ways of a model acquisition are based
on the experimental identification (black box modeling).
Works of Zhai et al. (2010), Zhai and Yu (2009) and Hou
(2007) are specialized in employment of neural networks,
while Mao et al. (2009) uses for engine modeling CARIMA
models.
In the engine control itself became popular fuzzy logic
(Hou (2007)), neural network control (Arsie et al. (2008))
and model predictive control (MPC) approaches (Lorini
et al. (2006) and Muske and Jones (2006)). General topics
on an issue of stability and robustness in MPC can be
found in Mayne et al. (2000), or Zeman and Rohal-Ilkiv
(2003).
Our approach, introduced in Polóni et al. (2007) is uti-
lizing an analytical model predictive controller with a
penalization of a terminal state. It uses a multi-model
approach using a weighted net (sugeno-type fuzzy logic)
of autoregressive models (ARX) as a system model. The
ARX models were identified in the particular working
points of the engine as black box models. This method
of engine modeling offers an easy way of "global nonlinear
system model" acquisition with subsequent utilization in
the model based system control. The preliminary real-
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time predictive control results presented in this paper
indicate that the proposed controller could be suitable
alternative toward the air/fuel ratio control through the
look-up tables.

2. AIR/FUEL RATIO

The model of the air/fuel ratio dynamics λ of a spark
ignition engine is based on the mixture, defined as a
mass ratio of the air and fuel present in a cylinder at
a time instance k. Due to the fact, that the air mass
flow is measured as an absolute value, it was necessary
to integrate this amount during the particular time and
express the air and fuel quantity as relative mass densities
(grams/cylinder

grams/cylinder ). Hence, the air/fuel ratio is defined, as:

λ(k) =
ma(k)

mf (k)

1

Lth
(1)

Where ma(k) and mf (k) are relative mass amounts of air
and fuel in a cylinder and Lth ≈ 14.64 is the theoretical
amount of air necessary for the ideal combustion of a unit
amount of fuel. The Lth constant normalizes the ideal
value of λ to be 1.0.

3. SI ENGINE MODELING USING ARX MODELS

The engine modeling is based on the weighted linear lo-
cal model with single input single output (SISO) struc-
ture (Polóni et al., 2008). The parameters of local linear
ARX models with weighted validity (Murray-Smith and
Johanssen, 1997) are identified to model the nonlinear
dynamics of the AFR. The principle of this nonlinear mod-
eling technique is in partitioning of the engine’s working
range into smaller working points.

A net of local ARX models weighted for a particular
working point φ is defined, as:

nM∑

h=1

ρh(φ(k))Ah(q)y(k) =

nM∑

h=1

ρh(φ(k))Bh(q)u(k) +

nM∑

h=1

ρh(φ(k))ch + e(k)

(2)

defined by polynomials Ah and Bh:

Ah(q) = 1 + ah,1q
−1 + . . . + ah,nyq−ny

Bh(q) = bh,1+dh
q−1−dh + . . . + bh,nu+dh

q−nu−dh
(3)

where symbolics q−i denotes a sample delay, e.x. q−iy(k) =
y(k − i), ah,i and bh,(j+dh) are parameters of hth local
function and dh is its delay. Parameter nM represents the
number of local models.

The ρh denotes a weighting function of a particular ARX
model (see Sec. 3.1) and the e(k) is a stochastic term with
a white noise properties. The engine working point itself
is defined by engine revolutions nen and the throttle valve
position tr, hence: φ(k) = [nen(k), tr(k)]T . The absolute

term ĉh of the equation is computed from the steady state
values of the system output ye,h and the system input ue,h,
as:

ĉh = ye,h + ye,h

ny∑

i=1

âh,i − ue,h

nu∑

j=1

b̂h,j (4)

The model output is computed from the equation:

ys(k) =

nM∑

h=1

ρh(φ(k))

·




ny∑

i=1

âh,iq
−iys(k) +

nu∑

j=1

b̂h,(j+dh)q
−j−dhu(k) + ĉh




(5)

which after the introduction of the estimated parameter
vector θ̂h and the regression vector γ(k), becomes:

ys(k) = γT (k)

nM∑

h=1

ρh(φ(k))θ̂h +

nM∑

h=1

ρh(φ(k))ĉh (6)

3.1 Weighting functions

The full working range of the engine has been covered by a
discrete amount of local linear models (LLMs), identified
at particular working points. The LLMs are being weighted
by a weighting functions defining validity of each local
model according to an instantaneous working point of
the engine. Due to a request of a smooth and continuous
global engine model, design of those weighting functions
was crucial.
There were designed particular interpolation functions for
every LLM, assigning it 100% validity exactly at the be-
longing working point with a decreasing tendency in the
directions of the deviation of the throttle valve opening
∆tr and the engine revolutions ∆nen from the particular
working point. The "three dimensional" Gaussian func-
tions:

ρ̃h(φ(k)) =

exp


− [ ∆nen(k) ∆tr(k) ]




1

σ2
h,1

0

0
1

σ2
h,2




[
∆nen(k)
∆tr(k)

]



(7)

were used as the local weighting functions, due to their
suitable shape fulfilling the approximation properties. The
choice of tuning parameters σh,1 = 250 and σh,2 = 0.8 used
in the weighting functions has been chosen experimentally,
awaiting continuous and smooth output of the modeled
system. At the same time the experiments have shown,
that there can be used identical weighting functions for
weighting of the air and fuel path parameters.
All the weighting functions were at the end normalized by
creating normalized weighting functions:

ρh(φ(k)) =
ρ̃h(φ(k))∑nM

h=1 ρ̃h(φ(k))
(8)
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so the sum of values of all weighting functions belonging
to a particular working point (Fig. 1), equals exactly one:∑nM

h=1 ρh(φ(k)) = 1.
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Fig. 1. Relative weighting Gaussian functions

3.2 Model identification

Considering the λ(k) modeling, the engine has been
divided into two subsystems with independent inputs,
namely into:

air path with the air throttle position
as the disturbance input, and

fuel path with the input of fuel injector opening time.

Another disturbance-like acting quantity in the air path
were engine revolutions, implicitly included in the engine
model, particularly for each working point.

Parameters of the local ARX models have been estimated
from the data acquired from the exhaust gas oxygen
sensor and an air flow sensor. The identification has been
designed so, that the dynamics of the air path and fuel
path stayed uncoupled, hence the dynamics of both paths
were measured indirectly.

Air path identification The first experiment started at
the stoichiometric value of λa in the operation point φ. To
excite the air path dynamics, the throttle valve position
was oscillating around its steady position according to a
pseudo-random binary signal (PRBS), while the fuel injec-
tors were delivering constant fuel mass mf,e. The change
in λa value has been recorded. During the experiment the
engine had been braked at constant revolutions.

Fuel path identification The identification of the fuel
path dynamics has been done similarly, but with the fixed
throttle valve delivering a constant air mass ma,e. The
PRBS was varying the fuel injectors’ opening time and
the value of λf had been measured again.

In both experiments it was necessary to wisely propose
a PRBS, so that the air/fuel mixture is always ignitable.
The local ARX models can be subsequently determined
from the measured values of instantaneous λa(k) and
λf (k) belonging to the air path and fuel path, utilizing
relative air and fuel mass densities:

ma(k) = ma,e(φ)λa(k) (9)
and

mf (k) =
mf,e(φ)

λf (k)
(10)

The final formula describing the aif/fuel ratio dynamics is
built up of local linear ARX models of the air and fuel
paths is in the form:

λs(k) =
1

Lth

·
[

γT
a (k)

∑nA

h=1 ρa,h(φ(k))θ̂a,h +
∑nA

h=1 ρa,h(φ(k))ĉa,h

γT
f (k)

∑nF

h=1 ρf,h(φ(k))θ̂f,h +
∑nF

h=1 ρf,h(φ(k))ĉf,h

]

(11)

Where:

γ is the regression vector of system inputs and outputs
nA is the amount of working points
ρ is the interpolation function
φ is the vector of a working point
θ is the vector of ARX parameters
c is the absolute term of an ARX model

In accordance with the general model structure presented,
the key variables are defined in the Table 1.

Table 1. Symbol connection between the gen-
eral expression and the model

general air-path fuel-path operating
symbol model model point
y(k) ma(k) mf (k)
u(k) tr(k) uf (k)
γ(k) γa(k) γf (k)

θ̂h θ̂a,h θ̂f,h
ρh(φ(k)) ρa,h(φ(k)) ρf,h(φ(k))
ĉh ĉa,h ĉf,h
φ(k) [ne(k), tr(k − δ)]T

4. PREDICTIVE CONTROL

The strategy of an "exceeding oxygen amount" control
using a predictive controller is based on a prediction of
a controlled quantity λ and subsequent minimization of
a chosen cost function on the horizon Np expressed in a
standard quadratic form. The value of λ is predicted by
utilization of partially linear models of the air and fuel
path. Through the independent air path model the proper
amount of fuel is predicted and enters the cost function J .
Hence, the target of the cost function minimization is to
determine such a control law, that the measured system
output λ is stoichiometric. The second modeled subsystem,
the fuel-path, is an explicit component of the objective
function where the amount of the fuel is the function of
optimized control action (Polóni et al. (2008)).

4.1 Predictive model

The applied control strategy is based on the knowledge of
the internal model (IM) of air-path, predicting the change
of air flow through the exhaust pipe, and consequently, set-
ting the profile of desired values of the objective function
on the control horizon. In this case we will consider the
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state space (SS) formulation of the system and therefore
it is necessary to express linear local ARX models in the
SS structure with time varying parameters:

x(a,f)(k + 1) = A(a,f)(φ)x(a,f)(k) + B(a,f)(φ)u(a,f)(k)

ms,(a,f)(k) = C(a,f)x(a,f)(k) (12)

The weighted parameters of multi-ARX models are dis-
played in matrices Aa,f and Ba,f for both subsystems.
This is a non-minimal SS representation whose advantage
is, that no state observer is needed. The "fuel pulse width
control" is tracking the air mass changing on a prediction
horizon from IM of the air-path, by changing the amount
of injected fuel mass. Due to tracking offset elimination,
the SS model of the fuel-path (12) (index f ), with its state
space vector xf , is written in augmented SS model form
to incorporate the integral action:

x̃f (k + 1) = Ãf (φ)x̃f (k) + B̃f (φ)∆uf (k) (13)

or[
xf (k + 1)

uf(k)

]
=

[
Af (φ) Bf (φ)

0 1

] [
xf (k)

uf (k − 1)

]
+

+

[
Bf (φ)

1

]
∆uf (k)

ms,f (k) = C̃f x̃f (k) + Df∆uf (k) (14)

or

ms,f (k) = [ Cf Df ] x̃f (k) + Df∆uf (k)

The prediction of the air mass (m−→a) on the prediction
horizon (Np) is dependent on the throttle position ( t−→r)
and is computed as

m−→a(k) = Γa(φ)xa(k) + Ωa(φ) t−→r(k − 1) (15)
where the xa denotes the state space vector of the air path.

Due to the unprecise modeling (IM strategy), the biased
predictions of the air mass future trajectory and conse-
quently biased fuel mass might occur. This error is com-
pensated incorporation the term L[m̂f(k) − ms,f (k)] into
the fuel mass prediction equation:

m−→f (k) = Γf (φ)x̃f (k) + Ωf (φ)∆ u−→f (k − 1)+

+ L[m̂f(k) − ms,f (k)]
(16)

The matrices of free response Γa, Γf and forced response
Ωa, Ωf are computed from the SS model (12), respectively
(Maciejowski, 2000). Since there is only λ(k) measurable
in equation (1), the value of ma(k) needs to be substituted
using IM of the air-path, then:

m̂f (k) =
1

Lth

ms,a(k)

λ(k)
(17)

The estimate m̂f (k) is used to compensate for possible
bias errors of predicted m−→f (k) in (16).

4.2 Analytical solution

The analytical solution is based on the cost function (18),
encompassing deviations of predicted fuel mass amounts

between the air and fuel path (based on (1)); a penalization
of control increments r; and a penalization p of a deviation
between a predicted and desired end state.

Jλ =

∥∥∥∥∥
m−→a(k)

Lth
− m−→f (k)

∥∥∥∥∥

2

2

+ r‖∆ u−→f (k − 1)‖2
2

+p‖x̃f(N) − x̃f,r(N)‖2
2

(18)

The chosen MPC approach utilizes the state space repre-
sentation with an integral control for the correction of the
prediction.
Due to a disturbance d(k), the steady state values of u
and x have to be adapted so, that the assumption J = 0
is valid. This problem solves an explicit inclusion of the
disturbance into the model.
The fuel injectors are controlled by a fuel pulse width, what
is at the same time the control uf . The optimal injection
time can be computed by minimization of a cost function
(18), which has after expansion by the fuel path prediction
equation, form:

Jλ =

∥∥∥∥
m−→a

Lth
− Γf x̃f (k) + Ωf∆ u−→f (k − 1)

∥∥∥∥
2

2

+r
∥∥∥∆ u−→f (k − 1)

∥∥∥
2

2
+ p‖x̃f (N) − x̃f,r(N)‖2

2

(19)

An analytical solution of dJλ

∆ u−→
= 0 of (19) without con-

straints leads to an expression determining the change of
"fuel injector opening time" in a step (k), as:

∆u =
(
ΩT Ω + Ir + pΩT

xNΩxN

)−1

·
[
ΩT [w(k) − Γx̃(k)] − pΩT

xNAN x̃(k) + pΩT
xN x̃f,r(N)

] (20)

Hence, the absolute value of the control action in a step
k is given by a sum of a newly computed increment in a
control (20) and an absolute value of the control in a step
(k − 1):

uf (k) = uf (k − 1) + ∆uf(k) (21)

5. RAPID CONTROL PROTOTYPING SYSTEM

The computational unit necessary for the real-time imple-
mentation of the MPC control is based on a powerful and
freely programmable control system based on dSpace and
RapidPro units; or "Rapid Control Prototyping System"
(RCP), (Fig. 2, dSPACE GmbH. (2009)). It is built-up on
the processor board ds1005 and hardware-in-loop platform
dS2202 HIL. The RCP ensures sufficient headroom for the
real-time execution of complex algorithms (Arsie et al.
(2008)) and lets all engine tasks to be controlled directly.
Also, the customized variants of the controller can be
performed immediately.

Typical RCP system consists of:

• A math modeling program (prepared in Simulink)
• Symbolic input/output blocks
• A real-time target computer (embedded computer

with an analog and digital I/O)

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Thursday

460



• A host PC with communication links to target com-
puter

• A graphical user interface (GUI) which enables to
control the real time process

The RCP system enables to use a support in the form
of embedded functions which make the preparation of
algorithms easy and fast. It is a great help, because one
can then concentrate on significant problems (development
and debugging of algorithms) without the spending time
on not so important tasks (how to handle features of RCP
system at low level programming).

Fig. 2. Rapid control prototyping scheme

6. REAL-TIME APPLICATION OF A PREDICTIVE
CONTROL

The ability to control the mixture concentration at sto-
ichiometric level using MPC is demonstrated through
the real-time SI engine control (Fig. 3). This has been

Combustion
Engine

MPC

Controller

tr

uf

ne

λ

Fig. 3. Control scheme

performed using the AFR predictive control strategy
described in the previous section, designed in Mat-
lab/Simulink environment and compiled as a real-time
application for a dSpace platform. It has been applied to
the VW Polo engine (Fig. 4), 1390 cm3 with 55kW@5000
rpm, not equipped with a turbocharger or an exhaust gas
recirculation system. The control period was 0.2s. The
result of an identification are 9 local linear models (LLM)
for each, air and fuel path, dependent on a throttle valve
opening and engine revolutions.

The primary target of a control (Fig. 5) was to hold the
air/fuel ratio in a stoichiometric region (λ = 1), in the
worst case to keep the mixture ignitable (0.7 ≤ λ ≤ 1.2).
During the experiment, the change in throttle valve open-
ing, between 21 and 22 degrees (Fig. 5, variable tr) and

Fig. 4. Spark ignition engine VW Polo 1.4

the change of engine revolutions (Fig. 5, variable nen),
has been performed several times. These changes simulate
varying working regimes of an engine, which is adapting
its run to a daily traffic. Changes in tr and nen quanti-
ties are determining the engine load, at the same time,
ensuring, that the engine passes through several working
points during its operation. As mentioned in Section 3,
the engine revolutions are not included among explicit
variables of local models, but they build together with a
delayed throttle valve position a vector of an working point
φ(k).
The quality of control is sufficient (Fig. 5, variable λ),
with exceptional acceptable overshoots in both directions.
These overshoots of the controlled variable λ have been
caused by smaller model precision, due to its distance from
the working point, at which the system identification has
been performed. This effect is caused by the approxima-
tion of a particular model from the other working points’
models.
The corresponding control (fuel injection time) computed
by the controller is shown in (Fig. 5, variable tinj).

The initial engine warm-up (to 80 ◦C ) eliminated model-
plant mismatch caused by temperature dependent behav-
ior of the engine.

The control has been performed by choosing the penaliza-
tion r = 0.1. Utilizing the member p‖x̃f (N)− x̃f,r(N)‖2

2 of
a cost function by setting p = 1.0 allowed us to shorten the
control horizon to Np = 20 what significantly unloaded the
computational unit and stabilized the controlled output of
the engine on this shortened horizon, as well. The best
control has been achieved in the neighborhood of working
points, what is logically connected to the most precise
engine model at those points. In other working points the
control is still good enough, with small deviations from the
stoichiometric mixture.

7. CONCLUSION

Considering the preliminary results from the real-time
experiments at the engine, it can be concluded, that
the idea of the AFR model predictive control based on
local ARX models is suitable and applicable for the SI
engine control. The proposed flexible design of a predictive
controller offers easy tuning possibilities and a potential for
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Fig. 5. Results of an AFR SI engine control

the model accuracy improvement by the extension of the
global engine model to other working regimes of the engine.
The next project step shall be the overshoot elimination in
the λ - control by the identification of wider net of "local
linear engine models" and implementation of constraints.
Another task which has to be done is a comparison of
the quality of control gained by the MPC controller with
a baseline electronic control unit. This goal has been not
yet achieved, as the original ECU has been replaced by the
dSpace system running our controller.
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Wind turbine power control for
coordinated control of wind farms
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Abstract: The new grid regulations require that a grid-connected wind farm acts as a single
controllable power producer. To meet this requirement a traditional wind farm control structure,
which allowed individual wind turbines to internally define their power production, needs to
be modified. In this paper the opportunity for wind turbine load reduction that arises from
dynamic power control of wind turbines is studied. The wind farm controller design is proposed
that utilizes coordinated power control of all wind turbines to achieve the wind farm regulation
requirements and to minimize the wind turbine loads.

Keywords: Wind turbine control, Wind farm control, Model predictive control, Structural
Loads

1. INTRODUCTION

With the increasing exploitation of wind energy, wind
farms are growing both in number and in size and quickly
becoming significant contributors in production of elec-
trical energy. Consequently, the requirement emerges for
large wind farms to function as a single controllable entity
on the power grid, much like conventional power plants,
see e.g. Elkraft System and Eltra (2004). For example,
wind farm may be required to track the power reference
provided by the Transmission System Operator (TSO) or
to reduce the power production in order to contribute to
the grid frequency regulation.

Traditionally, wind farm is operated as a collection of
individually controlled wind turbines. Due to the new
control requirements, however, the wind farm controller
needs to take into account the interaction of wind turbines.
The wind farm controller receives the wind farm power
reference (or the wind farm regulation requirement, which
can be readily expressed as the wind farm power reference,
see e.g. Hansen et al. (2006)) from the TSO and distributes
the individual wind turbine power references, see Figure 1.
The wind farm controller uses the measurements from the
wind farm as feedback. The sampling time for the wind
farm controller has the order of 1 second.

WIND FARM 

CONTROLLER

Power references

for WTs
WF power 

reference

Wind farm measurements

Wind field

WF power 
output 

WTs
operation dataWind farm

Fig. 1. Wind farm control system setup

A modern variable-speed wind turbine needs to be actively
controlled to be operable. The state-of-the-art wind tur-
bine control system has the ability to receive an external

power reference. In this paper we study the behavior of the
wind turbine with respect to the provided wind turbine
power reference. The aim is to assess the potential for
improving wind turbine operation by the appropriate wind
farm controller design. The interest for this issue is spurred
by the new wind farm control requirements. Namely, if
the wind farm is to track a wind farm power reference
then that power reference must be lower than the power
available from the wind (the estimation of available wind
farm power is used to determine the wind farm power
reference, see Sørensen et al. (2005)). Therefore, the wind
turbines are not necessarily producing all the available
power (as it is typically the case in the wind farms). In this
paper we study the idea of utilizing this power surplus to
improve wind turbine dynamic operation. To the best of
the authors knowledge this problem has not been tackled
in wind energy literature.

The wind turbine considered in this paper is a conventional
horizontal-axis three-bladed upwind variable-speed wind
turbine with a blade-pitch-to-feather control system. This
control system uses the increase in pitch angle to reduce
the angle of attack of the blade and thus reduce lift force
and the rotor torque. This is the current state-of-the-
art in wind turbine technology. For simulations we use
the MATLAB implementation (Soltani et al. (2010)) of
a 5MW reference wind turbine model for offshore system
development developed at National Renewable Energy
Laboratory and described in Jonkman et al. (2009).

The paper is structured as follows:
Section 2 tackles the problem of defining a practical (but
also justified) cost function for validation of wind turbine
operation. Section 3 demonstrates and discusses the possi-
bility for improvement of wind turbine dynamic behavior
by adapting the power reference. In Section 4 the wind
farm control system that utilizes the demonstrated bene-
fits is proposed. Section 5 concludes the paper. For a brief
overview of wind turbine operation and the description of
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wind turbine control design model used in the paper the
reader is referred to Spudić et al. (2010).

2. WIND FARM CONTROL OBJECTIVES

The primary wind farm control objective is that the wind
farm electrical power output tracks the provided wind farm
power reference.

As discussed in Section 1, the reserve in the wind power
that occurs while tracking the provided power reference
can be utilized for improvement of wind turbine operation.
Here, we are interested in reducing the loads experienced
by the wind turbines. Note that in this paper the term
loads refers to the forces and moments experienced by the
wind turbine structure. To define the control objective one
needs to resolve how to relatively compare two different
load histories.

2.1 Comparing the load histories

The main driver of the wind turbine damage is the
dynamic stress experienced by the structure. The cyclic
stress causes material fatigue, which reduces the wind
turbine operational life. The standard fatigue analysis is
based on the Palmgren-Miner rule, see e.g. Sutherland
(1999). This rule defines the total damage of the wind
turbine component as:

Dt =

M∑

j=1

nj

Nj
, (1)

where nj is the number of cycles that the structure
undergoes at stress level σj , and the Nj is the number
of cycles at the stress level σj that leads to component
failure. The different stress levels are denoted by indices
j = 1, . . . , M . The Palmgren-Miner rule states that the
component breaks when the total damage equals one.

The relation between the stress levels σj and the maximum
number of cycles at that level Nj is described by the S-N
curve, which can be well approximated with:

σ = CN− 1
m , (2)

where m is denoted as Wöhler coefficient, the empirically
determined parameter that characterizes the material, and
C is the maximal static stress that the material can
withstand.

The notion of total damage is typically used for lifetime
calculations that aim at determining when will the to-
tal damage reach one. The lifetime calculation requires
extensive simulations of different operating scenarios to
be viable. For estimation of control benefits it is more
common to use the damage equivalent loads. The damage
equivalent load (DEL) is the amplitude of a sinusoidal load
of constant frequency f which produces the same dam-
age as the original signal. It is determined by (Bossanyi
(2003a)):

DEL =




M∑

j=1

σm
j nj

Tf




1
m

, (3)

where T is the duration of the load history.

The question remains how to extract the individual cycles
from the complex signal. The method that is commonly
used in fatigue analysis is the rainflow counting procedure
described in Sutherland (1999).

The wind turbine simulation model at hand, Soltani et al.
(2010), can provide the tower bending moment and the
torsional torque of the shaft. In this work we use the dam-
age equivalent loads computed from those load histories.
This is a typical procedure for comparison between control
strategies, see e.g. Bossanyi (2003b) and Bossanyi (2005).
The DEL computation is performed by the MCrunch code
(see Buhl (2010)) with C = 1, Tf = 1, m = 4 for the
tower bending moment and m = 8 for the shaft moment.

2.2 Control design cost function

According to the previously described DEL is not a suit-
able load measure for use in the control design cost func-
tion. The rainflow counting algorithm is not analytic and
the function (3) is nonlinear. Therefore, the aim is to find
the cost function that is simpler, but which consequents
in the reduction of DEL. The DELs will be computed a-
posteriori to evaluate the control effects.

According to (3), the stress amplitudes enter the Palmgren-
Miner sum linearly, while the number of stress cycles enters
with the exponent 1

m . This means that the contribution
of the large cycles to the DEL is exponentially larger than
that of the small cycles (e.g. one cycle of the shaft moment
with the amplitude A contributes equally to DEL as 108

cycles of the amplitude A/10). Also, it should be noticed
that the frequency of the cycles does not influence the
damage equivalent loads.

Typically the oscillations of the wind turbine structures
comprise of high frequency components (contributed to
structure eigen-oscillations) and low frequency compo-
nents (contributed to external excitation of the wind tur-
bine subsystems). The low frequency components intro-
duce larger cycles, while eigen-oscillations are smaller (es-
pecially if the wind turbine controller is well-designed, see
Spudić et al. (2010)). The aim of the wind farm controller
design is to reduce the excitation of these modes. Thus the
largest cycles of the load histories can be reduced, which
would in turn reduce DEL.

The wind farm controller design presented in this paper
assumes that the 10-minute mean wind speed at each
of the turbines is known (estimated) and that an initial
distribution of wind turbine power references is known, i.e.,
a mean wind speed V 0 and the constant power reference
P 0

ref is attributed to every wind turbine. The distribution of
constant power references can be obtained by some simple

distribution (e.g. P 0
ref =

PWF
ref

NWT
, where PWF

ref is the wind
farm power reference and NWT is the number of wind
turbines in the wind farm) or this distribution can also
be optimised by taking into account the quasi-stationary
aerodynamics of the wind farm (interaction of wind farms
through wakes), see e.g. Spruce (1993). The mean wind
speed and the constant power reference determine the
wind turbine operating point. The cost function penalizes
the deviations from this operating point.

The chosen control design cost function is:

J(Pref(t), FT(t), Tshaft(t)) :=

:= rPe(t)
2 + qTshaft(t)

2 + qd

(
FT(t)

dt

)2

, (4)

where r, q and qd are the weighing coefficients, Pe denotes
the deviations in produced power, Tshaft denotes the low-
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frequency shaft torque deviations, and FT denotes the
deviations of the thrust force (which is the excitation for
the tower bending). The thrust force is penalized by its
derivation to prevent the drifting of the power reference
due to changes of the wind speed. Namely, the steady-state
thrust force is dependant on the wind speed (disturbance).
On the other hand, the steady state shaft torque depends
only on the power reference. Therefore, the shaft torque
deviation can be penalized by its absolute value.

3. CASE STUDIES

In this section the benefits of controlling the wind turbine
via power reference are assessed. The following question
is considered: can the wind turbine loads be reduced by
introducing the power reference deviations, Pref, via a
closed loop optimal controller? To answer this question
first a wind turbine is exposed to an artificial deterministic
disturbance and then to a disturbance characteristic for
wind turbine operation. The system response is compared
to the case when the constant reference is provided to the
system (i.e., the power reference deviations are zero).

To state an optimization problem the wind turbine model
is required. Here we use a discrete linear state-space model
of the wind turbine developed in Spudić et al. (2010):

x[t + 1] = Ax[t] + Bu[t] + Bdd[t],
y[t] = Cx[t] + Du[t] + Ddd[t],

(5)

where x :=
[
β, ωg, ω

filt
g

]′
(β is the pitch angle, ωg is the

generator speed and ωfilt
g is the filtered generator speed),

u = [Pref]
′
, d = [v], y = [FT, Tshaft]

′
and t denotes the

discrete time instant.

Based on the discretized cost function (4) and wind turbine
model, the wind turbine control problem is defined as
a Constrained Finite-Time Optimal Control (CFTOC)
problem (Borrelli et al. (2005)):

min
U

U ′RU + Y ′QY + Y ′
dQdYd

subject to

{
Y = Cx0 + DU + DdD,
EUU ≤ FU ,

(6)

where: x0 is the initial state of the system; N is the
prediction horizon; U is the optimization variable, U :=
[u′

1, . . . , u
′
N−1]

′; D is the vector of predicted disturbances,
D := [d′

0, d
′
1, . . . , d

′
N−1]

′; Y is the vector of predicted
outputs, Y := [y′

0, . . . , y
′
N−1]

′; Yd is the vector of predicted
output differences, Yd := [y′

0 − y′
−1, . . . , y

′
N−1 − y′

N−2]
′.

The matrices EU , FU define system constraints and C, D,
Dd describe the system evolution that can be obtained
from the wind turbine state-space model, see e.g., Ma-
ciejowski (2002). In this paper only the constraints on the
control variable are defined. The minimal power reference
is defined by generator properties, while the maximum is
defined by the nominal generator power or, at lower wind
speeds, by the available power.

The control weighing matrices are, according to (4), de-
fined as: R := diag (R, . . . , R), R ∈ R, R > 0 is the

control weight matrix; Q := diag

([
0 0
0 Q

]
, . . . ,

[
0 0
0 Q

])
,

Q ∈ R, Q ≥ 0, is the output weight matrix; and Qd :=

diag

([
Qd 0
0 0

]
, . . . ,

[
Qd 0
0 0

])
, Qd ∈ R, Qd ≥ 0, is the

output difference weight matrix.

The wind turbine states are not weighted in this control
problem because, as will be shown in the simulations,
the action of the controller designed according to (7)
stabilizes and improves the behavior of the overall system.
Further penalization of states therefore only complicates
the weight tuning.

The controller is designed as an on-line Model Predictive
Controller (MPC) that uses a sampling time of 1 second.
Every time instant the controller is fed with the current
state vector, x0, and, due to delta formulation, the output
(thrust force) from a previous time instant, y−1. All
states used in the model, as well as the thrust force, are
measurable or easily estimated.

In the following the case studies will be presented that
demonstrate the potentials of wind turbine control via a
wind farm controller. This case studies are for demonstra-
tion purpose, while the design of the wind farm controller
based on this will be demonstrated in the next section.

All case studies are performed on the full-scale nonlinear
wind turbine model from Soltani et al. (2010).

3.1 Deterministic input

The first case study tests the controller performance in
the case of a positive and negative step change of 2 m/s
in wind speed. The aim of this case study is to determine
the full potential of this type of the controller. Therefore,
the prediction horizon N = 10 is used, to make sure
that the entire transient is predicted, and the perfect
disturbance prediction is used, meaning that the controller
has the exact information about the wind speed in the next
10 seconds.

In the following experiments different weight settings are
used to demonstrate the trade-offs between the competing
objectives.

Reducing tower loads In this experiment Q is set to
zero in order to estimate the potential for minimizing
tower loads. The results of the experiments are depicted in
Figure 2. The first glimpse reveals that the controller has
a substantial ability to reduce the tower bending, however
at an extremely high control cost.

For weight ratio Qd/R = 1000 the tower deflection ampli-
tude during the positive wind step is reduced by more than
50%. This is achieved by the change in power of more than
2 MW. This large change in power is naturally followed by
a large increase in shaft torque. During the positive wind
step the control input ran into the constraint. This kind
of system behavior is not acceptable.

When the weight ratio is reduced to Qd/R = 100 the re-
duction in tower bending is around 10 %, which is achieved
by the maximal power deviation of around 750 kW. This
power deviation is still large and the shaft oscillations are
still much increased.

Introducing the power controller also improved behavior
of wind turbine states. There is less pitch action (with
weighting Qd/R = 1000 the pitch response is aperiodic,
while weighting Qd/R = 100 significantly reduces the
response overshoot). The overshoot of the rotor speed
is also reduced, the transient is less oscillatory and the
nominal speed is restored faster.
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Fig. 2. Deterministic disturbance - Reducing tower loads

One should notice that this controller relies very much on
the feed-forward control action (the large drop in control
variable before the positive step and the large increase
before the negative step). This is problematic because it
indicates that the inaccuracy in disturbance prediction
might lead to poor performance. The assumptions on the
perfect prediction will be weakened in the Section 3.2
where the realistic wind disturbance will be considered.

To conclude, this experiment reveals the potential for
alleviating the thrust-induced loads, however, the weight
that penalizes the thrust needs to be kept small to prevent
violent control and increase in shaft loads. It has to be kept
in mind that this type of disturbance is artificial and the
typical wind disturbance is less violent, so the behavior
of the controller can be expected to improve for different
scenarios.

Reducing shaft loads In this experiment Qd is set to
zero in order to estimate the potential for minimizing
shaft loads. The results of the experiments are depicted
in Figure 3. The simulation outputs demonstrate the
potential for shaft load reduction at a much smaller control
cost. The system response for weight ratio Q/R = 2 is
very satisfactory, the maximal power deviation is 200 kW,
while the amplitude of the slow frequency load cycles has
reduced significantly. The high frequency oscillations are
not additionally excited. The tower loads remain much the
same as in the case of constant reference. For the higher
weight ratio Q/R = 20 the response of the shaft torque
deteriorates because, due to more violent control actions,
the high frequency oscillations increase in amplitude. In
this case the low-frequency component of the shaft torque
(the only one modeled in the control design model) is still
reduced, however the overall response deteriorated due to
increased high-frequency oscillations.

Also in this case the response of the wind turbine states
is improved, the speed tracking is improved and the pitch
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Fig. 3. Deterministic disturbance - Reducing shaft loads

action is reduced. Also, there is no significant feed-forward
control action.

To conclude, this experiment demonstrates that there
exist an opportunity to improve the shaft loading at
a relatively small control effort. However, to asses the
benefits correctly it is necessary to apply the realistic
disturbance and compute the damage equivalent loads.

3.2 Turbulent wind

In reality the wind turbine is exposed to turbulent wind.
Turbulence can be described as a stochastic signal, by
its turbulence intensity and its spectrum. To properly
simulate the turbulence one needs to take into account
the frequency characteristics of the point-wise wind speed,
the spatial correlation of the wind, and the wind field
propagation that renders the time-wise correlation. In
order to obtain a realistic excitation of the wind turbine,
the turbulent wind speed for this case study is simulated
according to the turbulence model implemented in Soltani
et al. (2010). The turbulence intensity used in simulations
is 6%.

From the experiments with the deterministic disturbance
the weights Q/R = 2 and Qd/R = 30 are found satis-
factory and will be used in further simulations. In the
first simulation the assumption of perfect prediction of
disturbances is kept and the prediction horizon is N = 10.

The results of this simulation are given in Figure 4. The
Figure 5 shows the magnification of the response in order
to depict the fast scale dynamics. The simulation outputs
suggest that the variance of the shaft torque has been
reduced, while the high frequency shaft oscillation have
not been enhanced (apparent from the response detail
in Figure 5). The control action is in the acceptable
range (±150 kW) and there are no large jumps in the
control variable. The effects on the tower bending can
not be clearly assessed from the graphical depiction of the
responses.
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To asses the benefits of this control design one needs
to perform the damage equivalent load analysis, which
is reasonable since the applied disturbance (unlike the
deterministic one) actuates all the representative system
modes. The statistics (tower and shaft DELs and standard
deviations (STDs) of the pitch rate, rotor speed and
electrical power) of the simulation responses are given
in the second column (denoted Perfect prediction) of the
Table 2. The statistics are performed on the 500 second
simulation run. The statistics show that the shaft DEL has
reduced by 18%, while the tower DEL reduced by 4%. The

Table 1. Turbulent wind scenario statistics

Constant Perfect Persistence
reference prediction assumption

Tshaft DEL [Nrad] 7.6203 · 105 6.2449 · 105 6.7610 · 105

Mtow DEL [Nm] 6.5793 · 107 6.3153 · 107 6.4097 · 107

dβ/dt STD [◦/s] 0.8085 0.8027 0.7935
ωr STD [rad/s] 0.0162 0.0158 0.0156
Pe STD [kW] 4.2817 67.1112 45.3780

standard deviation of electrical power increased to 67 kW,
which is a reasonable value. This results demonstrate a
good trade-off between the increase in control effort and
decrease in the turbine loads. It is also important to notice
that the pitch angle activity is reduced and speed tracking
is improved. This shows that the added controller does not
compete with the wind turbine controller, but improves
the overall wind turbine behavior.

However, the assumption of the perfect wind prediction
in the horizon of 10 seconds is unrealistic. For the next
experiment this assumption is dropped and replaced by
the assumption that the wind speed estimated wind speed
at given time (d0) will be constant during the prediction
horizon. When this assumption is introduced it is not
sensible to keep such long prediction horizon. Namely, due
to relatively low frequency content of the turbulent wind
such assumption (commonly referred to as persistence as-
sumption) is valid for short horizons, however the valid-
ity severely deteriorates with increase of the prediction
horizon. By performing several simulations the prediction
horizon N = 3 was shown to provide the best results. The
statistics of the results are given in the third column of
the Table 1, denoted Persistence assumption.

The statistics show the expected decrease in performance
in comparison to the assumption of perfect prediction.
However, in comparison to simulation in which the power
reference is kept constant there is still significant improve-
ment, 11% improvement in shaft DEL and 3% reduction
in tower DEL. The reduction in tower damage is very
small, which can be contributed to the lack of feed-forward
action since the disturbances are not predicted. However,
in several simulation that were performed with different
excitations a small improvement in tower loads proved to
be consistent. The improvements in the shaft load are sig-
nificant and also consistent. The support to speed control
is evident in reduction of pitch action and improvement of
speed tracking.

4. WIND FARM CONTROL FOR LOAD
MINIMIZATION

In the previous section the case studies were shown that
demonstrate the potential for improvement in wind tur-
bine operation by controlling the power reference. Such
control of an individual turbine is doubtfully beneficial,
since the power production of the wind turbine is signifi-
cantly deteriorated. However, this type of control can be
used to control the clusters of wind turbines (i.e., wind
farms). The costs of the individual wind turbine control
problems (7) are summed together and the constraint is
added that has to ensure that the wind farm will deliver
the required power.

To formulate the control problem we assume that the
stationary power references, P j0

ref (where j is an index
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that denotes an individual wind turbine in the cluster),
are attributed to the wind turbines and that they add-up
to the exact amount of the wind farm power reference,∑NWT

j=1 P j0
ref = P ref

WF, where NWT denotes the number of

turbines in the wind farm and P ref
WF is the wind farm power

reference.

Then, we can define the simple wind farm optimal control
problem as:

min
U1,...,UNWT

NWT∑

j=1

U j′RU j + Y j′QY j + Y j′

d QdY
j
d

subject to





Yj = Cjxj
0 + DjU j + Dj

dD
j ,

Ej
UU j ≤ F j

U ,
NWT∑

j=1

[ 1 0 . . . 0 ] U j = 0

(7)

where j denotes the variables and parameters attributed
to the j-th wind turbine.

Essentially, this formulation allows only the control moves
that add-up to zero. This seems rather conservative, how-
ever, one has to consider the fact that wind turbines in
wind farms are relatively far apart and the turbulence that
they experience at a certain moment are not significantly
correlated. Therefore, the larger the controlled cluster gets
the turbulence effects tend to level out (i.e., loosely put,
there is a larger chance that there exists the turbine which
requires the complementary control).

Here, we present the results of the simulation of a small
wind farm consisting of only two wind turbines (statisti-
cally the worst case). The generated wind histories are not
correlated. The statistics of the run are given in Table 2.

Table 2. Wind farm controller statistics

Wind turbine 1
Const. ref. WF control

Tshaft DEL [Nrad] 7.6108 · 105 7.2495 · 105

Mtow DEL [Nm] 6.5696 · 107 6.5012 · 107

dβ/dt STD [◦/s] 0.8095 0.8035
ωr STD [rad/s] 0.0162 0.0158
Pe STD [kW] 4.2803 32.1285

Wind turbine 2
Const. ref. WF control

Tshaft DEL [Nrad] 8.1920 · 105 7.5618 · 105

Mtow DEL [Nm] 7.5716 · 107 7.4977 · 107

dβ/dt STD [◦/s] 0.7394 0.7300
ωr STD [rad/s] 0.0150 0.0148
Pe STD [kW] 4.6279 30.8181

Wind farm
Const. ref. WF control

PWF STD [kW] 6.4017 6.4193

The shaft DELs were reduced by 5% on the first wind
turbine and by 8% on the second wind turbine. The tower
DELs were reduced by 1% on both wind turbines. The
increase in standard deviation of the wind farm power
is negligible. The improvement in speed control is still
present. The overall (cumulative) percentage reduction of
loads in the wind farm is around the same level as for the
single controlled wind turbine.

5. CONCLUSION

The paper analyses the wind farm control problem and
gives an assessment of the potential for reduction of wind
turbine loads via power control of wind turbines. It is
shown that the significant reduction of shaft loads can
be obtained, while the potential for reduction of thrust
induced loads is smaller.

Most importantly, it is demonstrated that it is possible to
achieve reduction in loads without deteriorating any of the
operating conditions – the wind farm power is maintained
while all considered loads are reduced, the speed control
is improved and the pitch action is reduced. Therefore,
the wind farm can benefit from coordinated wind turbine
control.
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The contribution deals with the design and practical implementation of an advanced process 
control (APC) on the BGHT7 Desulphurization Unit at Slovnaft, Bratislava Refinery.  
 
First, the process and operation of the BGHT7 Desulfurization Unit is briefly described, then the 
control objectives are introduced, and finally, design and implementation of multivariable 
predictive control solution is presented. 
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Abstract:  This paper presents Laboratory for Renewable Energy Sources (LARES) at the Faculty of 
Electrical Engineering and Computing, University of Zagreb, Croatia. Laboratory consists of experimental 
setups for wind energy, solar energy and hydrogen fuel. The aim of LARES is development and 
experimental research of the advanced control strategies, in order to improve the energy conversion 
efficiency and thus increase the cost effectiveness of renewable energy sources. Focus of this paper is 
placed on the wind part of LARES and especially on mathematical model identification of the laboratory 
wind turbine. Obtained model is a basis for subsequent development of the wind turbine control 
algorithms. 

 

1. INTRODUCTION 

One of the main concerns of today’s civilization is electrical 
energy production. The society, the more developed it is, 
consumes more energy. Therefore, growth of human 
population and development of societies imply increased 
energy demand. This trend will surely be continued in the 
future. Current world energy production is still based on 
burning of fossil fuels which becomes more and more 
unacceptable, mainly because of the current levels of related 
CO2 emissions which cause ecological problems. On the 
other hand fossil fuel reserves will sooner or later be 
exhausted. In last two decades numerous international 
agreements and protocols have been signed, which oblige the 
signing countries to reduce the CO2 emissions. Thus, many 
governments are forced to subsidize development and 
building of the ecologically acceptable power plants. These 
are all reasons why investment in renewable energy sources 
have been growing rapidly in the last decade. EU members 
have set a goal that by the year of 2020 20% of total electrical 
energy production should come from renewable energy 
sources. According to the latest information from European 
Wind Energy Association (http://www.ewea.org/ 2011), this 
goal will be exceeded. Renewable energy source with the 
highest growth rate and potential for further development is 
the wind energy.  

However, renewable energy is still not rentable like energy 
obtained from classical sources (e.g. thermal  power plants). 
With the development of many new power plants based on 
renewable energy sources, one might rightfully raise a 
question about the energy conversion efficiency. The aim of 
the Laboratory for Renewable Energy Sources (LARES) on 
Faculty of Electrical Engineering, University of Zagreb 
(UNIZG-FER) is development and experimental research of 

the advanced control strategies, in order to improve the 
energy conversion efficiency and thus increase the cost 
effectiveness of the renewable energy sources. 

The paper is organized as follows. Section 2 describes 
LARES in whole and in Section 3 wind part of LARES is 
described in more detail. In Section 4 insight into the LARES 
wind turbine control system is given. Section 5 describes the 
wind turbine identification experiment and the identification 
results are given in Section 6. Conclusions are given in 
Section 7. 

2. DESCRIPTION OF THE LABORATORY 

LARES is placed on the top floor of the UNIZG-FER 
skyscraper and it consists of the following experimental 
units: 

• Wind turbine setup placed in the air chamber and driven 
by a fan; 

• An array of solar panels placed on the roof of the 
skyscraper (under construction); 

• Hydrogen fuel cells stack with metal hydride storage 
supplied by an electrolyser. 

Principle scheme of LARES is shown in Figure 1. From the 
scheme it is visible that the three main parts of LARES are 
actually connected in a microgrid. This microgrid 
conceptually operates as follows. Energy obtained from wind 
and sun is either transferred to the grid or it is used in an 
electrolyser in order to produce hydrogen which is then 
deposited in a metal hydride storage. In cases when energy 
from wind and sun is not sufficient, energy stored in 
hydrogen can be converted into electrical energy by using the 
fuel cells stack. The electrical energy is fed into the grid 
through properly controlled power converters.  
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Fig. 1. Principle scheme of LARES. 

The LARES configuration enables development and 
experimental research of control algorithms for each 
particular setup (wind, sun or hydrogen). The laboratory as a 
whole enables experimental research related to control of 
microgrids. 

Layout of LARES is shown in Figure 2, where solar panels 
are not shown, as they are placed on the top of the skyscraper 
(just above the laboratory which is on the top floor).  

 

Fig. 2. LARES layout. 

Focus of this paper is placed on the wind part of the 
laboratory, such that the rest of it relates only to the wind 
energy. In the following section a more detailed description 
of the wind turbine setup and of the air chamber is given. 

3. WIND TURBINE AND WIND CHAMBER 

Development and construction of the wind turbine setup was 
the most challenging task during the construction of the 
laboratory. The most important goal was the preservation of 
the aerodynamic relations present at MW-class wind turbines. 
The wind turbine setup design was initiated by extensive 
analysis and simulations in professional tools, where the 
basic requirements were (Perić et al. 2010): 

• Preservation of Betz assumption regarding energy 
transformation;  

• Fulfilling of dynamic, kinematic and geometry 
conditions; 

• Respecting of optimal tip-speed ratio for three bladed 
rotor. 

Laboratory wind turbine has rated power of 300 W and rated 
rotational speed of 240 rpm. Wind turbine setup is placed 
inside the wind chamber as shown in Figure 3.  

 

Fig. 3. Wind chamber layout. 

The fan is placed at the far end of the chamber such that, 
when the wind is produced, the particles of air first pass 
across the turbine and then across the fan. Fan is controlled 
over the frequency converter which allows various rotational 
speeds of the fan and thus various wind speeds inside the 
chamber. This enables research of the wind turbine operation 
in wind conditions which are close to natural, where wind is 
stochastic. 

Majority of the modern MW-class wind turbines are 
controlled by varying the generator torque and by pitching 
the rotor blades. This control structure was implemented on 
the laboratory wind turbine also. Since no commercially 
available  small wind turbine could be used, completely new 
design had to be developed. This design included:  

• 4-quadrant (4Q) frequency converter which is used for 
connecting the turbine synchronous generator to the 
grid; 

• Actuators for pitching the rotor blades around their 
longitudinal axis. 

4Q frequency converter allows electromagnetic torque of the 
turbine generator to be varied in a wide range which is used 
for control of the turbine rotational speed. Each of the three 
rotor blades has a DC servo drive which is used for pitching 
the blade around its longitudinal axis also for rotor speed 
control purposes. It is worth mentioning that laboratory 
turbine hub has a very limited space, so significant effort was 
needed to fit all of the components (servo motors, gearboxes, 
pitch controllers and blade position sensors). The issue of 
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control objectives and realization of the laboratory turbine 
control system is addressed in Section 4. 

MW-class wind turbines due to their large dimensions have a 
flexible tower with low modal frequencies. In order to obtain  
plausible laboratory turbine model, flexible tower had to be 
constructed, which was not an easy task, since this demand 
comprises structural stability of the laboratory turbine. 
Solution was found in the form of the stiff tower which is 
mounted on an oscillatory bed and connected with the rigid 
structure through the system of springs and dampers. There 
are various types of springs and dampers and they can be 
replaced in order to obtain different tower characteristics. 

Wind turbine and the wind chamber are also equipped with 
numerous sensors and instruments like: an array of 15 
anemometers, torque sensor, accelerometers, strain gauges, 
web camera, stroboscope and weather station.  

Realization of the wind turbine, the fan and the wind chamber 
is shown in Figure 4. 

 

Fig. 4. Wind turbine setup in LARES. 

Since aerodynamic relations present on the MW-class wind 
turbines were successfully transferred to the laboratory wind 
turbine and since all the means for controlling MW-class 
turbines were implemented on the laboratory turbine, it can 
be concluded that the design was successful and that the wind 
turbine setup can serve its primary purpose: development and 
research of the advanced control algorithms which can 
subsequently be implemented on the real, MW-class wind 
turbines.  

4. WIND TURBINE CONTROL SYSTEM 

Nonlinear relation between power in the wind and the wind 
speed (Jelavić et al. 2009) has resulted in modern wind 
turbines having two main operating regions: below rated 
wind speed and above rated wind speed. Rated wind speed is 
defined as the lowest wind speed at which wind turbine is 
operating at its rated power. 

Below rated wind speed power that can be extracted from the 
wind is smaller than the rated power of the wind turbine and 
the control objective in this region is to maximize energy 

conversion efficiency. Control is performed by adjusting the 
generator torque, while the pitch angle is kept around 
minimum value of 0o, such that the system operates along the 
maximum power coefficient curve (Jelavić et al. 2009). 
Controlling the generator torque is possible because modern 
generators are not connected to the grid directly, but over a 
frequency converter which allows generator speed to be 
varied in a wide range. Wind turbines with synchronous 
generator that is connected to the frequency converter of 
rated generator power are particularly suitable for such 
control strategy. The wind turbine setup in LARES is 
constructed such that it satisfies these characteristics. 

Above rated wind speed power that can be extracted from the 
wind grows rapidly with the wind speed and it is greater than 
the rated power of the wind turbine. Control objective in this 
region is to limit the turbine rotational speed on its rated 
value which implies that the wind turbine is operating at the 
rated power. This is the case because generator torque is kept 
at the rated value above rated wind speed. Control in this 
region is performed by pitching the rotor blades which 
changes aerodynamic characteristics of the blades in order to 
lower the energy conversion efficiency. This degradation is 
necessary as the wind turbine generator should not operate 
above its rated power. 

Explanation given above describes basic principles of 
classical control system for modern wind turbines, structure 
of which is shown in Figure 5. 

 

Fig. 5. Classical wind turbine control system. 

 

Fig. 6. Principle scheme of the wind turbine control system in 
LARES. 
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The laboratory wind turbine control system is based on 
platform LabVIEW (Laboratory Virtual Instrumentation 
Engineering Workbench) (National Instruments 2007), and it 
is implemented on a PC. All signal processing and control 
computational tasks are performed on a PC, while data 
acquisition and signal generation are performed on 
specialized input-output circuitry, produced also by National 
Instruments. Principle scheme of the laboratory wind turbine 
control system is shown in Figure 6.  

The equipment for signal generation and acquisition can be 
divided into two groups: 

• PXI-1033 chassis which is used for communication 
between the PC and the input-output modules; 

• cRIO-9014 controller used for blade pitch angle 
measurement. 

PXI-1033 chassis contains 4 modules over which various 
analog and digital signals are measured and generated. Some 
of the most important signals are: analog output signals for 
defining the fan speed and generator electromagnetic torque, 
analog input signals of measured generator speed and rotor 
position, output PWM signals for pitching of each of the 
turbine blades, digital output signals for starting the fan and 
the generator, digital input signals which indicate state of the 
plant (fan works, generator ready…) etc. 

cRIO-9014 is mounted in the turbine rotor together with 3 
potentiometer sensors for measuring blade pitch angles. cRIO 
consists of modules which are programmed to periodically 
collect the measured data and send it to PC by a WLAN 
protocol. 

Configuration of the laboratory wind turbine control system 
allows both classical and advanced control strategies to be 
implemented and tested. Wind turbine and wind farm control 
has been one of the main research interests at UNIZG-FER 
for past ten years. In this period many advanced wind turbine 
control and estimation algorithms have been developed or 
upgraded. For instance, one such algorithm is individual 
blade pitch control which can significantly reduce the 
mechanical loads on the turbine construction (Jelavić et al. 
2008). So far these algorithms have been tested using 
professional simulation tools such as GH Bladed (Jelavić et 
al. 2008, 2009). Now these algorithms can be tested on a 
laboratory turbine where all the problems present in real 
systems can be considered. This is one step closer to the final 
goal which is implementation of the advanced control 
algorithms on real MW-class wind turbines.  

5. IDENTIFICATION PROCEDURE 

Basis for designing a control system is a reliable 
mathematical model of a process that is to be controlled. One 
way of obtaining a mathematical model is theoretical analysis 
and setting the equations which describe behavior of the 
process (e.g. equations of energy and momentum balance). 
Such a model of a laboratory wind turbine has already been 
obtained (Jelavić et al. 2009) and it has been used for design 
of various control algorithms and for testing of these 
algorithms in simulations. However, when it comes to real, 
practical systems a more reliable mathematical model may be 

obtained by process identification. Process identification is 
another way of obtaining a mathematical model, which is 
based on processing and analysis of input/output data 
obtained on the real process. Identification of the laboratory 
wind turbine mathematical model is described in the sequel.  

It has been decided to use a parametric method of 
identification and to search for a mathematical model in a 
state-space form, since this form is appropriate for 
subsequent advanced control system design. Also, the state-
space model form is a good choice for identification of 
processes with unknown structure, because it requires only 
two parameters: model order and input delays (MathWorks 
2010). Since the process is nonlinear (Jelavić et al. 2009) it 
cannot be described with a single linear mathematical model. 
Therefore, identification is performed in 4 operating points 
which are defined by the wind speed. For each operating 
point a linear mathematical model in state-space form is 
obtained. Inputs to the system are wind speed (kept constant 
for a certain operating point), generator torque and pitch 
angle, while the output is turbine rotational speed, as shown 
in Figure 5.  

Identification is performed in 2 operating points below rated 
wind speed and in 2 operating points above rated wind speed.  
Transfer function (1) is obtained below rated and transfer 
function (2) above rated. This is reasonable since in classical 
control configuration generator torque and pitch angle are 
solely used for control in operating regions below and above 
rated wind speed, respectively (see Section 4). 
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Identification procedure includes the following steps: 
1. Gathering of a-priori knowledge and information about 

the process; 
2. Selection of the input test signal; 
3. Imposing the test signal to the system and measurement 

of the input/output signals; 
4. Obtaining mathematical model by processing of the 

recorded input/output data with the identification 
software; 

5. Validation of the obtained mathematical model. 

In the sequel these steps are described in more detail. 

Step 1. 

A-priori knowledge about the wind turbine process is 
gathered from a theoretically obtained nonlinear 
mathematical model. This model was previously obtained for 
the MW-class wind turbine (Jelavić et al. 2009) and it was 
subsequently adjusted to suit the laboratory turbine. The 
model is implemented both in Matlab and LabVIEW. By 
simulations of this model important information are obtained 
which are primarily used for selecting the test signal 
parameters. This is described in the following step. 
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Step 2. 

Parametric identification is based on processing of the 
measured input/output data of the observed system. 
Therefore, selection of the proper input test signal is very 
important. In theory white noise is a very good test signal 
because it excites all the frequency modes of the system. This 
is important, because the resulting model should contain all 
of the system’s important dynamics. Since white noise cannot 
be physically realized, for linear model identification PRBS 
(Pseudo Random Binary Sequence) is used instead. PRBS is 
a signal which has similar characteristics to the white noise. It 
is a rectangular signal of various width. It can take on only 
two values (binary) which change pseudo-randomly (pseudo 
random) at multiples of the sampling time. The pseudo 
random signal sequence repeats several times. PRBS signal 
was realized in LabVIEW by using shift register and an 
“exclusive OR” function. 

Selection of PRBS parameters is vital for identification. 
Parameters that are to be selected are: c – amplitude, ∆t – 
clock time (minimum length between signal changes) and N – 
number of clock times in a single period. Example of a PRBS 
signal is shown in Figure 7. 

 

Fig. 7. Example of a PRBS signal – single period. 

Following guidelines for determining parameters of a PRBS 
signal were taken from (Perić et al. 2005). Amplitude c is 
chosen depending on the process characteristics. It must be 
neither too small (because signal/noise ratio would then be 
too small) nor too large (because system can drift away from 
its operating point or nonlinear effects may be pronounced in 
responses). Clock time is chosen as approximately 1/5 of the 
smallest dominant system time-constant. N is chosen so that 
PRBS period T defined in (3) has a value about 50% larger 
than the system’s impulse response settling time (t95). 
Approximate relation is given in (4). 

 T N t= ⋅∆    (3) 

 951.5T t≈ ⋅    (4) 

Number of repetitions of a PRBS signal is bounded by the 
allowed measurement time which is given by relation: 

 MT M T= ⋅ ,   (5) 

where M is the number of PRBS signal periods used in 
identification. Larger M is required for better signal/noise 
ratio. 

Another important parameter for identification is sample time 
TS. Sample time can be determined from the following 
empiric relation: 

 63

1 1

6 10ST t
 = ÷ ⋅ 
 

,   (6) 

where t63 relates to the system’s step response rise time. 
When determining sample time one should bear in mind that 
Nyquist-Shannon sampling theorem must be satisfied for 
higher resonant frequencies. This can be controlled by 
determining frequency characteristics of the system, as 
described in (Brestovec 2005). It should be pointed out that 
the just mentioned frequency characteristics, as well as the 
impulse and step responses (for information about t95 and t63) 
are determined from a theoretical mathematical model (this is 
the required a-priori knowledge about the system, which was 
mentioned in Step 1). 

Step 3. 

System must be brought to the desired operating point in 
closed-loop control. Once the system reaches the steady-state 
controllers are turned off and the test PRBS signal is imposed 
to the system input (torque or pitch reference depending on 
the operating point). During the experiment system output 
(turbine rotational speed) is recorded. Note that the 
identification is performed with control loop open 
(controllers are turned off during the identification data 
collection). 

Step 4. 

After the experiment is finished sets of the recorded 
input/output data are forwarded to the identification software. 
In this case Matlab’s SIT (System Identification Toolbox) was 
used. SIT was configured to use parametric identification 
procedure shown in Figure 8. 

  

Fig. 8. Principle scheme of parametric identification 
procedure. 

In the parametric identification procedure optimization 
methods are used to vary the set of model parameters, in 
order to minimize the difference between the model output 
and the measured output. Model order (and thus the number 
of model parameters) can be defined by the user.  
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Step 5. 

After the model has been obtained it is validated on the set of 
data which is different from the one used for identification. 
Usually a step response is used for validation of the identified 
models. However, since our laboratory wind turbine setup is 
extremely sensitive to disturbances in the form of outer wind, 
it was impossible to obtain reliable, repeatable step responses 
on a real system. Therefore, data obtained during 
identification experiment was simply split in half, so that one 
half was used for identification (Step 4) and the other half for 
validation. 

6. RESULTS  

Before conducting the experiment on a real system, 
identification was carried out on a theoretically obtained 
mathematical model implemented on a LabVIEW platform. 
This was very useful to get acquainted with the steps of the 
identification procedure and the obtained results were very 
good (not shown in this paper). 

After successful identification of the LabVIEW model, 
experiments on the real system could begin. It is worth 
mentioning that although transfer function from wind speed 
to turbine rotational speed, given by (7), would be very useful 
for predictive control system design, it could not be identified 
because of the fan protection system. Namely, a ramp filter 
has been put on the fan speed reference, so that the fan motor 
is protected from sudden speed changes. Therefore, it is not 
possible to produce the wind speed in the form of a PRBS 
signal. 

 ( )
( )

( )v
wind

z
G z

v z

ω=  (7) 

During the experiment significant effort was needed to bring 
the system to the desired operating point and especially to 
achieve that the system does not drift away from the 
operating point once the controllers are turned off and the 
PRBS signal is imposed on the system inputs. The reason for 
this lies in nonlinearity of the system and also in a fact that 
the system is very sensitive to outer wind speed (wind that 
normally blows in the surroundings) and on rare occasions 
was the weather completely steady. Solution has been found 
in experimenting with PRBS parameters until the system was 
able to stay around the desired operating point long enough to 
record enough data, i.e. to achieve at least M=5 in relation  
(5). Although PRBS parameters were found by trial-and-error 
method, their initial value was determined from the 
recommendations given in Section 5 (Step 2). Specific 
parameters of the used PRBS signals will be given in the 
sequel for each particular operating point.  

Sample time has also been determined along the guidelines 
from Section 5. It is fixed, i.e. it does not change with the 
operating point and it amounts 20 ms. It is also worth noting 
that all the identification experiments were conducted with 
stiff laboratory turbine tower, because the system of springs 
and dampers, which allows tower oscillations, was not yet 
fully functional at the time of experiments. 

All identified linear state-space models are given in the 
following discrete-time form: 

 ( 1) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

x k A x k B u k K e k

y k C x k D u k e k

+ = ⋅ + ⋅ + ⋅
= ⋅ + ⋅ +

 (8) 

Here x(k) is a state vector. Dimension of x(k) corresponds to 
the model order. u(k) and y(k) are system input and output 
respectively.  K is a matrix which models influence of the 
noise to the system and e(k) is process noise (white noise 
which is generated and used by the identification software). A, 
B, C and D are standard matrices used in the state-space form.  

Free parameterization of the state-space matrices was used, 
which means that any elements in the matrices are adjustable 
by identification algorithm. Therefore, a basis for the state-
space realization is automatically selected to give well-
conditioned calculations (MathWorks 2010).   

Based on the obtained input-output data, models were also 
identified in parametric forms other than state-space, e.g. 
ARX, ARMAX, BJ and OE. Identified models of different 
forms were mutually compared by validation and they all gave 
similar results (not shown in this paper). 

Identification results for each of the 4 operating points are 
presented in the sequel. Since state-space models were 
identified results are presented in the form of state-space 
matrices, but also in the form of corresponding transfer 
functions. Models presented in Subsections 6.1 and 6.2 
correspond to the transfer function (1), while models in 6.3 
and 6.4 correspond to (2) (see Figure 5). For every operating 
point two figures are given. First one displays recorded input-
output data, while the second one displays validation results. 
In all the figures mean values of the signals have been 
removed, but they are given in tables along with PRBS 
parameters used. Models of different orders were obtained and 
the ones that gave the lowest deviation from the real system 
are displayed. It is worth noting that responses of three 
identified models in Figure 10 overlap. By plotting pole/zero 
maps (not shown), it has been found that all the identified 
models are stable. It can be concluded that satisfactory results 
have been obtained, despite all the problems that are always 
present on real systems, e.g. nonlinearities, measurement 
noise, sensitivity to disturbances etc.  

Additionally, pitch servo drive identification has been 
performed and the results are given in Subsection 6.5. In 
Figure 18 responses of the real pitch servo drive and the 
identified model are compared. The model describes the real 
system satisfactory and matching of the responses is good. 

It should be pointed out that the identified models from 
Subsections 6.3 and 6.4 include the dynamics of the pitch 
servo drive. Since model (15) has order 3 and the pitch servo 
drive (17) has order 2, it can be argued how can the remaining 
part of the system (from β to ω, see Figure 5) be modeled with 
only first order. From (Jelavić et al. 2009) it can be seen that 
this is reasonable because the identification has been 
performed with the stiff tower.  
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6.1 Identification of GT(z) with vwind = 7 m/s 

Values of the process 
variables  

PRBS parameters 

Tmean = 3.5 Nm c = 0.8 Nm 
βmean = 0o (const) N = 16 
ωmean = 183 rpm ∆t = 1 s 

Table 1. Identification parameters for vwind = 7 m/s. 
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Fig. 9. Output and input signals for vwind = 7 m/s. 
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Fig. 10. Turbine rotational speed responses for vwind = 7 m/s. 

Identified 3rd order state-space model of structure (8) reads: 
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Corresponding transfer function reads: 

 
1 2 3

1 1 2 3
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( ) .
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z z z
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 (10) 

6.2 Identification of GT(z) with vwind = 9 m/s 

Values of the process 
variables  

PRBS parameters 

Tmean = 4.9 Nm c = 0.8 Nm 
βmean = 0o (const) N = 16 
ωmean = 213 rpm ∆t = 1 s 

Table 2. Identification parameters for vwind = 9 m/s. 
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Fig. 11. Output and input signals for vwind = 9 m/s. 
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Fig. 12. Turbine rotational speed responses for vwind = 9 m/s. 

Identified 4th order state-space model of structure (8) reads: 
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Corresponding transfer function reads: 

 
1 2 3 4
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 (12) 
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6.3 Identification of Gβ(z) with vwind = 11 m/s 

Values of the process 
variables  

PRBS parameters 

Tmean = 6.8 Nm (const) c = 2o 
βmean = 5.6o  N = 32 
ωmean = 240 rpm ∆t = 2 s 

Table 3. Identification parameters for vwind = 11 m/s. 
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Fig. 13. Output and input signals for vwind = 11 m/s. 
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Fig. 14. Turbine rotational speed responses for vwind = 11 m/s. 

Identified 4th order state-space model of structure (8) reads: 
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Corresponding transfer function reads:  
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6.4 Identification of Gβ(z) with vwind = 13 m/s 

Values of the process 
variables  

PRBS parameters 

Tmean = 6.8 Nm (const) c = 2o 
βmean = 10.7o  N = 32 
ωmean = 240 rpm ∆t = 2 s 

Table 4. Identification parameters for vwind = 13 m/s. 
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Fig. 15. Output and input signals for vwind = 13 m/s. 
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Fig. 16. Turbine rotational speed responses for vwind = 13 m/s. 

Identified 3rd order state-space model of structure (8) reads: 
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Corresponding transfer function reads:  
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6.5 Identification of the pitch servo drive 

Task of the pitch servo drive is to position the rotor blades 
into the angular position required by the outer loop (see 
Figure 5). Dynamics of the pitch servo drive does not depend 
on the operating point (wind speed) and it turns out that it can 
be described by a second-order transfer function. Input-
output data are shown in Figure 17. These data were recorded 
during identification experiment described in Subsection 6.4. 
Therefore all the parameters of the experiment are given in 
Table 4. above. 
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Fig. 17. Output and input signals of the pitch servo drive. 
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Fig. 18. Pitch servo drive responses. 

Identified transfer function of the pitch servo drive is: 
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7. CONCLUSION  

Laboratory for Renewable Energy Sources on Faculty of 
Electrical Engineering and Computing, University of Zagreb 
enables experimental research and development of various 
advanced control algorithms for renewable energy sources. 
These algorithms can be used to enhance the electrical energy 
production from wind, sun and hydrogen, but also to reduce 
losses in a process of producing hydrogen which is used for 
storing energy.  

Laboratory wind turbine setup, which has all the important 
characteristics of the modern MW-class wind turbines, is 
described. Identification of the laboratory wind turbine 
mathematical model has been performed and satisfactory 
results have been obtained. Reliable mathematical model of a 
process is a basis for successful control system design. 
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Abstract: The main source of errors for airship navigation is that the airship body is not solid. For this 
reason a standard fixed calibration for a navigation system is not the best solution. This article provides an 
overview of the proposed navigation system for airships with compensation of errors due to resilience. 

 

1. INTRODUCTION 

Navigation systems and flight control are basic equipments of 
unmanned aerial systems (UAS). For modeling of the 
navigation system (see references) it is necessary to select 
appropriate coordinate systems and to select description 
methods for body orientation. The next step is to apply 
transformations between coordinate frames, and to relate 
them to kinematics and dynamics theory. Stability and 
reliability of the navigation system can be achieved by 
combining the on-board IMU (Inertial Measurement Unit) 
with external observation units such as GPS (Global 
Positioning System), barometric and magneto-compass units.  

The proposed model of airship navigation uses coordinate 
systems like ECEF (Earth-Centered-Earth-Fixed) and NED 
(North-East-Down). For the description of the airship’s 
orientation Euler angles as well as roll, pitch, and yaw are 
used. All measured data are joined together by a special type 
of direct Kalman filter. This filter and the strapdown 
modification are designed in such a way that together with 
other measurement units it is possible to compensate the 
problem, which is caused by the non-solid body of airships. 
Navigation systems implemented on airships show 
characteristic errors due to this fact. The following facts can 
be considered as sources of these errors: an airship body 
changes its shape depending on several parameters, e.g. the 
helium pressure in the hull; the ambient temperature; relative 
position of inner and outer hull; aerodynamic forces. The 
shape changes are in general nonlinear. For these reasons a 
fixed calibration for navigation system is not the optimal 
solution. This article provides an overview of the proposed 
navigation system for the airship which compensates the 
aforementioned errors. 

The development of the airship navigation algorithm was 
carried out in the programming environment Matlab-
Simulink. The toolboxes used are “Target Support Package” 
and “Code Composer Studio” was designed Simulink-
scheme, which is algorithm interpretation of the airship 
model navigation. This Simulink-scheme can be transferred 
as program code into the microprocessor TMS320F28335, 
which together with sensors of the IMU (Inertial 
Measurement Unit), barometric unit, GPS, and magneto-

compass are core of the navigation system (http://prt.fernuni-
hagen.de/ARCHIV/2010/fernsehen_2010.html, 
http://www.derwesten.de/staedte/hagen/FernUni-Luftschiff-
auf-Minensuche-id2359263.html). 

 

Fig. 1. Electronic board of the navigation system (design by      
Dr.-Ing. Ivan Masár*). 

 

Fig. 2. Airship photo with selected area for storing of the 
navigation system (two hulls, length 9m, diameter 2,5m, 
volume 27m3 ). 

The article is structured as follows: In chapter 2, the basic 
scheme of the navigation algorithm is shown. In chapters 3-7,   
the essential parts of the navigation algorithm are described 
in detail. In the final chapter 8, conclusions and results are 
given. 
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2. BASIC SCHEME 

 

Fig. 3. Basic scheme of the navigation algorithm. 

At the beginning it is necessary to divide the input navigation 
data into two groups. The first group represents data from the 
IMU. The second group represents data from other sensors.  

From the IMU (strapdown platform), it is possible to load 
data such as acceleration and angular velocity of rotation.                 
The advantage of these data is that they may be available at 
high sampling rates with relatively high sensitivity and 
accuracy. The disadvantage of these data is, that velocity, 

position or orientation determined by direct time integration 
are loaded with error, which in time always increases. 

A second group is represented by data from GPS, barometer, 
and magneto-compass. The advantage of these data is, that 
the error with which they are loaded is not dependent on 
time. The disadvantage of these data is that they often show  
less accuracy, sensitivity, and their availability with a smaller 
sampling rate. Advantages of both groups can be obtained by 
some form of Kalman filter. 

3. SIGNALS AND BLOCKS 

In Fig. 3, all inputs into the navigation algorithm are marked  
green. These are signals, which are directly necessary for the 
navigation algorithm. Output signals are marked in orange. 
Algorithms which use pre-filter based on Kalman filter are 
marked in gray. Algorithms which use direct Kalman filters 
are marked in blue. Other blocks in which partial calculations 
are carried out are marked with yellow or white. The 
argument B represents the body frame and the argument N 
represents the navigation frame. Both frames have orientation 
as NED coordination system. 

4. ALGORITHMS WITH KALMAN PRE-FILTER 

In Fig. 3, two blocks are using Kalman pre-filters: “KP- 
IMU&R” and “KP-GPS”. Block “KP-IMU&R” processes 
two types of data: direct data from the IMU, which are 
represented by the body acceleration )B(a  and the body 

angular velocity )B(ω , and data from the magneto-compass 

(angle yaw Rγ ) and barometer ( MSLh  – height above mean 

sea level). Task of this block is to make Kalman signal pre-
filtering. By this pre-filter also the value of angular 

acceleration 
dt

d )B(ω
 is calculated. 

Block “KP-GPS” processes data from GPS and strapdown 
algorithm.  This block calculates the following values: MSLh , 

position and velocity in the navigation frame N, the 
difference between the height of the reference ellipsoid 

REh and MSLh , and the ECEF reference point which defines 

zero of the navigation frame N. These parameters are 
calculated using Kalman filtering. The ratio between  the 
covariance matrix of process noise and the covariance matrix 
of measurement noise is dependent on the total translational 
acceleration of the body in the navigation frame N )N(:Sd Ta  

determined by strapdown algorithm. 

5. ALGORITHMS WITH DIRECT KALMAN FILTER 

In Fig. 3, three blocks are applying direct Kalman filters: 
“DKF-EA”, “DKF-hMSL”, and  “DKF-Triplet”. 

Block “DKF-EA” processes two types of data: 

- data from the IMU as total acceleration )B(a and angular 

velocity of rotation )B(ω ; 
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- reference data about the azimuth Rγ  from the          

magneto-compass. 

In this block, reference values of Euler angles are computed 
based on the azimuth from the magneto-compass and 
acceleration values from the accelerometer. These reference 
values of Euler angles are used for estimation of the real 
Euler angles using a direct Kalman filter. The mathematical 
model of the direct Kalman filter is divided into two parts: 

- direct computation of Euler angles using the RM (rotation 
matrix) with respect to the sequence of rotation roll, pitch, 
and yaw; 

- computation of Euler angles using quaternions. 

For smaller values of Euler angles, direct computation using 
the rotation matrix is considered. For larger values of Euler 
angles, computing over quaternions is applied.  

The direct Kalman filter works as follows: if reference data in 
the actual sample time interval are not known, the filter 
performs angular velocity integration, resulting in Euler 
angles or quaternions. If reference data in the actual sample 
time interval are known, the filter performs estimation and 
computed offset of angular velocity. This offset of angular 
velocity is then subtracted of the angular velocity 

)B()B()B( offsetO ωωω −= .  

Block “DKF-hMSL” processes two types of data: 

- height above mean sea level from barometer )baro(MSLh ; 

- height above mean sea level from GPS )GPS(MSLh  

In this case, )GPS(MSLh is the reference signal. The reason is, 

that GPS can operate in several modes (for example 
differential GPS). The accuracy of )GPS(MSLh  is generally 

dependent on many factors. For this reason auxiliary 
variables as ERR3D  (3D position error), SN (number of the 

satellites) and GPS2BS ( )baro(MSLh  value is replaced by 

)GPS(MSLh  value with respect to weight of both values) are 

used. According to the value of the logical variable BGPSS 2  

the direct Kalman filter can perform the estimation. If the 
estimation, then the direct Kalman filter carried out 
determines also the offset offsetMSL,h , which is subtracted of 

the )baro(MSLh . The result offsetMSL,MSL )baro( hhd −=  is 

then subsequently subtracted from the reference refMSL,h . 

refMSL,h  corresponds with the ECEF reference point. 

The final result from this block is then an estimated value 

offsetMSL,MSLrefMSL,refMSL, )baro( hhhdhD +−=−= . 

Under certain assumptions, this value of D may replace          
the D value in navigation frame N computed by GPS. The 
advantage of this method is that the value of D is known from 
barometric measurements even if no GPS signal is available. 

This method divides one position vector in the navigation 
frame N into two independent parts: part NE and part D. 

Block “DKF-Triplet” processes three types of data: 

- translational acceleration )N(Ta computed from strapdown 

algorithm; 

- velocity in navigation frame N )N(v from GPS; 

- position in the navigation frame N obtained as combination 
of elements NE of the position vector N from GPS with 
element D from “DKF-hMSL” block. 

This block uses a direct Kalman filter as estimator in the 
following cases: 

- in the current sampling period a reference vector NED or 
only NE of the position in frame N is known, or 

- in the current sampling period a reference vector of the 
translational velocity from GPS )N(Tv  is known, or 

- in the current sampling period only a reference value D as 
one element from position vector in navigation frame N is 
known. 

If in the current sampling period no reference value of the 
position in frame N as N or E or D, or )N(Tv  is known, the 

direct Kalman filter works as integrator for translational 
acceleration )N(:Sd Ta from the strapdown algorithm. If the 

direct Kalman filter works as estimator, then it computes also 
the acceleration offset )N(offsetT,a , with   

)N()N()N( offsetT,TTO aaa −= . 

6. STRAPDOWN ALGORITHM 

The mathematical model of the strapdown algorithm, which        
is used for airship navigation purpose, expresses the 
following relationship 

( ) )B()B()B()B()B(

)B()B(
)B(

)B(

RTIMU

TIMU

aagRωω

vωR
ω

a

++−××+

+×+×=
dt

d

 

where  

)B(a  is the measured acceleration vector; )B(Tv  is the 

translational velocity vector of the body; IMUR  is the IMU 

position on the body of the turn-point, )B(g is the gravitation 

vector in the body frame,  )B(Ta  is the translational vector of 

the body; )B(Ra is the residual acceleration vector of others 

forces in the body frame which are not include in the 
strapdown algorithm. 

In this case in the strapdown algorithm is 0)B( =Ra , 

because errors of unmodeling acceleration are solving by 
)B(offsetω , offsetMSL,h  and )N(offsetT,a . The reason why it is 

possible to accept this assumption is,that all errors caused by 
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this assumption are small in relation to  errors caused by the 
behaviour of the airship body hull. 

In case of 0)B( =Ra , the strapdown equation is the equation 

of the  „Flat Earth Navigator“. 

In the strapdown block there is also the computation of 
( )N)GPS()B( RωO × , which defines the transformation          

to the navigation frame N with )GPS(R  as GPS  antenna  

position on the airship body of the airship turn-point. This 
part is necessary to subtract of the )N(Tv obtained from GPS 

reciever. 

Main output from the strapdown algorithm is the translational 
acceleration in the navigation frame N: )N(Ta . 

7. OTHER BLOCKS 

In the ‘other’ blocks of the algorithm (see figure 3), auxiliary 
inputs and characteristic outputs of the navigation algorithm 
are calculated.  

The clocks for magneto-compass, barometer, and GPS are 
used as auxiliary inputs. The logical value of these signals is 
ONE if magneto-compass, barometer, or GPS have an actual 
value in the actual sample time. This is important for decision 
of the Kalman filtering. 

The following parameters are outputs from the navigation 
algorithm: 

- roll, pitch, and yaw angles; 

- the angular velocity )B(Oω  or )N(Oω , adjusted by the 

angular velocity offset )B(offsetω ; 

- the translational acceleration from the strapdown algorithm 
)N(:Sd Ta ; 

- the translational acceleration )N(Ta  which is result with 

respect to all measurement units and which is adjusted by 
offset )N(offsetT,a ; 

- the translational velocity )N(Tv ; 

- the position )N(pos ; 

- the height above mean sea level MSLh ; 

- the height above the reference ellipsoid REh ; 

- the ECEF reference point 

8. CONCLUSIONS AND RESULTS 

To show the results, a comparison of a commercial 
navigation system with a system that was developed at our 
department is accomplished. The latter is used as one part this 
algorithm (the full mathematical model of the navigation 
algorithm can not be presented here due to limited space). For 
this comparison we used a commercial navigation system in  

the price range of 4000 €. For a comparison, 25 journeys by 
car were made. The mounting of both navigation systems 
were done in a way that the conditions were as similar as 
possible as on an airship hull (see figure 4). 

Both navigation systems are mounted on a special fixture 
which is placed in the trunk of a car. This fixture consists of a 
top platform, a lower platform, and four foam springs. The 
navigation systems are mounted on the top platform. The 
lower platform is based in the trunk. When the car is running, 
the springs cause movements of the top platform contrary to 
the movement of the car. This is the main objective of the 
fixture. This mechanism emulates an airship with 
implemented navigation system. The airship hull is a non- 
solid body with spring effects. Another reason why the 
comparison was done on the car is, that at the time of article 
writing our navigation system did not offer a DGPS mode. 
Driving a car and matching with Google maps is an 
alternative strategy. 

 

Fig. 4. Fixture of the navigation systems in the car. 

Figures 5 and 6 show Google maps with plotted averaged 
paths (from 25 journeys by car) obtained from the navigation 
system. The real paths are driven with respect to the traffic 
rules. In figures 5 and 6, two characteristic points are marked. 
Point 1 is located at traffic lights. Point 2 is a parking 
position. From figures 5 and 6, it is easy to see that if the car 
stopped the navigation algorithm begins "walking". This is 
caused by the GPS data, which are obtained in normal user 
mode. If the body is in motion, it is possible to eliminate this 
“walking” of the GPS by taking into account the orientation 
of the body (car). 

The precision of the proposed navigation system on the 
defined path is better than the commercial navigation system 
(4000 €) about from 0,5 to 2,5m. 
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Fig. 5. Reference navigation system (commercial). 

 

 

 

Fig. 6. Proposed navigation system. 
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Abstract: The subject of this paper is to design robust decentralized PID controllers for the 3Dcrane to 
stabilize motion of the cart along axes-x, axes-y using the Small Gain Theorem, and Parameter Dependent 
Lyapunov Functional (PDLF) in time domain. The obtained results were evaluated and verified in the 
Matlab simulink and on the real model of the 3DCrane.  

Keywords: decentralized control, PID controller, Parameter Dependent Lyapunov Functional (PDLF) 



1. INTRODUCTION 

The industrial crane model 3DCrane is one of the real 
processes built for control education and research at 
Department of Information Engineering and Process Control. 
The 3DCrane is a nonlinear electromechanical MIMO system 
having a complex dynamic behavior and creating challenging 
control problems as nonlinear, interactions between 
subsystems corresponding to motion of cart along the axes-x 
and axes-y, length of the payload lift-line dynamic changed 
… The technical equipments allow us to realize control crane 
by classical and advanced control method (INTECO Ltd.: 
3DCrane User’s manual). 

The main aim of paper is to use knowledge of multivariable 
(Multi Input and Multi Output) system and stabilization of 
decentralized control systems (Zhining et al. 1997), 
knowledge about robust control of linear systems in the 
frequency domain (Veselý et al. 2006) and in the time 
domain to design robust PID/PD decentralized controllers 
stabilizing the cart motion process of 3DCrane along the both 
axis x/y with the different length of the payload lift-line 
(robust stability). Furthermore, the resulting feedback control 
system with designed controllers must satisfy robust 
performance conditions for tracking the desired position of 
the cart. 

2. OVERVIEW OF THE 3DCRANE SYSTEM WITH 
ARTIFICAL INTERACTION 

The 3DCrane system is a nonlinear electromechanical system 
having a complex dynamic behavior and creating challenging 
control problem. It is controlled from PC. Therefore it is 
delivered with hardware and software which can be easily 
mounted and installed in a laboratory. You obtain the 
mechanical unit together with the power supply and interface 
to the PC and the dedicated digital board configured in the 
Xilinx technology. The software operates under MS 
Windows using MATLAB and RTW toolbox package. 

The 3DCrane setup (see Fig.1) consists of a payload hanging 
on a pendulum-like lift-line wound by a motor mounted on a 
cart. The payload is lifted and lowered in the z direction. 
Both the rail and the cart are capable of horizontal motion in 
the x direction. The cart is capable of horizontal motion along 
the rail in the y direction. Therefore the payload attached to 
the end of the lift-line can move freely in three dimensions.  

The 3DCrane is driven by three DC motors. There are five 
identical measuring encoders measuring five state variables: 
the cart coordinates on the horizontal plane, the lift-line 
length, and two deviation angles of the payload. 

 

Fig.1. The 3DCrane setup 

In the original model, there is no interaction between 
subsystems, and thus design robust controller for the motion 
of this 3DCrane system corresponds to design two 
independent robust controllers for two subsystems. The lift-
line R is considered as an uncertainty. 

To research the affect of the interaction between subsystems 
in MIMO system, we consider artificial interactions between 
the output signals  X s ,  resp. position of card along  Y s

     

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Thursday

485



 
 

 

axes x and axes y. The resulting output signals  X s ,  Y s  

with interaction corresponding to subsystems are: 

     

     

11

22

0.25
( )

8 1
0.3

( )
7 1

x y

x y

X s G s U s U s
s

Y s U s G s U s
s

 


 


                              (1) 

The main aim of paper is to design robust PID decentralized 
controllers for the 3DCrane system with interaction (1) for 
tracking a desired position of the cart on the both case of 
movement of crane along axes-x and axes-y.  

Procedure to design robust PID decentralized controllers can 
be summarized as five sequential steps: 

1. Choose a suitable control configuration, and then 
identify motion process of the 3DCrane along axes-x 
and axes-y at three operating points with lift-line z 
equals 0[m], 0.25[m], 0.5[m] resp. 1 2, ,P P P  3

2. Check the selection of the control configuration for this 
system (Neitherlinski index (NI)).  

3. In the case of succeeding selection of the control 
configuration, create unstructured model uncertainty for 
motion process. Otherwise, return the first step. 

4. Design a robust decentralized PID controller for this 
process using Small Gain Theorem algorithm and 
PDLF. 

5. Verify obtained result by simulating in Matlab and on 
the real model. 

3. MAIN RESULT 

3.1 Identification of positioning process 

Using ARX or ARMAX identification method, result of 
process identification is described by the following transfer 
function matrices at three operating points.  

Transfer function matrix of system at P1 is: 

 
2

1

2

-0.04723s+3.363   0.25

s +13.64s + 0.4507 8s + 1
  0.3 -0.01698s+3.032

07569 7s + 1 s +10.52s + 0.

G s

 
 

  
 
 

      (2) 

Transfer function matrix of system at P2 is:  

 
2

2

2

-0.03037s+3.163   0.25

s +13.03s + 0.4558 8s + 1
  0.3 -0.05296s+5.292

007261

 
 

7s + 1 s +18.82s + 0.

G s 


 





    (3) 

Transfer function matrix of system at P3 is: 

 
2

3

2

-0.01513s+2.345   0.25

s +9.741s + 0.3612 8s + 1
  0.3 -0.01679s+4.165

7s + 1 s +14.71s + 0.08042

G s

 
 

  
 
 
 

      (4) 

3.2 Check the selection of control configuration 

In this section, we test the given selection of control 
configuration with nominal model  by using 

Neitherlinski index (NI.). 

 0G s

The Neitherlinski index (NI) is calculated by equation  

01
det

2

1




i

iik

K
NI                                                         (5) 

where K is stead-state gain matrix of system. 

The positive value of Neitherlinski index indicates that, 
system is structurally stable. 

The given selection of control configuration is correct. 

3.3 Design of robust decentralized PID controller using 
method of equivalent subsystems 

Consider the MIMO system described by a transfer matrix 

function  and a decentralized 

controller . For robust decentralized control 

procedure we have used the originally developed method, 
Method of Equivalent subsystems. For the ESM local 
controllers are designed according to the independent design 
approach using any frequency –domain design procedure. 
Resulting local controllers guarantee fulfillment of 
performance requirements imposed on the full system. 
Robust stability and performance is guaranteed using Small 
Gain Theorem. The design procedure of ESM approach the 
reader can consult at (Kozáková et al. 2009) and (Osuský et 
al. 2011). 

( ) mxmG s R

( ) mxmRR s

For the following parameters the robust controller has been 
designed: demanded phase margin of equivalent subsystems 
is 70 degree (overshoot is about 10 percent), settle time is 
about 12sec. Using design procedure given at (Kozáková et 
al. 2009) and (Osuský et al. 2011) for inverse additive type 
uncertainty 

)())()(()( 1 sGssGlIsG ooia
                               (6) 

 and robust stability condition  

  ,1)(MM                                                               (7)                 

where                                                    

                                 (8) 
)())()(( 1 sGsRsGIlM ooia



We have obtained the following robust controller iR  :  
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                       (9) 

Due to (7) the slightly modified robust stability conditions is 
given at Fig.2 

 

Fig.2.Verifying robust stability condition for input 
multiplicative model of uncertainty 

From Fig.2, we can state that, the closed-loop feedback 
system with the PI controller iR  is robust stable. And now we 

verify the obtained result in Matlab simulation (see Fig.3) 
and on the real model (see Fig.4)  

 

Fig.3. Position output signals with PI controller at third 
operating point in Matlab 

 

Fig.4 Position output signals with PI controller at third 
operating point on real model 

From results of simulation in Matlab and on the real model 
we can show that, feedback system with designed PI 
controllers is robust stable with a demanded performance. 

3.4 Design of robust decentralized PID controller using 
PDLF 

Each of the transfer function matrices (2), (3) and (4) can be 
transformed to linear time invariant continuous 
system  , , , 0 ; 1,2,3i iA B C D i  , which are considered three 

vertices of the polytopic system. Our task is to find remain 
vertex (the fourth vertex) of this polytopic system. 

We shall consider the following affine linear time invariant 
continuous time uncertain system 

   1 1 2 2 1 1 2 2x A A A x B B B

y C x

        



    u
                     

 (10) 

where ; 1,j j j j     2 ; 

0 1 1 0 0 0 0 0

0 0 0 0 0 1 0 1
C

 
  
 

 

Polytopic model is defined as follow:  

( ) ( )x A x B u

y Cx

   



                                                        (11) 

where  

4 4 4

1 1 1

( ) , ( ) , 1 ,

0; 1... 4

i i i i i
i i i

i

A A B B

i N
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
  

 

  

   
 

Vertices of polytopic system are created by the combination 
of extreme values of j . 

1 1 2 2

1 1 2 2 , 1...

i

i

A A A A

B B B B i N

 

 

  

4    

 

 
                     (12) 

We suppose that, the extreme values 

of 1j j    , 1,2j  . Polytopic system will be obtained 

if for ! 24N   combinations of extreme value j , by solving 

equation system ,  

we have matrices 

1 1 2 2A A  

1 2, ,
iA A  1...( 1) 3i p  

A A A 

4A

 for which the maximal 

eigenvalues of respective matrix  will be minimal. 

The best combination of 1 2,  for calculation of matrices 

 is as follow: )...(,,, 414321 BBAAAA
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1 2

1 2

1 2

1 2

1

1

1

1

 
 
 
 

 
 
 

 
  










                                                          (13) 

Consider the uncertain system (15), where  

3.2630 0.0388 0 1 0 0

0 0 0.8333 0 4.1620 0.0350

T

B
 

  
 

1

0.5090 0.0161 0 0 0 0

0 0 0 0 0.5665 0.0001

T

B
 

  
 



2

0.4090 0.0076 0 0 0 0

0 0 0 0 0.5635 0.0181
B

 
   


T

 

 

0 0.4532 0 0 0 0
1 13.335 0 0 0 0
0 0 3.333 0 0 0
0 0 0 3.333 0 0
0 0 0 0 0 0.0415
0 0 0 0 1 14.670

A


 
  

 
 
  

 

1

0 0.0447 0 0 0 0
0 1.9495 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.0024
0 0 0 0 1 2.0950

A

 
 
 
 
 
 
  



2

0 0.0473 0 0 0 0
0 1.6445 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.0366
0 0 0 0 1 2.0550

A


 
 
 
 
 
  



        

 

Consider PID control law as follow:   

d

dy
u Fy F FCx F C x

dt
    d d                        (14) 

Closed-loop feedback system with PID controller (19) is:  

   d cM x A x                                                          (15) 

 where 

         ,d d d cM I B F C A A B FC                

Consider cost function as follow  


0

T T T J x Qx u Ru x Sx dt


                                          (16) 

The closed-loop feedback system (15) with the PID controller 
(14) is robust stable and guarantees the cost function (16) if 

and only if there exist matrices  
4

1

, 0i i i
i

P P P


  ;

1... 4i N  , , , and H G F dF  then the following 

inequality is satisfied (Rosinová et al. 2007)  

  0

TT T T T T
ci ci i di ci

T T T
i di ci di di

A H HA Q C F RFC P M H G A

P M H G A M G G M S

     
 
      

   (17)                  

For given cost function with 1*R I ,  by using 
BMI to solve (17), the PID controller is obtained as follow: 

0.1*Q S I 

1.4065 0 0.1508 0
,

0 1.1903 0 0.1218

0.1859 0

0 0.1579d

F

F

 
  
 
 

  
 

                (18) 

And now we verify the obtained result in Matlab simulation 
(see Fig.5) and on the real model (see Fig.6)  

 

Fig.5. Position output signals with PID controller at three 
operating points in Matlab 

 

Fig.6. Position output signals with PID controller at third 
operating point on real model 

 

From simulating results on real model, we can conclude that, 
the cart of the crane tracks a desired position. 
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4. CONCLUSION 

In this paper, we have researched and applied successfully 
the knowledge of multivariable system, stabilization of 
decentralized control systems and the knowledge of robust 
control theory in the frequency domain and also in the time 
domain to control the 3DCrane system. 

There was a sequential procedure to design robust 
decentralized controllers for the 3DCrane system. We have 
identified process of the cart motion along axis x and y. The 
identification was executed at three operating points 
corresponding to following length of the payload lift-line: 0, 
0.25 and 0.5 [m]. From resulting identified three transfer 
function matrices, we have designed robust decentralized PID 
controller to stabilize the cart motion and track the desired 
position. The resulting PID controllers are verified in the 
Matlab simulink and on the real model. The cart was at the 
desired position. 
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Abstract:  An unmanned Arial Vehicle (UAV) outfitted with autonomous control devices shall navigate 

to predefined positions. By means of cameras and optical flow the position, height above ground, 

orientation and velocity is determined. Two flow methods, differential technique by Bruce D. Lucas and 

Takeo Kanade and normalized cross correlation are presented and compared.  

1. INTRODUCTION 

An unmanned airship shall be regulated in conjunction with 

other methods by means of image processing in its position, 

orientation and speed [1][2]. In order to receive 3D 

information two cameras are mounted under an airship. Every 

20ms simultaneously a picture is taken from the left and right 

camera. The picture of the left camera is compared to the 

right and to the preceding left picture. The first comparison 

delivers the height above ground. A measure of the 

translation and the rotation is obtained by evaluating the 

relation of the two sequential pictures. With the results the 

new position and orientation can be determined in respect to 

the preceding position. With the known starting point the 

absolute position is cumulated by dead reckoning.  

The optical flow [3] [4] determines the relative position of 

corresponding image dots or regions of two images. The 

images may have been taken at different times by one camera 

or simultaneously by slightly shifted positions of two 

cameras. So far no other light weight system can measure the 

height above ground in a wider area than cameras. 

In contradiction to land based vehicles an airship has six 

degrees of freedom (x,y,z and roll, yaw, pitch). This 

aggravates the detection of the pose parameters. 

2. OPTICAL FLOW TECHNIQUES 

 

In this paper a differential technique is compared with a 

region-based matching[4]. 

 

2.1 SIMPLIFIED EXPLANATION OF THE 

DIFFERENTIAL METHOD 

For the one-dimensional case (e.g., a picture line) a first 

approximation for the intensity 1I around a pixel is given by 

the linear equation:  

 
1x x

dI
I x

dx =

=  (1) 

With the intensity 
2

I  of a pixel of the second image the 

displacement ∆x can be calculated by: 

  
dI

x I 0
dx

∆ + ∆ =  (2) 

more general:  
I I

dx dt 0
x t

δ δ
+ =

δ δ
         (3)  

1 2

1

2

I

x1 x2(estimate)

I1

I2

(Intensity)

x2(exact)

    x
(Position)

∆x(estimate)

∆I

1
x x

dI
dx

=

 
Fig. 1 Differential method for determining optical flow 

for the one-dimensional case 

 

Fig.1 visualizes eq. (2). Knowing the intensity I1 at the 

position x1 an estimate x2 for the position of I2 can be 

calculated by using the derivate of I(x) at x1. The exact 

position of x2 can be approximated by iteration [5]. The first 

iteration step is to calculate 

2estimatex x

dI

dx =

and to get the x-

value of this tangent for I2 . The remaining error is already 

after this step less than 1 per cent. 

 

The differential method does not accept intensity variations 

for the corresponding pixels. Also displacements larger than 

one  pixel may cause errors[4]. If larger displacements are to 

be detected, the images have to be consecutively reduced to 

smaller sizes and the results must be transposed to enlarged 

sizes up to the original [6].   

 

For the two dimensional case equation (3) extends to eq. (4) 

with two unknowns dx and dy. 

 
I I I

dx dy dt 0
x y t

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (4) 

 

Therefore, other constraints are introduced, such as the 

assumption of the constancy of the optical flow around a 

region of the pixel at x, y as proposed in 1981 by Bruce D. 

Lucas and Takeo Kanade [7]. 
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2.2 EXPLANATION OF A REGION-BASED MATCHING 

In contrast to the differential method, which determines the 

optical flow for each pixel, the region-based matching 

delivers only the displacement values of a region. 

 

One method is the cross-correlation. By convolution and its 

maximum, the position of a partial image is detected in the 

other image. Since the image energy varies in different 

regions and due to intensity variations the detection may fail. 

This is avoided by normalizing the values of the overlapping 

areas. In addition the average intensities are subtracted. We 

obtain the zero mean normalized cross-correlation (NCC) [8] 

[9].  

 

_ _

u,v
x,y

u,v
_ _

2 2
u,v

x,y x,y

[f (x, y) f ][t(x u, y v) t]

[f (x, y) f ] [t(x u, y v) t]

− − − −
γ =

− − − −

∑

∑ ∑
 (5) 

u,vγ
 

is the correlation coefficient at the location u, v. 

Because of the zero mean the range is u,v1 1− <= γ <=  

f(x,y)  is the intensity value at x, y of the image to be 

searched. 

t(x,y)  is the intensity value at x, y of the image sought 

(template). 

f and t are respectively the average intensities in the vicinity 

of u, v. The area has the size of the template
  

The mean-free template τ  is: 

 
_

(x, y) t(x, y) tτ = −  (6) 

The mean values of
_ _

u,vt and f are: 

 
xM My_

x y x 1 y 1

1
t t(x, y)

M M
= =

= ∑∑  (7) 

 

 
xu M 1 v My 1_

x y x u y v

1
f (u, v) f (x, y)

M M

+ − + −

= =

= ∑ ∑  (8) 

x yM M  is the size of the template.  

The mean value t has to be calculated only once since it is 

independent of u,v. 

Because of the zero mean of τ : 

 
x,y

(x u, y u) 0τ − − =∑  (9) 

the numerator N of u,vγ , eq. (5), can be transformed to this: 

_

u,v
x,y x,y

x,y

N [f (x, y) (x u, y v)] f (x u, y v)

f (x, y) (x u, y v)

= τ − − − τ − −

= τ − −

∑ ∑
∑

(10) 

Eq. (10) is a convolution of the image with the reversed 

template ( x, y)τ − −  and can be computed by 1 *F {F(f )F ( )}− τ .  

1F−  is the inverse Fourier transformation. *F  is the complex 

conjugate. 

Each not normalized '

u,vγ , which is the numerator N from 

eq.(10), has to be divided by the denominator in order to get 

the normalized coefficients. The equation for the 

denominator shall be simplified in order to reduce 

computation effort. 

The first term of the denominator is: 

 

_
2

u,v
x,y

_ _
2 2

u,v u,v
x,y x,y x,y

[f (x, y) f ]

[f (x, y)] 2[f (x, y) f ] [f ]

− =

− +

∑

∑ ∑ ∑
 (11) 

2

x,y
[f (x, y)]∑  is easily computed with sum tables [11], 

see example below. 

With eq. (8) the second summation is: 

 

_ _

u,v u,v
x,y x,y

2

x,y
x y

2[f (x, y) f ] 2f f (x, y)

2
f (x, y)

M M

=

 =
 

∑ ∑

∑
 (12) 

The second term of the denominator is calculated once: 

 
_

2

x,y
[t(x u, y v) t]− − −∑  (13) 

and is valid for all u,v. 

 

This results into: 

 

x,y

u,v
2

2

x,y x,y
x y

_
2

x,y

f (x, y) (x u, y v)

1
[f (x, y)] f (x, y)

M M

1

[t(x u, y v) t]

τ − −
γ =

 −
  

− − −

∑

∑ ∑

∑
i

 (14) 

 

The sums 
2

x,y
[f (x, y)]∑ and 

x,y
f (x, y)∑  are 

computed with sum tables [11] and they need only an 

addition of three values for each u,v. The sum tables must be 

calculated only once.  

 

Example for a sum table: 

The image pixel shall have intensity values as shown in 

table 1. This results to the table 2 as the sum table. Its origin 

is at the lower left corner. 

 

1 2 3 4 

5 6 7 8 

9 1 2 3 

4 5 6 7  

 19 33 51 73 

18 30 45 63 

13 19 27 37 

4 9 15 22  

Table  1: Image intensity  

 values 

 Table  2: Sum table 

 

To get the sum of  the center square of the image, table 1, 

(6+7+1+2=16), take the value of the upper right edge of this 

square in the sum table and subtract the sums of adjacent 

areas on the left and bottom side. The 4 is subtracted twice, 

therefore it has to be added to the subtractions. The result is: 

 45 18 15 4 16− − + =  (15) 
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3. COMPARISON OF BOTH METHODS  

WITH 512X512 PIXEL IMAGES 

 

Fig. 2 XY-table with mounted camera  
 

A camera is moved by a XY-table over a scene. The exact 

position of the camera is given by XY-coordinates which can 

be set with a precision of better than 0.1mm. 
  

The following tables 3 and 4 show the translation in x and y 

direction and the angle of the relative rotation of consecutive 

images as calculated with B. Lucas and T. Kanade method 

and normalized cross correlation (NCC) in respect to the 

expected values (Exp.) as determined by the XY-table. 

3.1 TRANSLATION 

Experiments with real scenes reflect that the differential 

method of Lucas and Kanade (L&K) detects shifts of up to 30 

pixels and rotations of 15 °. NCC can identify any shifts as 

long as the template is inside the image. However, rotations 

over 5 ° are detected increasingly uncertain. 
 

 
x∆   

y∆  
 

∆ϕ  

 Exp. L&K NCC  Exp. L&K NCC  Exp. L&K NCC 

 0,0 -0,1 0,0  33,8 32,9 34,0  0,0 -1,1 0,0 

 0,0 -0,2 0,0  33,8 31,5 35,0  0,0 -9,1 0,0 

 0,0 0,3 0,0  33,8 32,4 33,0  0,0 -2,9 0,0 

 0,0 0,2 0,0  33,8 35,2 35,0  0,0 -0,6 0,0 

 0,0 0,0 0,0  33,8 33,2 33,0  0,0 0,0 0,0 

 0,0 -0,1 0,0  33,8 34,5 34,0  0,0 0,6 0,0 

 0,0 0,1 0,0  33,8 33,6 33,0  0,0 0,0 0,0 

 0,0 0,2 0,0  33,8 34,1 34,0  0,0 0,6 0,0 

 0,0 0,3 0,0  33,8 33,1 34,0  0,0 1,1 0,0 

            
Cum. 

Values: 
0,0 0,7 0,0  304,2 300,6 304,9  0,0 -11,4 0,0 

Table  3: Translation in y-direction 

Legend: 
∆x, ∆y : displacement in pixel of a region around the 
 center of two consecutive  images. 
∆ϕ :  rotation angle of two consecutive  images. 
Exp.:  expected value as set by the XY-table. 
L&K:  differential method of B. Lucas and T. Kanade. 
NCC:  Normalized Cross Correlation. 
Cum Values: cumulated values. 

Due to the application as pose detection of an airship, in 

contrast to the often-quoted measure of error (angular error) 

[10], the deviation of the cumulative value is considered. For 

translations ( x, y∆ ∆ ) both methods deliver good values, 

NCC somewhat better. At the orientation ∆ϕ , which should 

be zero, the differential method deviates greatly at one pair of 

images from the expected value. 

 

3.2 ROTATION 

The camera was continuously rotated by 10 degrees around 

the central axis. As table 4 shows, the values of the 

differential method are closer to the expected values and is 

therefore superior to the correlation method.  

The advantage of the NCC, is that a failure can be detected 

with the relationship between a poor value and a low 

correlation maximum. 

 

 ∆ϕ  

 Exp.  L&K NCC 

 10,0 7,2 6,8 

 10,0 8,9 6,8 

 10,0 9,9 11,3 

 10,0 10,0 11,3 

 10,0 10,1 9,1 

 10,0 9,9 8,5 

 10,0 9,8 8,0 

 10,0 9,7 9,1 

 10,0 9,8 1,1 

    Cum. 

Values: 
90,0 85,4 72,0 

Table 4: Rotation by 10 degrees 

 

Fig. 3: Flow vectors of a rotated scene. 

Arrows represent the optical flow of two 

consecutive images 
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3.3 BRIGHTNESS CHANGE 

Due to brightness change of the scenes the shutter of a 

camera may alter the exposure. To simulate this effect every 

2nd image of a real flight over a landscape has been darkened 

by a multiplication with 0.95.  

As expected, the differential method (Fig. 4) has failed. The 

composed image calculated using the optical flow is chaotic. 

The flow vectors as seen in Fig. 5 reflect this irregularity. The 

composite image by using NCC, Fig. 6, is satisfactory. 

Without the brightness attenuation the differential method 

provides the same good result as NCC. 

 

 

 

 

Fig. 4: Composite image, differential method 

with brightness change 

 

 

 

 

 
Fig. 5: Chaotic flow vectors of  one pair of 

images with the differential method. 

Brightness is changed. 

 
Fig. 6: NCC 

Composite image with brightness change 

3.4 COMPUTING EFFORT 

Relevant to the applicability in real time is the calculation 

time. As a first estimate the calculation time on a PC is used, 

even when operating in a DSP or FPGA, memory access 

times are more important than multiplications and additions. 

A PC reduces memory access times by a large "pre-cache". 

The differential method requires on a PC 460ms for the 

calculation of an image pair, while NCC with 170ms is 

almost three times faster. In order to control the airship 

autonomously the target process time for two consecutive 

images shall be less than 20 ms. This task will be 

accomplished by using DSP for fast sequential arithmetic 

operation and FPGA for parallel processing.  

The amount of multiplications in respect to the processing 

time are not any more that important since DSPs 

accomplishes them in one cycle. Other operations like 

divisions, square roots take many more cycles and should be 

avoided. 

 

Memory usage in respect to image size Mx (columns), 

My(rows) and a required precision  Pi.: 

The precisions may be set as used for the calculations of 

tables 3 and 4 to:  

P1: one byte 

P2: 2 bytes (half precision) 

P4: 4 bytes (single precision)  

   

Differential method: 

For first, 2nd image and pyramid: 2.6 MxMyP1 

Flow vectors x and y: 2 MxMyP2 

Sum for 512x512 image: 1.2MByte 

NCC: 

For first and 2nd image: 2 MxMyP1 

FFT (complex) for both images and inverse FFT (real):  

5 MxMyP4  

Sum tables: 2 MxMyP4 

Sum for 512x512 image: 7.9MByte 
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The real amount in bytes is depending on the required 

accuracy. Even when some memory may be reused, NCC 

needs by far more memory resources.  

4. SUMMARY 

NCC is superior to the differential method in the detection 

reliability, accuracy and speed. Also the allowed 

displacement range is much wider. While NCC needs only 

the corresponding region to be within both consecutive 

images, the differential method starts to fail at more than 30 

pixel distance. However the differential method is superior at 

rotations and for the density of the flow vectors. Since for the 

application in an airship the maximal rotation angle of two 

consecutive images is expected to be less then 5 degrees and 

a density of the optical flow down to one pixel is not 

necessary, NCC is the preferred method. 

Further test flights will be done in order to check the 

maximum dynamics of movements and the requirement for 

the optical flow. Also ideas to detect roll and pitch will be 

developed. 
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Model Predictive Control for industrial
applications

Georgios Papafotiou

ABB Corporate Research, Segelhof, 5405 Dättwil, Switzerland

Model Predictive Control represents an exciting academic research field and at the same
time a well established and mature technology in many industrial applications, where
physical processes need to be controlled in an efficient and reliable way. Until recently,
however, its appeal has been mainly restricted to processes with rather slow dynamics with
sampling times ranging from a few minutes to many hours, such as the ones encountered in
the areas of (petro)chemicals, minerals and metals. The main reason for this restriction can
be traced to the computational demand that optimization-based algorithms can pose to
the control hardware platforms, since in its most common version MPC requires the online
solution of a constrained optimization problem at each time step. Nowadays, however, the
increased computational capacity that is becoming available in the commonly employed
controllers, coupled with recent algorithmic advances, has encouraged the emergence of
MPC applications in the automotive, and more recently the power electronics industry,
where the time scales are in the range of milli- or even micro-seconds. This talk tries to
emphasize this visible trend in industrial reality and present recent developments in the
application of MPC for the efficient control of Medium Voltage induction motor drives.
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Abstract: To enable wind turbines to produce power under great variety of wind conditions a 

sophisticated control system is needed. Wind turbine system is highly nonlinear and its dynamics changes 

rapidly with the change of wind speed. Many classical control methods fail to properly address this 

uncertainty of wind turbine dynamics. For that reason Quantitative Feedback Theory is presented and its 

application to synthesis of rotor speed controller. 

 

1. INTRODUCTION 

Modern wind turbines have to operate in wide range of 

operating conditions determined primarily by wind speed. To 

make it possible for wind turbine to produce power in such a 

variety of operating conditions a sophisticated control system 

is needed that will account for changes in operating 

conditions and accompanying changes in wind turbine 

dynamics [1]. The power of air that moves at speed vw over 

the area swept by turbine rotor of radius R is given by (1):              

 �� � 1
2���	
��
��  (1) 

where ρair is density of air. From expression (1) it is clear that 

wind energy increases rapidly with increase in wind speed. 

This results in two very different operation regions of wind 

turbine, each of them placing specific demands upon control 

system. During weak winds power contained in the wind is 

lower than the rated power output of wind turbine generator. 

Therefore, the main task of the control system in this region 

is to maximize wind turbine power output by maximizing 

wind energy capture. It can be shown [2] that for each value 

of wind speed energy conversion efficiency is maximal for 

only one particular value of rotor speed. Since modern wind 

turbines are connected to grid using AC-DC-AC frequency 

converters, generator frequency is decoupled from grid 

frequency which enables variable speed operation. Therefore 

it becomes possible to vary the rotor speed and to maintain 

optimal energy conversion during varying wind speeds. On 

the other hand, during strong winds power of the wind is 

greater than the rated power output of wind turbine generator. 

Therefore, the wind energy conversion has to be constrained 

in this region to assure generator operation without 

overloading. Very efficient method for constraining wind 

energy conversion is pitching the rotor blades around their 

longitudinal axis which deteriorates their aerodynamic 

efficiency and therefore only a part of wind energy is used for 

driving the generator. 

The main task of wind turbine control system is to obtain 

continuous power production under operating conditions 

determined by various wind speeds. As turbine power is 

directly proportional to its speed, power control can be done 

by controlling turbine speed. The principle scheme of wind 

turbine speed control system is shown in Fig.  1. 

 

Fig.  1. Principle scheme of wind turbine control system [3] 

As it can be seen in this figure turbine speed can be 

influenced and thus controlled by two means – by generator 

electromagnetic torque �� which opposes rotor driving 

torque �	 and by pitch angle � which alters the wind energy 

conversion. For this reason turbine speed control system 

consists of two control loops: torque control loop and pitch 

control loop. Those control loops operate simultaneously but 

depending on operation region one of them is dominant. In 

the below rated operation region the torque control loop is 

used to control turbine speed to values that will result in 

maximal wind power capture. This control loop is not in the 

scope of this paper. Details on its specifics can be found in 

e.g. [3]. In the above rated region this control loop just holds 

generator torque at its rated value. The pitch control loop is 

used for setting the adequate pitch angle that will keep 

turbine speed at its reference value under all operating 

conditions determined by various winds. Below rated wind 

speed this loop sets pitch angle to value that assures maximal 

wind power capture which is usually around 0°. In this paper 
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we assume that all blades have the same pitch angle what is 

known as collective pitch. Controller in this loop, although 

used to control turbine speed, is commonly termed pitch 

controller. Blade positioning is mostly done using electrical 

servo drives that rotate blades by means of gearboxes and 

slewing rings. Position control of servo drives is usually 

achieved using frequency converters. This control loop 

design is rather simple and is not in the scope of the paper. 

 

2. PROBLEMS OF CLASSICAL CONTROL SYSTEMS 

The main problem for most of classical control methods is 

handling of nonlinear dynamical systems. Even simple 

models of wind turbines are highly nonlinear due to nature of 

aerodynamic conversion that takes place on all rotor blades. 

These models usually don’t take into consideration 

aeroelasticity of the blades, wake effects, yaw errors, stall 

effect, tower shadow, wind shear effects etc. and still present 

a tough challenge for most of classical methods. The core of 

the problem mostly lies in inability of methods to explicitly 

account for uncertainty of process dynamical behavior that 

arises from changes in working conditions (higher wind 

speed, lower wind speed). Furthermore, when a controller is 

parametrized, there are usually no guarantees of stability and 

quality of disturbance rejection when operating point 

changes. For that reason it is necessary to perform extensive 

time simulations to a posteriori determine if initial 

specifications for stability and disturbance rejections are 

satisfied in all cases. QFT on the other hand rises up to this 

challenge as it can a priori process uncertainty, quantify it 

and used it in combination with closed loop specifications. It 

can also a priori guarantee  fulfillment of closed loop 

specification. 

 

3. MOTIVATION FOR UTILIZATION OF QFT 

In the beginning of 1960s Horowitz introduced a new 

frequency domain based control method called Quantitative 

Feedback Theory (abbr. QFT) which presented  a 

generalization of Bode's frequency domain work [4]. During 

Horowitz' involvement in the development of control system 

for Israeli battle aircrafts, QFT method was completed and 

received a form in which it is used today [4]. Successful 

utilization of QFT in aircraft control has proved the power of 

the method and enabled its application in helicopter control 

systems. When one takes into consideration that much of 

wind turbine aerodynamical modelling stems directly from 

helicopter aerodynamical modelling, it is only logical to 

conclude that QFT should handle in a satisfying manner 

control of rotor speed above rated wind speed. The main 

characteristic of QFT is the ability to explicitly take into 

account uncertainty of process that is to be controlled, and 

use this knowledge to develop a controller able to meet 

certain specifications (i.e. for efficient disturbance rejection, 

noise reduction, etc.). Due to high transparency of the method 

it is possible to surveil almost every aspect of the problem in 

hand and thus make needed trade-offs between quality of 

disturbance rejection, amount of stability margins, controller 

complexity and bandwidth utilization. This feature is 

especially appealing as it enables engineers to synthesize 

efficient low-bandwidth linear controllers of low order. 

Utilization of low-bandwidth controllers decreases system’s 

sensitivity to noise and unmodelled dynamics. QFT is a 

completely rounded control method as it is applicable to 

various control systems: linear, nonlinear, time (non)varying, 

continuous and discrete, (non)minimum phased, Multiple 

Input Single Output (abbr. MISO), Multiple Input Multiple 

Output (abbr. MIMO), with output and state signals 

feedback, time-delayed (variant of QFT Smith predictor was 

developed for this purpose) [5]. It is even applicable to 

certain class of uncertain distributed systems whose behavior 

is described with partial differential equations (i.e. control of 

large scale manipulators) [5]. 

 

4. MISO QFT 

The basis of all QFT methods (all variants of MIMO QFT, 

discrete QFT, QFT for non-minimum phased systems) is 

comprised in 2-degree of freedom structure called MISO 

QFT [5] shown in Fig.  2. 

 

Fig.  2. MISO QFT control structure 

The elements in Fig.  2 are described below: 

� – a set of transfer functions where ������ � � describing 

the area of process parametric uncertainty. 

� –  QFT controller intended to make this feedback system 

robust, reject disturbances and reduce sensitivity to noise. 

�  –  prefilter that enables quality tracking of reference signal 
. 

Signals in Fig.  2 are: measurement noise �, disturbance �� on process � input, disturbance �� on process � output, 

reference signal 
. 

The process of obtaining an adequate QFT controller ���� 

and prefilter ���� can be described through following steps: 

1) Determine the set of transfer functions � �  �������! that 

describe the whole range of process dynamical behavior. 

2) Choose a nominal process �"���� from the given set � 

(any one will do). 

3) Choose discrete frequency set # �  ��, ��, … , �&! from 

frequency range relevant for control. Further controller 

synthesis is performed on this discrete set Ω.  

4) Generate templates (sets that describe area of phase vs 

amplitude variations) for every frequency from Ω. In 

other words, if phase and amplitude values are calculated 

for every �� � � for certain frequency �' � Ω, then this 

set of values is called the template Π���'�. 
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5) Determine a set of specification for closed loop system 

behavior (i.e. allowable upper and lower boundary for 

tracking of 
, upper boundary for disturbance rejection, 

stability, control effort, etc.) and translate them to 

frequency domain. 

6) Using Nichols chart, given specifications and templates, 

find frequency boundaries *� on Nichols chart. For every 

specification there is a set of boundaries *� generated on 

Nichols chart. This set is calculated only for frequencies 

from Ω. For example, *����'� would present a boundary 

for i-th specification evaluated on �'. Crucial detail of 

this algorithm is that all of these boundaries are calculated 

in dependence of before mentioned nominal process �"����. 
7) Draw the nominal open loop ,"����  �  �"���� ����� on 

the same Nichols chart and commence with classical loop 

shaping procedures in order to satisfy calculated 

boundaries.  

8) Draw the whole set of closed loop transfer functions on 

Bode diagram and find suitable prefilter � to satisfy servo 

specifications (if such exist) for tracking of reference 
 

signal.  

9) Perform frequency and time validation of control design. 

Iterate if necessary.  

Step 6) is crucial for QFT method and will be explained in a 

graphical manner which could offer the reader a better 

insight. For example, a stability margin specification is given 

as (2):   

 - ,����
1 . ,����- / �0 (2) 

This relation is represented as exterior of a red closed curve 

around the critical point (-180°, 0 dB) on Nichols chart on 

Fig.  3. 

 

Fig.  3. Closed curve around critical point and the template Π����� 

     

÷����� represents the process template and �"����� 

represents the nominal process. The template needs to remain 

outside the region enclosed by the red curve. Firstly the 

template needs to be moved maximally close to the red curve 

(none of the points belonging to the template are allowed to 

enter the enclosed region) and the position of the nominal 

process need to be marked for every position of the template. 

Such movement of the template in magnitude-phase plane 

(Nichols chart) is possible if controller is connected as it 

enables adjustment of phase and magnitude i.e. translation   

Connect these markings of the nominal process (green line in 

Fig.4.). This green line actually represents the stability 

boundary �1�jω4� on frequency ��. If during step 7) the 

value of open loop transfer function ,"����� remains outside 

the �1�jω4�, then there is a guarantee that none of all possible 

closed loop systems values on ��  will be within forbidden 

enclosed area. Similar graphical logic applies to other types 

of specifications. QFT software tools handle boundary 

generations by extracting template boundary (thus reducing 

the computation burden due to many insignificant interior 

points) and then solving systems of quadratic inequalities. 

The controller synthesis is finally performed on a set of 

resultant boundaries that represent the intersection of all 

boundaries.  

 

Fig.  4. Template moved around the curve forming a stability 

boundary *5����� 

 

5. WIND TURBINE MODELLING 

The first step in control system design is to obtain a suitable 

process model to describe dynamical behavior of wind 

turbine. Combination of blade element and momentum theory  

yields quite satisfactory description of wind turbine 

aerodynamic effects which are at center of scope in 

modelling. It is primarily utilized in simulation tools but 

lacks simplicity in order to be suitably used in the process of 

controller design due to iterative nature of the method. For 

this reason a different, more analytical, approach is used that 

develops a simplified mathematical model usual in the 

literature dealing with controller design. It will be described 

briefly, while the details on it can be found in [6] and [7].   

Wind power ��, given by expression (1), can never be 

completely transformed into wind turbine power ��6 and 

afterwards into electrical power �78. The amount of wind 

power that is converted into turbine power ��6 can be 

described by expression (3):  

 ��6 � ��9: (3) 

where 9: represents a performance coefficient.  

The theoretical maximum for 9; is determined by the Betz' 

law [2] and equals 16/27?0.59. The interesting part about 
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assumptions made in deriving Betz’ law is that no particular 

turbine design was considered and no additional losses were 

included (wake losses, friction losses, etc.) which means that 16/27 is an absolute limit for power extraction process. 

Modern wind turbines reach at best performance coefficient 

of 0.5. The value of 9; varies in dependence on wind speed 
�, rotor speed � and blade pitch angle �. Wind speed and 

rotor tip speed are usually bound together introducing 

parameter C that is called tip speed ratio [2] given by 

expression: 

 C � �


�  

(4) 

Typical dependence of performance coefficient upon tip 

speed ratio with pitch angle used as a parameter is shown in 

Fig.  5.  

 

Fig.  5. Performance coefficient as a function of tip speed 

ratio [1] 

Aerodynamic torque that drives wind turbine rotor is given 

by (5): 

 �	 � �	� � 1
2
���	
��
��9:�C, ��

�  
(5) 

Using relation defined by (4) a rearrangement of expression 

(5) is obtained as follows (6): 

 �	 � 1
2
���	
��
��9:�C, ��

C  
(6) 

A quotient of performance coefficient 9: and tip speed ratio 

C forms a new dimensionless parameter known as torque 

coefficient 9D [2]: 

 9D�C, �� � 9:�C, ��
C  

(7) 

Now the rotor speed � can easily be found using principle 

equation of motion given by : 

 E6 F�
FG � �	 H �� H �8I55 

(8) 

where �� is generator electromagnetic torque, E6 is total 

moment of inertia of generator rotor and wind turbine, while �8I55 is loss torque caused by friction losses (usually 

neglectable).  

Wind turbine considered in this paper is In this paper we 

consider wind turbine with generator that is directly coupled 

with turbine rotor. This turbine setting known as direct drive 

system uses synchronous multipole generator that rotates at 

small speed of turbine rotor. Since rotor and generator speeds 

are the same no distinction between them is made throughout 

the paper. Because there is no gearbox between rotor and 

generator their moments of inertia can just be summed 

together in order to calculate total moment of inertia Jt. The 

coupling of rotor to the generator in direct drive solutions is 

very stiff and it can be considered as rigid thus removing any 

torsional oscillations what simplifies the control system 

design. 

Before going further an important issue has to be addressed. 

Namely, expressions (5), (6) and (7) in this form would be 

valid only for structure with rigid tower and blades. In real 

situation the absolute wind speed 
� in mentioned 

expressions has to be replaced by wind speed that is "seen" 

by rotor blades. This wind speed seen by the rotor is the 

resultant of three factors: absolute wind speed 
�,  speed of 

the tower movement perpendicular to wind speed (i.e. tower 

nodding speed) JK6  and speed of blade movement 

perpendicular to wind speed (i.e. speed of blade flapwise 

movement). Influence of tower nodding on wind turbine 

control is much more pronounced than influence of blade 

flapwise movement. Therefore we focus only on tower 

nodding considering rotor blades as rigid. This results in a 

following expression describing the wind “seen” by rotor 

blades: 

 
�L � 
� H J6K  (9) 

Tower nodding originates from the fact that wind turbine 

tower is very lightly damped structure due to its great height 

(more than 100 meters in modern wind turbines) and need for 

moderate mass. To model the wind turbine tower precisely 

we would have to use model with distributed parameters and 

to describe it in terms of mass and stiffness distribution. Such 

a model wouldn't be very suitable for controller design so it 

has to be substituted by model with concentrated parameters. 

This can be done using modal analysis that is very common 

tool in wind turbine analysis [1], [3]. It describes a complex 

oscillatory structure as a composition of several simple 

oscillatory systems each of them being described by means of 

mass, stiffness and damping. By this representation complex 

tower oscillations are seen as a sum of many simple 

oscillations characterized by their modal frequencies which 

are one of the most important structural properties of wind 

turbine. It has been shown in practice [5] that fairly good 

modeling of wind turbine tower nodding can be achieved 

using two modal frequencies (two modes). Since we are here 

primarily interested in building model suitable for controller 

design we use only the first modal frequency. The 

justification for this lies in the fact that for the turbine in 

scope second modal frequency is more than 6 times greater 

than the first modal frequency and therefore falls out of the 

controller frequency bandwidth.  

By using only one modal frequency tower dynamics can be 

described as: 

 �JM6 . �J6 . 9J6 � ��G�K  (10) 
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where �, �, and 9 are modal mass damping and stiffness 

respectively and ��G� is the generalized force that is 

originated by wind and that causes wind turbine tower 

oscillations. Tower modal properties in expression (10) are 

related to first tower modal frequency �"6 as follows [6]: 

 � � 2N6�"6� 

9 � ��"6��� 
(11) 

where N6 is structural damping. For steel structure structural 

damping is mostly set to 0.005 [6]. Modal mass M can be 

calculated as [2]: 

 � � O P�Q�Φ�Q��FQST

"
 

(12) 

 

where Q6 is the height of the tower, P�Q� is the mass 

distribution along the tower height and Φ�Q� is the tower's 

first mode shape. Note that actual distribution of mass along 

the tower has to be modified in order to include mass of the 

rotor and the nacelle which is assumed to be concentrated at 

the tower top. 

Driving force � is mostly the rotor thrust force �6 caused by 

the wind. It can be shown [6] that thrust force, similar to 

aerodynamic torque, depends on wind speed, rotor speed and 

pitch angle. So similarly to (6) it can be expressed as [6]: 

 �6 � 1
2���	
��
��96�C, �� 

(13) 

 

where 96 is the, so called, thrust coefficient. 

 

Expressions (6), (8), (10) and (13) form the simplified 

nonlinear model of wind turbine that is used in the following 

sections for controller design. Model is summarized below 

taking into account the fact that wind speed seen by the rotor 

is a sum of wind speed and tower nodding speed: 

 

E6 F�
FG � �	 H �� H �8I55 

�	 � 1
2���	
���
� H J6K ��9D�C, �� 

�6 � 1
2���	
���
� H J6K ��96�C, �� 

�JM6 . �J6 . 9J6 � ��G�K  

(14) 

 

Torque and thrust coefficients 9U and 96 are usually provided 

by wind turbine blade manufacturers or can be calculated 

using professional simulation tools. 

On Fig.  6. a block diagram depicts the simulation model of 

the wind turbine used to obtain results that follow. The 

central part of it is the aerodynamical model shown on Fig.  

7. that implements equations (6) and (13) defining �	 and �6. 9D and 96 are represented by 2D look-up tables with pitch 

angle � and tip speed ratio C as their input signals. Torque �	 and thrust force �6 represent resulting output signals. The 

control system of the pitch drive will not be addressed in this 

paper and can be approximated, for small reference pitch 

changes, in a satisfactory manner by 2nd order aperiodical 

system. In reality, pitch drive would use cascaded position 

and speed control loops that would have to overcome 

aerodynamic torque developed around the longitudinal blade 

axes, stiction and friction induced torques inside the blade 

bearings.  

Fig.  6. Block diagram of the wind turbine simulation model 

 

 

Fig.  7 Block diagram of aerodynamical model 

In order to use QFT method for speed controller synthesis a 

linear model is required. From system of equations given by 

(14), second and third equation need to be linearized as 

shown below: 

Δ�	 � WX�	X
�
Y
Z.;.

�Δ
� H ΔJ6K � . WX�	X� Y
Z.;.

Δ� . WX�	X� YZ.;. Δ� (15) 

Δ�6 � WX�6X
�
Y
Z.;.

�Δ
� H ΔJ6K � . WX�6X� Y
Z.;.

Δ� . WX�6X�YZ.;. Δ� (16) 

Term O.P. used in equations above is an abbreviation for 

operating point. An automated procedure was used in order to 

obtain partial derivatives in (15) and (16). Perturbation was 

introduced to stationary values of input signals and it was 

observed on output points in which extent these perturbations 

were amplified. Discrete wind range [� was used to define 

operating points above rated wind speed (approximately 12 

m/s): 

 [� �  12,13,14, … ,24,25! ^P/�_ (17) 

 In this regime of operation it can be considered that constant 

nominal generator torque �� is used, so no Δ�` is 

introduced into the system. Therefore this dynamics will be 

neglected. By combining linearized equations (15) and (16) 

with (8) and (10) an expression can be obtained that brings 

together into a classical relation pitch angle � (plant input) 

and wind speed 
� (disturbance input) with rotor speed � 

(plant output): 

 ���� � �������� . �a���
���� (18) 

For every wind speed 
�,� � [� accompanying pair of 

transfer functions ����� � b and �a,���� � ba is obtained. 
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Families b and ba  of transfer functions are shown on Fig.  8. 

and Fig.  9. 

 

Fig.  8. Bode plot of transfer function family b 

 

Fig.  9. Bode plot of transfer function family ba 

Observe a phase shift on lower (relevant) frequency range by 

180° on Fig.  8. that relates rotor speed change to pitch angle 

change. This means that a small rise in pitch angle produces 

negative change, due to phase shift, in rotor speed i.e. 

slowing down of the rotor. Physically this causes a decrease 

in angle of attack and consequently lowering of tangential 

forces on blade sections is caused. This in turn cumulatively 

decreases the value of driving torque �	 when contributions 

of all blades and all blade sections are summed. 

 

6. DESIGN SPECIFICATIONS 

Two types of specifications are defined and later on 

accompanying open loop boundaries on Nichols chart are 

calculated in order to facilitate controller design process. First 

appropriate discrete set of design frequencies needs to be 

specified. Regarding this problem there are no strict rules, 

instead some useful guidelines exist. Generally it is useful to 

choose frequencies that give results with meaningful 

differences in calculated boundaries. This can be 

computationally bothersome as it requires iterations. As a 

rule of thumb frequencies separated by an octave inside 

meaningful frequency range should suffice. Special care 

should be taken if process dynamics exhibits resonances at 

certain frequencies as then few frequencies around the 

resonance frequency should be chosen to appropriately 

describe abrupt phase and magnitude changes. Below is given 

the set Ω of frequencies that were used in calculations: 

 Ω �  10c�, 10c�, 10c�, 0.5,1,2.5,3.3,3.38,3.47,5,20! (19) 

Due to natural frequency of tower first mode at �e �3.38 fgF/�, nearby frequencies �h � 3.3 fgF/� and �i � 3.47 fgF/� were chosen. All the frequencies above 20 fgF/� are represented by ��� � 20 fgF/� as their 

templates degenerate into virtually same shape that is solely 

dominated by variations of process magnitude. This can be 

stated as follows: 

 ����� ? j
�kl�m when � n �o (20) 

where C represents pole excess, �o represents bandwidth 

frequency and p � ^p0�q, p0�r_ represents amplitude 

variation. This fact is depicted on Fig.  10. by the template on 20 fgF/� that shows very small variations in phase values 

and dominant variations in amplitude values.  

 

Fig.  10. Process templates representing variations of 

amplitude vs phase 

First type of specifications refers to defining of stability 

margin factors. Instead of amplitude and phase margin, 

another relation was used that wraps them together stating 

(see expression (2)): 

 - 9����������
1 . 9����������- / �0 stf u�� � b 

(21) 

where 9���� represents controller transfer function. 

Amplitude margin (A.M.) and phase margin (P.M.) are bound 

together to �0 as follows: 

 v.�.� H20 log z �01 . �0{  
�.�.� 180° H acos z 1

2�0� H 1{ 

(22) 

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Friday

501



 

 

     

 

Fig.  11 shows visually the meaning of relation (21) depicting 

A.M. and P.M. as extremes of amplitude and phase distance 

to critical point �H180°, 0 F��. 

  

Fig.  11. Stability margin specifications on Nichols chart for �0 � 1.1 

Second type of specifications refers to quality of disturbance 

compensation i.e. ability to maintain nominal rotation speed 

in spite of acting wind gust. Following relation needs to be 

satisfied: 

 ����

���� � Y �a,����1 . �����9���Y / |�a�56���| (23) 

for u�a,� � ba and u�� � b. �a�56��� is defined as: 

 �a�56��� � 1.8�� . 3.557�
�� . 1.456� . 0.526 (24) 

Unit step response and frequency amplitude characteristic of 

(24) is shown on Fig.  12. 

 

 

Fig.  12. Specified characteristic of response to unit step 

disturbance and accompanying frequency amplitude 

characteristic 

There is no particular restriction on the initial part of the 

response which explains almost constant attenuation 

frequency characteristic in high frequency range. Namely, 

process response cannot suddenly jump at G � 0 � to certain 

value in a step like manner so there would be no point in 

defining any particular shape of response in initial period of 

time as this requires unnecessarily aggressive and complex 

controller design due to dominate high frequency design 

requests. 

 

7. CONTROLLER DESIGN 

Using defined specifications, discrete frequency set Ω and 

templates generated for u�� � Ω it possible to calculate, 

solving systems of quadratic inequalities, necessary stability 

and disturbance boundaries and depict their intersection 

(resultant boundaries) on Nichols chart.   

 

Fig.  13. Resultant boundaries on Nichols chart 

A 12 P/� linearized model was chosen as nominal plant 

process �"��� so all the boundaries on Nichols chart were 

calculated in reference to this model. This in turn means that 

adequate loopshaping of open loop characteristic ,"��� �9����"���  that satisfies given boundaries results in a fact 

that all closed/open loop characteristics satisfy accompanying 

closed/open loop characteristic. Controller transfer function is 

given as: 

 9��� � H1.65 �� . 0.5��� . 1.4�
��� . 5�  

(25) 

 

On Fig.  14. it can be observed that point �� � 0.5 fgF/� is 

not completely out of its boundary which was done on 

purpose as this would require movement of controller zero �� � H0.5 even closer to zero. This in turn weakens the 

integral action of the controller necessary for precision of 

stationary part of response as this zero would nearly cancel 

its action. Rise in complexity of the controller would be able 

to solve this issue but this is where QFT transparency comes 

handy as it enables us to make tradeoffs in controller design. 

It was also observed that neglecting of initial shape of 

response on Fig.  12 made the design easier with no evident 

loss in quality of response i.e. more simple controller was 

obtained that performs almost equally well. �� � H1.4 was 

inserted in order to obtain raise in the phase value of open 

loop so as to circumvent the round boundaries on their lower 
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right part. “Optimal” QFT controllers would have to 

minimize the cost of feedback, meaning that minimum of 

bandwidth should be utilized to satisfy given specifications. 

In order to gain such a controller points on nominal open 

loop characteristic ,"���� should be maximally close to their 

boundary. 

  

 

Fig.  14. Nominal open loop on Nichols chart vs calculated 

open loop boundaries 

 

8. DESIGN VALIDATION 

It remains to perform a validation of design by checking if for 

all family members prescribed specifications are satisfied. 

Fig.  15. shows validation of stability on all linear models. 

 

 

Fig.  15. Validation of stability specifications in frequency 

domain (boundary marked with red diamond markers) 

Likewise Fig.  16. and Fig.  17. validate satisfactory 

behaviour in time and frequency domain of all linear models. 

Small ripple superimposed on rotor speed response stems 

from the fact that the tower top is oscillating towards/from 

the direction of wind meaning that relative wind speed 
�L   
given by (9) is oscillatory changing. This in turn causes 

oscillatory changes in angle of attack of all blade sections 

and, cumulatively, introduction of oscillatory component in 

turbine drive torque.  

 

 

Fig.  16. Validation of disturbance specifications in frequency 

domain (boundary marked with red diamond markers) 

 

Fig.  17. Validation of disturbance specifications in time 

domain (boundary marked with red diamond markers) 

So far validation was performed on family of linear models 

obtained by linearization of model given by (14) for wind 

speed ranging from 12 to 25 m/s. Plot on Fig.  18. confirms 

that given specifications have been satisfied even for 

nonlinear model. No particular differences are observed 

comparing validation performed on family of linear models 

and on nonlinear model. It is interesting to observe how the 

controller 9��� behaves when faced with a simulation on a 

professional wind turbine simulation tool (Bladed, [8]) that 

also offers possibility of obtaining family of linear models of 

very high order (>40). This model besides the first and 

second mode of fore-aft movement, also includes equal 

number of side-side tower modes and rotor in-plane and out-

plane modes that were neglected in simplified nonlinear 

model given by (14). The response of rotor speed and pitch 
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angle when performing simulations in Bladed is given on Fig.  

19. It shows almost equal “main” dynamic of responses 

compared to responses of simplified nonlinear process. 

Response from Bladed contains though richer contents due to 

high order effects originating, among others, from in-plane 

and out-plane movement of blade sections in reference to 

their stationary position. Controller 9��� would perform 

better if it was designed upon boundaries generated in 

reference to high order linear models obtained from Bladed. 

In this case an introduction of gain scheduling that reduces 

gain in high wind speed range would aid the controller and 

reduce the blade oscillatory movement thus reducing tear-

and-wear. 

 

Fig.  18. Validation on nonlinear model 

 

Fig.  19. Validation in Bladed 

9. CONCLUSION 

QFT proved to be an adequate method for synthesis of rotor 

speed controller despite existing variations in wind turbine 

dynamics. This should not come as a surprise as it was 

mentioned earlier that QFT had been very successfully 

integrated in helicopter and airplane control systems. Usually 

robust controllers are of high order but in this case, due to 

transparency of the QFT and its ability to explicitly address 

the uncertainty of wind turbine dynamics, an efficient 

controller of second order was obtained that uses no other 

aids (feedforward action, gain scheduling, etc.) to achieve 

specified closed loop behavior. Strong point of this method is 

also the ability it gives the user to perceive when the 

combination of process uncertainty and performance 

demands poses to big of an obstacle for chosen control 

structure. In this case it was possible to conclude that 

(judging by Bladed simulation results) introduction of gain 

reducing element scheduled on pitch angle would aid the 

performance of the controller in high wind regime thus 

obtaining a hybrid solution that combines adaptive and robust 

algorithms. 
 

ACKNOWLEDGMENTS 

This work was financially supported by Končar – Electrical 

Engineering Institute and the Ministry of Science Education 

and Sports of the Republic of Croatia. 

 

REFERENCES 

1. Damping of Wind Turbine Tower Oscillations through 

Rotor Speed Control. M. Jelavić, N. Perić, I. Petrović. 

Monaco : s.n., 2007. International Conference on Ecologic 

Vehicles & Renewable Energies. 

2. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi. Wind 

energy handbook. s.l. : John Wiley and sons, 2001. 

3. Modelling and control of variable-speed wind trubine 

drive-system dynamics. P. Novak, T. Ekelund, I.Jovik, B. 

Schmidtbauer. 4, 1995, Control system magazine, Vol. 15, 

pp. 28-33. 

4. In memoriam – The life of prof. Isaac Horowitz. Chait, Y. i 

Jayasuriya, S. prosinac 2005, IEEE Control Systems 

Magazine. 

5. Houpis, C.H., Rasmussen, J.R. i Garcia-Sanz, M. 

Quantitative Feedback Theory – Fundamentals and 

Application. 2. edition. Boca Raton : CRC Press, 2006. 

6. E. L. van der Hooft, P. Schaak, T. G. van Engelen. Wind 

turbine control algorithms, Dowec WP1 - task 3 ECN-C-03-

111. Petten, Netherlands : ECN Wind Energy, 2003. 

7. F. D. Bianchi, H. De Battista, R.J. Mantz. Wind turbine 

control system, principles, modeling and gain scheduling 

design. s.l. : Springer, 2006. 

8. Bossanyi, E. GH Bladed user's manual. Bristol : Garrad 

Hassan and Partners Limited, 2009. 

9. Aranda J., Díaz J.A., Dormido S.,. SISO-QFTIT An 

interactive software tool for the design of robust controllers 

using the QFT methodology USER'S GUIDE. Madrid : 

U.N.E.D Departamento de Informática y Automática , 2005. 

10. Borghesani, C., Chait, Y. and Yaniv, O. The QFT 

Frequency Domain Control Design Toolbox For Use with 

MATLAB. 3. izdanje. s.l. : Terasoft, Inc., 2003. 

11. MIMOQCAD: a Mathematica based multivariable control 

system CAD package. Breslin, S.G., Grimble, M.J., Houpist, 

C.H. 1996. Symbolic Computation for Control (Digest No: 

1996/078), IEE Colloquium on . 

12. Identification of Wind Turbine Model for Controller 

Design. M. Jelavić, N. Perić, I. Petrović. Portorož, Slovenia : 

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Friday

504



 

 

     

 

s.n., 2006. Proceedings of the 12th International Power 

Electronics and Motion Control Conference. pp. 1608-1613. 

 

Appendix A. QFT GUI 

Although several tools exist that offer the possibility of 

interactive QFT controller design (see [9], [10], [11]), an 

attempt was made to implement a simple QFT tool within 

Matlab® environment. As a result QFT GUI application (see 

Fig.  20) was implemented which offers its user the 

possibility to define the process in a structure given by (18). 

Furthermore, sensor and actuator dynamics can also be 

selected. This test version of GUI enables defining of two 

types of specification that were used in this article 

(disturbance rejection, stability margin). Calculate button 

translates given specification on to the Nichols chart (in the 

form of open loop boundaries) where controller design 

commences. The controller is designed interactively as the 

effects of either movement, deletion or addition of zeroes and 

poles are seen on Nichols chart. At any point the user can 

validate quality of controller design in time and frequency 

domain. It is important to stress that the validation is 

performed on the user defined set of linear processes. It is up 

to user to validate if the controller design is adequate on a 

nonlinear process model.  

 

Fig.  20. QFT GUI application 
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Abstract:  The paper deals with the design of the robust PID controller for real uncertain Coupled-Tank 
process in the frequency domain. Only the first independent tank is considered (single-input single-output 
system). Robust controller is designed in two ways. The first approach is performed with the Edge 
Theorem and the Neimark’s D -partition method for the affine model and the second one is performed 
with the modification of the Neimark’s D -partition which ensures desired phase margin. 
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1. INTRODUCTION 

Control of real processes inherently includes uncertainties 
(modeling errors due to linearization and approximation, 
disturbances etc.), which have to be considered in the 
adequate control design. Therefore robustness belongs to an 
important control design qualities: closed loop system 
stability and performance should be guaranteed over the 
whole uncertainty domain, (Vesely et al. 2006). 

There exist various approaches to robust stability analysis 
and robust control design for uncertain linear systems. In this 
paper the frequency domain PID controller design for real 
Coupled-Tank process is considered. Liquid tank processes 
play important role in industrial application such as in food 
processing, filtration, pharmaceutical industry, water 
publication system, industrial chemical processing and spray 
coating (Ramli et al. 2009). Many industrial applications are 
concerned with level of liquid control, may it be a single 
loop level control or sometimes multi loop level control 
(Ramzad et al. 2008). In this paper only the first tank with 
liquid is used (SISO). 

The paper is organized as follows. The next section gives 
details about Coupled-Tank process. Section 3 introduces a 
PID controller design using two approaches. In section 4 
some results of robust PID controller design are presented. 
Several step responses of closed-loop system with proposed 
PID controller are plotted there. Finally, conclusion is given 
in section 5. 

2. COUPLED-TANK PROCESS 

The industrial Coupled-Tank process is one of the real 
processes built for control education and research at Institute 
of Control and Industrial Informatics. The apparatus consists 
of two tanks (T1 and T2 in Fig. 1), which can be coupled 
using valve V12 (the manual valve). Therefore the Coupled-
Tank process with two tanks represents a multi-input multi-

output (MIMO) system for opened valve V12 or two 
independent single-input single-output (SISO) systems for 
closed valve V12. Both tanks are made of Plexiglas. These 
two tanks are mounted on a platform with a metering scale 
before each tank indicating the approximate liquid level in 
tank. Exact liquid level in each tank is measured using an 
electronic sensor. Other components of system are liquid 
basin (reservoir), two pumps (Pump1 and Pump2 in Fig. 1), 
two outlet valves (V1 and V2 in Fig. 1) and electronic circuit 
communicating with LABREG software in computer. This 
software is made for identification and control of real 
processes. The LABREG operates in MATLAB using 
toolboxes SIMULINK, Ident, Control and Real Time. 
Cooperation between Coupled-Tank process and computer 
and LABREG software is ensured using Advantech data 
acquisition card of type PCI 1711. More about LABREG and 
mentioned toolboxes can be found in (Kajan et al. 2007). 

The paper deals with design of robust controller for SISO 
system (valve V12 is closed), consequently there can be used 
one or two independent tanks. Only one tank process is 
considered, therefore the purpose is to control liquid level in 
the first tank by the inlet liquid flow from the first electronic 
DC pump (Pump1). The process input is 1( )u t  (voltage input 

to Pump1) and the output is 1( )h t  (liquid level in the first 

tank – T1). Input power is bounded by interval 0,10  volts 

and output signal is measured using electronic sensor. 1iQ  

and 1oQ  in Fig. 1 denote the inlet and outlet flow rates for 

T1 respectively. Outlet flow is affected by electronic outlet 
valve (V1), which can be set manually from 0 to 10 volts 
(for 0 [V] is closed, for 10 [V] fully opened) and represent 
perturbation. 
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Fig. 1. Coupled-Tank process 

3. PRELIMINARIES AND PROBLEM FORMULATION 

3.1 Robust controller design using the Edge Theorem 

For this theory affine model of the plant is used. It is used 
advantageously because a part of parameters of the real 
process vary dependently. Affine model is in this form 

 
0

1

0
1

( ) ( )
( )

( ) ( )

p

i i
i
p

i i
i

b s q b s
G s

a s q a s

=

=

+
=

+

∑

∑
 (1) 

where 0( ), ( )ib s b s  and 0( ), ( )ia s a s  are polynomials of 

numerator and denumerator and uncertain parameters iq  are 

from interval ,i iq q 
  . 

Each real uncertain parameter iq  varies within a p-

dimensional domain. In other words, the parameter vector 

1, ,T
pq q q =  K  varies in the hypercube (Ackerman 1997, 

Bhattacharyya et al. 1995) 

 { }| , , 1,2,...,i i iQ q q q q i p = ∈ =   (2) 

Alternating minimal ( iq ) and maximal ( iq ) value of iq , we 

obtain the polytope with 2p  vertices. Each vertex can be 
represented by a transfer function with constant coefficients. 
Transfer function (1) describes a polytopic system. 

Consider the controller described by transfer function 

 1

2

( )
( )

( )R

F s
G s

F s
=  (3) 

where 1( )F s  and 2( )F s  are polynomials with constant 

parameters. 

If parameter q  varies within a hypercube, it generates a 

polytopic family of closed-loop characteristic polynomials 
described as follows 

 
[ ]

0 1 0 2

1 2
1

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
p

i i i
i

p s q b s F s a s F s

q b s F s a s F s
=

= +

+ +∑
 (4) 

or in more general form according to (Hypiusová et al. 2007, 
Hypiusová et al. 2008) 

 0
1

( , ) ( ) ( )
p

i i
i

p s q p s q p s
=

= +∑  (5) 

where iq Q∈ . 

Theorem 1 - Edge Theorem (Hypiusová et al. 2007) 

The polytopic family of characteristic polynomials (5) is 
stable if and only if the edges of set Q  are stable. 

The Edge Theorem gives an elegant solution to the problem 
of determining the root space of polytopic systems. 
Therefore the robust stability of such systems can also be 
determined (Bhattacharyya et al. 1995). The stability 
condition for polytopic family of characteristic polynomials 
(5) is given in the following theorem using robust Hurwitz 
stability criteria. Using the Bialas Theorem stability of each 
edge of the polytopic box can be checked. 

Theorem 2 - Bialas Theorem (Hypiusová et al. 2007) 

The polynomial family 

 [ ]{ }( , ) ( ) (1 ) ( ), 0,1a bp s Q p s p sλ λ λ= + − ∈  (6) 

is stable if and only if: 

• ( ), ( )a bp s p s  are stable, 

• the matrix ( ) 1( ) ( )b a
n nH H

−
 has no nonpositive real 

eigenvalues 

where matrices ( )b
nH  and ( )a

nH  are Hurwitz matrices of 

following polynomials 

 0 1

0 1

( ) , 0

( ) , 0

n
b b b bn bn

n
a a a an an

p s p p s p s p

p s p p s p s p

= + + + >

= + + + >

K

K

 (7) 

By applying the Neimark’s D -partition method with Edge 
Theorem, the required stability degree of closed-loop system 
can be guaranteed. The controller coefficients are chosen so 
that the vertices and edges of polytopic system are stable.  

3.2 Robust controller design with desired phase margin 

This approach is in details described in (Hypiusová et al. 
2010a, Hypiusová et al. 2010b), where closed-loop system 
with ( )RG s  (transfer function of PID controller) and ( )G s  

(transfer function of the real plant) is considered. The real 
perturbed plant with unstructured inverse additive 
uncertainties is described as follows (Vesely et al. 2006) 

 1
0 0( ) ( )( ( ) ( ) ( ))ia iaG s G s I w s s G s−= + ∆  (8) 

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Friday

507



where 0( )G s  is nominal model, ( )iaw s  is stable weighting 

scalar transfer function, ( )ia s∆  is normalized matrix of 

unstructured uncertainty ( ( ) 1ia s∆ ≤ ). 

Weighting scalar transfer function must be chosen for all ω  
in accordance with 

 ( ) ( )ia iaw lω ω≥  (9) 

and weighting function ( )ial ω  is the maximum singular 

value of difference 0( ) ( )kG j G jω ω−  for N  ( 1, ,k N= K ) 

known transfer functions: 

 0( ) max ( ( ) ( ))ia M k
k

l G jw G jwω σ= −  (10) 

The nominal model stability is equivalent to the stability of 
the M ∆ -structure. We thus need to derive the robust 
stability conditions using M ∆ -structure for checking the 
stability according to (Hypiusová et al. 2010a, Skogestad et 
al. 2005) as follows 

 0

1
( ( ))

( )M
ia

M s
l

σ
ω

<  (11) 

and 

 0
0

0

( )
( )

1 ( ) ( )R

G s
M s

G s G s
=

+
 (12) 

where ( )RG s  and 0( )G s  are transfer functions of PID 

controller and nominal model. Nominal model has in this 
case the following form 
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∑
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where , ( 1, , )i iB A i N= K  are polynomials of numerator 

and denumerator of N  identified transfer functions of the 
real process (in N  working points). 

Consider transfer function of PID controller 

 
2

( ) D P I I
R P D

K s K s K K
G s K K s

s s

+ +
= = + +  (14) 

The robust PID controller design is performed with the 
modification of the Neimark’s D -partition which ensures 
stability and desired phase margin of the closed-loop system 
with nominal model described in (13) as in (Hypiusová et al. 
2010a). 

The closed-loop system characteristic equation for nominal 
model is 

 01 ( ) ( ) 0RG s G s+ =  (15) 

From (15) the relationship between ( )RG s  and 0( )G s  can be 

obtained 

 0

0 0

( )1
( )

( ) ( )
I

R P D

A sK
G s K K s

G s s B s
= − ⇒ + + = −  (16) 

Using substitution s jω= , real and imaginary part of 

equation (16) are 
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The D -curve in the complex plane C  for parameter PK  can 

be plotted from real part (17) by changing value of ω  step 

by step in interval ( )0,∞ . Similarly it is with imaginary part 

(17), from where D -curve for parameters IK  and DK  can 

be plotted. Parameters of PID controller are obtained in two 
steps. In the first one it is possible to plot D -curve for 1PK  

and DK  (PD controller is obtained) and in the second one 

for parameters 2PK  and IK  (PI controller). 

When a phase margin is considered, the closed-loop system 
characteristic equation (15) can be rewritten according to 
(Hypiusová et al. 2010a, Hypiusová et al. 2010b) 

 01 ( ) ( ) 0j
RG s G s e ϕ−+ =  (18) 

where ϕ  is the angle of desired rotation in radians (phase 

margin) and in this way it is possible to rotate the frequency 
plot. From (18) real and imaginary parts can be obtained, 
which describe the D -curves as 
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−

−
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− + = −
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Parameters of PD and PI controller are chosen from plotted 
D -curves. The final PID controller is represented as series 
connection of PD and PI controller and can be calculated as 
follows 

 

( )
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1 2

2
2 1 2 1

( ) I
R P D P
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K
G s K K s K

s

K K s K K K K s K K
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 

+ + +
=

 (20) 

The first controller (PD) is used for stabilization of system 
and the second one (PI) ensures desired phase margin. 

4. DESIGN OF ROBUST PID CONTROLLER FOR 
COUPLED-TANK PROCESS 

In this case, system step response is examined. Transfer 
function of the system in all three working points is obtained 
from the output step response of open loop system using BJ 
(Box-Jenkins) method of identification. More about BJ 
method of identification can be found in (Pintelon et al. 
2006a, Pintelon et al. 2006b). We consider transfer functions 
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of a liquid level in the first tank (see Fig. 1) obtained by 
identification in three working points: 

WP1 (working point 1): 

 ( ) 2,5 [ ]water pump voltage input voltage V=  

 2,75 [ ]step of water pump voltage in time t to V 

 ( ) 7 [ ]outlet valve voltage perturbation V=  

Transfer function is obtained by BJ method of identification 
as 

 1 2

2,9676 29,9239
( )

816,9049 202,6853 1WP

s
G s

s s

+=
+ +

 (21) 

WP2 (working point 2): 

 ( ) 3,5 [ ]water pump voltage input voltage V=  

 4,5 [ ]step of water pump voltage in time t to V 

 ( ) 9 [ ]outlet valve voltage perturbation V=  

Transfer function is obtained by BJ method of identification 
as 

 2 2

0,7824 7,8848
( )

360,5413 82,2612 1WP

s
G s

s s

+=
+ +

 (22) 

WP3 (working point 3): 

 ( ) 4 [ ]water pump voltage input voltage V=  

 5 [ ]step of water pump voltage in time t to V 

 ( ) 10 [ ]outlet valve voltage perturbation V=  

Transfer function is obtained by BJ method of identification 
as 

 3 2

0,5461 5,5007
( )

297,473 63,8584 1WP

s
G s

s s

+=
+ +

 (23) 

Transfer function of the nominal model is obtained by (13) 
from the above three working points 

 0 2

1,431 14,44
( )

491,6 116,3 1

s
G s

s s

+=
+ +

 (24) 

The respective polytopic (affine) model of the Coupled-Tank 
process is described by 

 0 1 1 2 2

0 1 1 2 2

( ) ( ) ( )
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( ) ( ) ( )

b s q b s q b s
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a s q a s q a s

+ +
=

+ +
 (25) 

where , 1, ,iq i N= K  are uncertain coefficients and 

polynomials of numerator and denumerator are 
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a s s s
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= − −

 

More about practical procedure on how to get the values of 
polynomials of numerator and denumerator can be found in 
(Vesely et al. 2006). 

4.1 Robust controller design using the Edge Theorem 

The robust PID controller is proposed using the Edge 
Theorem approach for the polytopic model defined in (25). 
The required degree of stability α  is 0. Using Neimark’s 
D -partition method the robust PID controller is designed 

 
21,6 4 0,1

( )R

s s
G s

s

+ +=  (26) 

Theorem 2 (Bialas Theorem) verifies stability and it can be 
said that the closed-loop polytopic system with robust 
controller is stable and the achieved degree of stability α  in 
4 vertices is 0,0258. Proposed robust PID controller (26) was 
set on the real process (first tank). Step responses in all three 
working points are depicted in Fig. 2,3,4. 

 

Fig. 2. Step response of closed-loop system in WP1 (the first 
working point) 

 

Fig. 3. Step response of closed-loop system in WP2 (the 
second working point) 
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Fig. 4. Step response of closed-loop system in WP3 (the 
third working point) 

4.2 Robust controller design with desired phase margin 

Consider the transfer function of nominal model as in (24). 
Required phase margin Rϕ  is 45o . In the first step D -curve 

for parameters 1PK  and DK  (PD controller) is plotted. 

These parameters are chosen from stable region above 
magenta line (see Fig. 5) because it is necessary to stabilize 
the system (the parameters need not be chosen only from the 
blue line in this step). 

The PD controller has following coefficients: 1 3,569PK =  

and 0,6849DK = . Poles of characteristic equation of 

closed-loop system with PD controller are 
-0,1332 0,2981j± . 

 

Fig. 5. D -curve for parameters 1PK  and DK  

The next step consists in design of PI controller for nominal 
model with PD controller. Parameters of PI controller need 
to be chosen from plotted desired phase margin 45o  (the 
blue line in Fig. 6). Chosen coefficients of PI controller are 

2 0,3542PK =  and 0,01713IK = . Transfer function of the 

final PID controller is 

 
20,2426 1,276 0,06114

( )R

s s
G s

s

+ +=  (27) 

Poles of characteristic equation of closed-loop system with 
PID controller (27) are -0,0914 0,1398j ±  and -0,0643. 

 

Fig. 6. D -curve for parameters 2PK  and IK  

Fig. 7 and 8 show that the desired phase margin and robust 
stability are satisfied. Proposed PID controller (27) was set 
on the real process. Step responses in all three working 
points are plotted in Fig. 9, 10 and 11. 

 

Fig. 7. Bode characteristics for Coupled-Tank process 
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Fig. 8. Robust stability condition 

 

Fig. 9. Step response of closed-loop system in WP1 

 

Fig. 10. Step response of closed-loop system in WP2 

 

Fig. 11. Step response of closed-loop system in WP3 

5. CONCLUSION 

In this paper two approaches of robust PID controller design 
for real unstable Coupled-Tank process have been presented. 
The first one is Edge Theorem and the second approach is 
based on modification of the Neimark’s D -partition 
method, which ensures not only stability of closed-loop 
system but also desired phase margin. From view of control 
quality, the robust controller design with desired phase 
margin using Neimark’s D -curves is better. Results 
obtained in the paper will be used for control education at 
Institute of Control and Industrial Informatics. Further 
aspects of the studied approach concerning robust controller 
design, closed-loop or open loop identification of Coupled-
Tank process with cascade controller, are under research. 

ACKNOWLEDGMENTS 

The work has been supported by Grant N1/0544/09 and 
APVV-0211/10. 

REFERENCES 

Ackerman, J. (1997). Robust Control – Systems with 
Uncertain Physical Parameters. Springer-Verlag 
London, 406 pp., ISBN 0-387-19843-1. 

Bhattacharyya, S. P., Chapellat, H. and Keel, L. H. (1995). 
Robust Control: The parametric Approach. Prentice 
Hall, 647 pp., ISBN 0-13-781576-X. 

Hypiusová, M. and Osuský, J. (2008). Robust Controller 
Design for Modular Servo System. In: PROCESS 
CONTROL 2008 : Proceedings of the 8th International 
Scientific- Technical Conference. Kouty nad Desnou, 
Czech Republic, June 9-12, ISBN 978-80-7395-077-4. 

Hypiusová, M. and Osuský, J. (2010a). Robust controller 
design for magnetic levitation model. In: AT&P 
Journal Plus. No. 1, pp. 100-104, ISSN 1336-5010. 

Hypiusová, M. and Osuský, J. (2010b). PID Controller 
Design for Magnetic Levitation Model. In: Cybernetics 
and Informatics : International Conference SSKI SAV, 

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Friday

511



Vyšná Boca, Slovak Republic, February 10.-13., ISBN 
978-80-227-3241-3. 

Hypiusová, M., Osuský, J. and Kajan, S. (2007). Robust 
Controller Design Using Edge Theorem for Modular 
Servo System. In: Technical Computing Prague 2007 : 
15th Annual Conference Proceedings, Prague, Czech 
Republic, November 14, ISBN 978-80-7080-658-6. 

Inampudi, N. K. (2009). Developing, Implementing and 
Assessing Coupled-Tank Experiments in an 
Undergraduate Chemical Engineering Curriculum. 
A Thesis presented to the Faculty of the Graduate 
School at the University of Missouri, July. 

Kajan, S. and Hypiusová, M. (2007). Labreg Software for 
Identification and Control of Real Processes in Matlab. 
In: Technical Computing Prague 2007 : 15th Annual 
Conference Proceedings, Prague, Czech Republic, 
November 14., ISBN 978-80-7080-658-6. 

Numsomran, A., Suksri, T. and Thumma, M. (2007). Design 
of 2-DOF PI Controller with Decoupling for Coupled-
Tank Process. In: International Conference on Control, 
Automation and Systems 2007, COEX, Seoul, Korea, 
October 17.-20., pp. 339-344. 

Pintelon, R., Rolain, Y. and Schoukens, J. (2006a). Box-
Jenkins identification revisited-Part II: Applications. In: 
Automatica, No. 42, 2006, pp. 77-84. 

Pintelon, R. and Schoukens, J. (2006b). Box-Jenkins 
identification revisited-Part I: Theory. In: Automatica, 
No. 42, 2006, pp. 63-75. 

Ramli, M. S., Raja Ismail, RM. T., Ahmad, M. A., Mohamad 
Nawi, S. and Mat Hussin, M. A. (2009). Improved 
Coupled Tank Liquid Levels System Based on Swarp 
Adaptive Tuning of Hybrid Proportional-Integral 
Neural Network Controller. In: American Journal of 
Engineering and Applied Sciences 2, No. 4, pp. 669-
675, ISSN 1941-7020. 

Ramzad, M. F. and MD Rozali, S. (2008). Modeling and 
Controller Design for Coupled-Tank Liquid Level 
System: Analysis & Comparison. In: Journal 
Teknologi. No. 48, June, pp. 113-141. 

Skogestad, S., Postlethwaite, I. (2005). Multivariable 
feedback control: analysis and design (second edition). 
John Wiley & Sons, Ltd, 574 pp., ISBN 13 978-0-470-
01167-6 (HB) 978-0-470-01168-3 (PBK). 

Veselý V. and Harsányi L. (2006). Robustné riadenie 
dynamických systémov. Slovenská Technická 
Univerzita v Bratislave,  126 pp., 978-80-227-2801-0. 

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Friday

512
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Abstract: By considering robust tuning of the PI controller for uncertain Integral Plus Dead
Time plant (IPDT) this paper demonstrates possibilities of the new Matlab/Simulink tool
based on the performance portrait method. For plants with parameters de�ned over uncertainty
intervals it enables to guarantee transient responses with speci�ed deviations from ideal shapes
at the plant output and input and to ful�ll additional optimality speci�cation, de�ned e.g.
in terms of the minimal IAE values for the setpoint and disturbance steps, in terms of the
maximal integral gain, etc. In di�erence to the robust tuning methods of the 1st generation
considering typically controller parameters calculated from plant parameters speci�ed by a single
entry, in this new method uncertain plant parameters are speci�ed by two entries characterizing
their extreme values. As the ideal step responses at the plant output monotonic transients are
considered, whereas at the plant input one-pulse step responses consisting of two monotonic
intervals are required.

Keywords: Proportional control, optimal control, robust control, dead time.

1. INTRODUCTION

Tuning of the PI controller for the IPDT plant

F (s) =
Ks

s
e−Tds

Ks ∈ 〈Ksmin,Ksmax〉 ;Td ∈ 〈Tdmin, Tdmax〉
(1)

is frequently treated both in the process control and in
the motion control areas. In connection with appropriate
model reduction techniques it enables to approximate
broad range of processes Åström and Hägglund (2005),
Skogestad (2003). Consequently, high number of di�erent
"optimal" tuning rules based on this model may be found
in the literature O'Dwyer (2006).

From the early beginning of PID control, for the controller
tuning both the analytical (see e.g. Oldenbourg and Sarto-
rius (1944,1951)) as well as experimental methods Ziegler
and Nichols (1942) were used.

When considering tuning rules appropriate for education
& practice, it is to agree with Skogestad (2003) that they
should be 1. well motivated, 2. preferably model-based, 3.
analytically derived, 4. simple and easy to memorize and 5.
work well on a wide range of processes. When continuing
with requirements of Skogestad (2006), controller tuning
should enable achieving trade-o� between: fast speed of re-
sponse, good disturbance rejection, stability & robustness,
less input usage and less sensitivity to measurement noise.

But, on the other hand, also the experimental controller
tuning played always an important role, what may e.g.
be demonstrated by the high popularity of the early tun-
ing by Ziegler and Nichols (1942) that still gives inspira-

tion for many new approaches based on the accumulated
knowledge and broad simulation possibilities Åström and
Hägglund (2004), Hägglund and Aström (2002). Of course,
except of the analytical design the main requirements on
such tuning remain mostly the same as above.

In this paper we are going to show that the requirements
of robust control may be combined with high require-
ments on control performance, when the proposed tun-
ing will guarantee speci�ed performance not only for the
nominal working point, but for any loop parameters of
the uncertainty intervals in (1). Similarly as Åström and
Hägglund (2004),Hägglund and Aström (2002), or Ziegler
and Nichols (1942) the new method is based on carry-
ing out series of simulation experiments on some sample
of representative processes under requirement of chosen
shape-related performance measures. Such an approach
can today be easily performed by using tremendous power
of computers for organizing and evaluating experiments, as
well as for processing, visualizing, storing and recalling the
achieved results for large number of control loops typical
in practice. Thereby, one can easily extend spectrum of
di�erent qualitative & quantitative properties that will be
evaluated and stored in computer database, to be chosen
"on demand" and in di�erent combinations by engineer
carrying out design requiring particular speci�cations.

The paper is structured as follows. To characterize basic
properties of the �rst generation of robust controller tun-
ing methods and to enable their systematic comparison
with the new proposed method, in Chapter 2 several tun-
ing methods are discussed. In Chapter 3, basic require-
ments on robust controller tuning are summarized and
in Chapter 4 performance measures for robust controller
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tuning in the time domain are introduced. In Chapter 5
the performance portrait for plant (1) is described and
then used in Chapter 6 for controller tuning based on
minimization of IAE values of setpoint step responses, or
maximization of the integral gain values subject to shape
related constraints for the plant input and output. The
achieved results are compared with those corresponding
to the �rst-generation robust tuning methods. Basic con-
clusions are summarized in Chapter 7.

2. FIRST GENERATION OF ROBUST
CONTROLLER TUNING METHODS

Next we will brie�y introduce several robust tuning meth-
ods that may be used for the IPDT plant and are inter-
esting with respect to the paper aims.

2.1 Analytical controller design - TRDP

Based on generalization of the double real dominant closed
loop pole Oldenbourg and Sartorius (1944,1951) to the
triple real dominant pole (TRDP), whereby the PI con-
troller is extended by the setpoint weighting according to

U(s) = Kc [bW (s)− Y (s)] +
Kc

sTi
[W (s)− Y (s)] (2)

interesting nominal tuning was analytically derived both
for regulatory as well as tracking control tasks in Víte£ková
and Víte£ek (2008a), Víte£ková and Víte£ek (2008b). The
setpoint weighting can be shown to be equivalent to using
pre�lter

Fp(s) =
bTis+ 1

Tis+ 1
(3)

with Ti being the integral time constant. The approach is
based on solving closed loop characteristic equation for a
triple pole s0 that for

A(s) = s2Tie
Tds +KrKs(Tis+ 1)

Ȧ(s) = 2sTie
Tds + s2TdTie

Tds +KrKsTi
Ä(s) = 2Tie

Tds + 4sTdTie
Tds + s2T 2

dTie
Tds

(4)

requires to ful�ll

A(s0) = 0; Ȧ(s0) = 0; Ä(s0) = 0 (5)

Solution of the last equation in (5) yields root

s0 = −(2−
√

2)/Td (6)

for which from the �rst two equations in (5) one gets stable
tuning with parameters

Kc = 2(
√

2− 1)e
√
2−2/(KsTd) ≈ 0.461/(KsTd)

Ti = (2
√

2 + 3)Td ≈ 5.828Td
(7)

For the root s0 = −(2 +
√

2)/Td the resulting values
Kc = −0.1588/(KsTd);Ti = 0.17157Td with negative loop
gain do not guarantee the closed loop stability.

Zero of the closed loop transfer function

Fwy =
KsKc(Tis+ 1)

s2eTds +KsKc(Tis+ 1)
(8)

can be cancelled by the pre�lter denominator in (3) that
removes overshooting typical for one-degree-of-freedom

PI controllers. Simultaneously, by cancelling one of the
triple pole (6) by the pre�lter numerator (3) that further
accelerates the transient responses, one gets the setpoint
weighting coe�cient

b =
1/ |s0|
Ti

=
2−
√

2

2
≈ 0.293 (9)

The corresponding maximal sensitivity and the comple-
mentary sensitivity peaks are Ms = 1.70;Mt = 1.44.

Examples of achieved transients compared with other
tuning approaches are given in Figs. 2-3, 6-7 and 8-9. Basic
advantage of the nominal tuning is given by compactness
and elegance of its derivation. Though the method gives
fast and smooth responses both in regulatory as well
as tracking control, its extension to uncertain plants (1)
and balancing di�erent requirements on the setpoint and
the disturbance response transient shapes at the plant
input and output make already problems - the method
does not include free tuning parameter enabling dynamics
modi�cations.

2.2 SIMC PI Controller

As the 2nd example illustrating the analytical controller
tuning we will mention the popular SIMC PI-rule (ab-
breviation from Simple/Skogestad Internal Model Con-
trol) for fast response with good robustness Skogestad
(2003).

Firstly, by considering direct controller synthesis Rivera
et al. (1986), Skogestad (2003) leading for a general �rst
order plus dead time (FOPDT) plant

Fs =
Kse

−Tds

s+ 1/T1
(10)

to a simple �rst-order setpoint-to-output closed loop trans-
fer function with time constant τc

Fwy =
R(s)F (s)

1 +R(s)F (s)
=

R(s)Ks

(s+ 1/T1)eTds +R(s)Ks
(11)

Fwy
!
=

1

1 + τcs
e−Tds (12)

the PI controller

R(s) =
s+ 1/T1

Ks(τc + Td)s
(13)

is derived, whereby the exponential term may be elimi-
nated by using its �rst-order Taylor series approximation

e−Tds ≈ 1− Tds (14)

what requires to use τc ≥ Td . For stable 1st order systems
it is usually chosen Ti = T1 and Kc = 1/(KsT1(τc + Td)).
However, for integral systems, when T1 → ∞, solution
(13) is actually approaching the proportional controller,
what leads to poor rejection of input (load) disturbances.
Of course, it is still possible to choose PI controller and to
look for its appropriate tuning by other means, but it is
no more the above mentioned direct controller synthesis of
the IMC control. Therefore, the �rst question arises if the
abbreviation SIMC is still appropriate for integral plants.
In Skogestad (2003) tuning for such systems is derived by
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analyzing conditions of the critically damped closed loop
system with the PI controller and integral delay-free plant
(Td = 0), when the double real dominant pole may be
achieved by choosing

Ti = 4/(KsKc) (15)

Finally, to consider dead time, the closed loop time con-
stant in (12) was chosen as τc = Td what yields

Kc = 1/(2KsTd);Ti = 8Td (16)

Such tuning that might be considered as simpli�cation
of the above method (double real dominant pole instead
of the triple one) is not only simple, easy to remember
but for the lag dominant plants it brings a reasonable
improvement of the input-disturbance dynamics in com-
paring with the traditional IMC tuning rules and also with
other tested methods (see Figs. 2-3, 6-7 and 8-9). It yields
a reasonably fast response with moderate input usage and
good robustness margins both in regulatory as well as
tracking control. The analytical controller derivation is
no more as compact as in the above case and as it was
already mentioned above, it is no more the IMC control.
The PI controller was not analytically derived, but chosen.
Tuning of the integral part was made for delay-free system
what leads to a question, in which range of the dead-
time values it will keep the expected performance. But,
on the other hand, together with the "half-rule" enabling
to deal e�ectively with more complex plants it shows on
necessity to link the controller design to approximative
loop modelling and detecting its weakest points by the
possibly simplest means.

When comparing integral loops with controller (16) with
the IMC control of stable plants, it is also to note that
for the integral plant the output setpoint step responses
typically have overshooting, whereas in controlling stable
1st order plants (10) the closed loop step responses (12)
are monotonic both at the plant input and output. When
aiming to monotonic setpoint step responses at the plant
output also in controlling integral plants, it is again
possible to introduce setpoint weighting (2-3). However,
since the method does not give information about the
dominant closed loop poles, the calculation based on
cancelling one real closed loop pole requiring to choose

b = 1/ |s1|Ti = 0.702 (17)

does no more guarantee purely monotonic output (due
to the obviously complex remaining dominant closed loop
pole). So, a setpoint weighting guaranteeing purely mono-
tonic output can be determined just experimentally as

b = 0.592 (18)

What is again to be stressed is that the tuning is typically
done just in a nominal point. By using speci�cations
in the frequency domain, it is indeed shown that for
integrating processes the suggested settings (16) give the
gain margin GM = 2.96, the phase margin PM = 46.9◦,
the maximal sensitivity and the complementary sensitivity
peaks Ms = 1.70;Mt = 1.30, and the maximum allowed
time delay error with respect to stability is 1.59Td, but the
controller tuning does not directly depend on the extreme
values of the plant parameters in (1). The method neither
includes free parameter enabling to balance dynamics of
the setpoint and disturbance responses.

2.3 Non-Convex Optimization Based PI Control

As the 3rd tuning approach to be compared with the newly
developed tuning the numerical non-convex optimization
method Åström et al. (1998) will be mentioned. Based on
the frequency-domain loop speci�cations by the maximum
and complementary sensitivity peaks Ms = 1.40 and
Mt = 1.45 it gives

b = 0.66;Kc = 0.282/(KsTd)

Ki =
Kc

Ti
=

0.0418

KsT 2
d

⇒ Ti = 6.746Td
(19)

The optimization problem used for derivation of above
results was speci�ed as follows: �nd controller parameters
that maximize the integral gain Ki = Kc/Ti subject to
the constraints that the closed-loop system is stable, the
Nyquist curve of the loop transfer function satis�es the
encirclement condition and that it is outside a circle that
has the Ms and Mt circles in its interiors. Although it
might seem at the �rst glance that standard optimiza-
tion routines yield su�cient tools to solve this problem
numerically, it was shown that "the optimization problem
is nontrivial because the constraint, which is in�nite di-
mensional, de�nes a set in parameter space which is not
convex" Åström et al. (1998) and as a result the found
controller parameters do give IAE values (Figs. 2-3, 6-7
and 8-9) that are much larger than those corresponding
to other tested approaches. In the nominal case they do
not allow achieving monotonic output setpoint step re-
sponse even when choosing b = 0. But, they give relatively
good responses for the relatively large deviation from the
nominal case. So, they give a nice illustration of the fact
that despite apparent simplicity the dynamics of the PID
control is still tricky enough to be solved by standard,
as well as specialized optimization routines. The dynam-
ics speci�cation in the frequency domain that is usually
su�cient in dealing with robust stability problem seems
not to be the best alternative for characterizing higher
performance requirements in terms of the deviations from
the shape related properties de�ned through the time
domain responses.

2.4 AMIGOs tuning for PI Controller

Obviously being aware of too conservative tuning (19), in
Hägglund and Aström (2002) new tuning rules were pub-
lished based on Approximative Ms-constrained Integral
Gain Optimization (AMIGO). These results corresponding
to the maximum and complementary sensitivity peaks
Ms = 1.48 and Mt = 1.39 extended by the choice b=0
to achieve monotonic step responseswill be used, when

b = 0;Kc = 0.35/(KsTd);Ti = 7Td (20)

The corresponding transient responses for setpoint and
disturbance steps are in Figs. 2-3, 6-7 and 8-9. The nominal
properties are slightly improved and by choosing b=0 the
setpoint step responses are nearly monotonic at the plant
output.

3. NEEDS FOR ROBUST CONTROLLER DESIGN

The most important feature of all above mentioned de-
sign methods is that they give robust tuning based on a

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Friday

515



single nominal point. The fact that real plants have just
exceptionally properties characterized by �xed completely
known point, is considered just indirectly, by choosing
controller tuning that is su�ciently conservative to be
usable also in the case of possible plant-model mismatch.
So, possible uncertainty due to �nite measurement pre-
cision or due to nonlinear character of real processes is
paid by conservativeness of the tuning. All methods for
controller tuning based on single set of parameters of the
nominal plant model must be su�ciently robust against
plant model uncertainties to be usable in practice. But,
with exception of possible parameter changes allowed with
respect to the robust stability, all the up to now mentioned
methods do not directly give information specifying, how
far the model parameters may deviate from the nominal
point to keep the speci�ed plant dynamics. They are just
working with a conservativeness degree chosen equally for
all possible applications. Some �exibility of the non-convex
optimization in Åström et al. (1998) allowed by choice
of the maximal sensitivity Ms is far from the originally
proclaimed aims ". . . to have a design parameter to change
the properties of the closed-loop system. Ideally, the pa-
rameter should be directly related to the performance of
the system, it should not be process oriented. There should
be good default values so a user is not forced to select
some value. . .The design parameter should also have a
good physical interpretation and natural limits to simplify
its adjustment." All above mentioned methods are working
withMs values from a relatively narrow range 1.4-1.7, but
despite to this their robustness and performance reason-
ably di�er.

4. PERFORMANCE MEASURES FOR ROBUST
CONTROL

Next, we are going to look for more appropriate tuning
parameter(s) and method enabling to ful�l aims of ro-
bust control without leading to unnecessarily conservative
tuning. From the performance point of view, at the plant
output the expected dynamics is frequently speci�ed by
the setpoint step responses yielding monotonic transients.

The ideal continuous signal at the plant input giving
after integration by the plant dynamics monotonic output
will be denoted here as the one-pulse control. It may be
characterized as a pulse having one extreme point that is
dividing the overall transient into two monotonic control
intervals.

Both such shape-related properties were, however, just
rarely in focus of contemporary control research. Mono-
tonic control together with a performance index for its
evaluation was e.g. mentioned in Åström and Hägglund
(2004), Hägglund and Aström (2002). One of recent re-
views on PID control Keel et al. (2008) is mentioning just
output non-overshooting control, without discussing pos-
sible speci�cations at the plant input and output that may
be much harder. This is consequence of the development
of last decades, when methods applied were dominated
by the mathematical convenience and concentrated mostly
on traditional performance criteria like gain margin, phase
margin, maximum sensitivity,H∞ norm, ISE, etc. Because
of lacking analytical tools, the controller will be robustly
tuned by using numerically derived areas of parameters

corresponding to the above mentioned shape-related prop-
erties. The aim is to expand such nice dynamics of the
nominal case as e.g. given by the tuning (7-9) that si-
multaneously ful�llis requirements on ideal shapes both
at the plant input and output, but corresponding just to a
single point with exactly known plant parameters to plant
parameters known over uncertainty intervals Huba (2009),
Huba et al. (2009), Huba (2010).

4.1 Ideally nonovershooting, monotonic and one-pulse
responses

By its nature, de�nitions of the one-pulse control may
be based on de�nition of the monotonic output control.
This represents subset of non-overshooting control that
represents subset of stable control.

The output transients y(t) with y(0) = 0 corresponding to
the setpoint step, w = const 6= 0 are classi�ed according
to validity of

y(t)/w ≤ 1,∀t ∈ (0, tsim) (21)

as non-overshooting control.

When ful�lling relations
0 ≤ y(t1)/w ≤ y(t2)/w ≤ 1;∀0 ≤ t1 < t2 ≤ tsim (22)

the output response may be denoted as the monotonic
control and in the case of the output ful�lling (22) and
the input ful�lling

sign(u̇(t1))sign(u(tm)) ≥ 0,∀t1 ∈ 〈0, tm〉 ∪
∪sign(u̇(t2))sign(u(tm)) ≤ 0,∀t2 ∈ 〈tm, tsim〉 (23)

the dynamics may be denoted as one-pulse control. For
all that u(tm); tm ≥ 0 corresponds to the maximal control
signal amplitude during transient and tsim represents sim-
ulation time that should be larger than maximal possible
settling time.

Since the settling time used for characterizing speed of
output transient strongly depends on the de�ned measure-
ment precision (given e.g. by ε), the much less dependent
IAE (Integral of Absolute Error) de�ned as

IAE =

∞∫

0

|e(t)| dt (24)

will be used as the time-related performance index for
quantitative evaluation of responses.

4.2 Amplitude deviations from ideal shapes

In practice, but also in case of computer simulation, it has
sense to weaken the above conditions on non-overshooting
control by introducing some tolerable overshooting de�ned
by new small positive constant

ε > 0 (25)

and to �nd in this way controller parameters corresponding
to

y(t)/w ≤ 1 + ε,∀t1 ∈ (0, tsim) (26)

E.g. by choosing ε = 0.01, the setpoint step responses
with overshooting up to 1% of the setpoint value w will
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be tolerated and included under denotation as the non-
overshooting control. In this paper this approach will
only be used for ε ≤ 0.1, because responses with larger
overshooting may also be achieved in other ways (e.g.
without using setpoint weighting) and so the design should
consider also other alternatives.

A continuous nearly monotonic signal y(t) with the initial
value y0 = y(0) and with the �nal value y∞ = y(∞) will
be denoted as εy -monotonic when it ful�lls condition

[y(t)− y(y − T )] sign(y∞ − y0) ≥ −εy
T ≤ t <∞, T ∈ (0, Tmax),∀Tmax > 0

(27)

Thereby, in order not to prolong the time required for
testing with any positive Tmax, this has to be chosen to
enable capturing su�cient part (e.g. half-period) of the
superimposed signal. Number of samples that need to be
tested Huba (2010) may be decreased, if all subsequent
local extreme points ful�ll condition

[yle,i+1 − yle,i] sign(y∞ − y0) ≥ −εy; i = 1, 2, 3, . . . (28)

The amplitude deviations from one-pulse control (23) are
based on evaluating amplitude deviations from monotonic-
ity over both monotonic intervals before and after the
dominant extreme point u(tm); tm ≥ 0.

Non-overshooting speci�cations (not distinguishing be-
tween non-overshooting and monotonic control) exist also
in the frequency domain (see e.g. Keel et al., 2008) but
their application is extremely complicated, especially when
speaking about dead time systems.

4.3 Integral deviations from ideal shapes

Speci�c integral measure for deviations from monotonicity
was introduced by Åström and Hägglund (2004), Hägglund
and Aström (2002). Here, we will prefer new measures
for deviations from monotonic and one-pulse shapes that
may be easily tested numerically, by evaluating simulated
or experimentally measured transients corresponding to
the setpoint and disturbance step responses and are also
appropriate for constrained control.

To evaluate control e�ort required to achieve the re-
quired output behavior, Total Variance (TV) criterion was
proposed Skogestad (2003), Skogestad and Postlethwaite
(2007) de�ned as

TV =

∞∫

0

∣∣∣∣
du

dt

∣∣∣∣ dt ≈
∑

i

|ui+1 − ui| (29)

Under non-perfect control it is not easy to be evaluated
analytically. So, typically, its values are computed by
simulation after appropriate discretization with sampling
period as small as possible. According to Skogestad and
Postlethwaite (2007) in Matlab it may be simple computed
by the command sum(abs(diff(u)).

Very simple integral measure for evaluating deviations
from strict monotonicity de�ned for the plant output y(t)
with the initial value y(0) and the �nal value y(∞) by
modi�cation of the TV criterion will be denoted here as
the TV0 criterion Huba (2010)

TV0 =
∑

i

|yi+1 − yi| − |y(∞)− y(0)| (30)

TV0 = 0 just for strictly monotonic response, else TV0 > 0.

In controlling unstable and integral plants the number
of signi�cant control pulses cannot decrease below the
number of unstable poles Huba (2009), Huba (2010).
To stress contribution of the superimposed oscillation in
systems with 1P dominant control it is then appropriate
to work with the TV1 criterion de�ned as

TV1 =
∑

i

|ui+1 − ui| − |2um − u(∞)− u(0))| ≥ 0 (31)

This gives zero values just for strictly 1P control signal
and may be applied also to constrained control signal.
For control signals with superimposed higher harmonics
it takes positive values.

Graphically represented in the plane of loop parameters,
together with quantitative measures, such properties will
be giving performance portrait of particular control loop.
In this way, the new approach continues in developing
trends recommended e.g. by Ackermann (2002)

5. CLOSED LOOP PERFORMANCE PORTRAIT (PP)
AND ROBUST CONTROLLER DESIGN

The closed loop PP represents information about the loop
performance corresponding to the setpoint and the dis-
turbance step responses expressed over a grid of (possibly
normalized) loop parameters including all possible working
points. By containing information about required loop
properties for di�erent loop paramterers, the PP may be
used both for optimally choosing the nominal controller
tuning for a comletely known plant, or for the robust
controller tuning of a plant with interval parameters.

For a loop represented by a parameter vector
P = {p1, p2, . . . pS , pS+1, pS+I} (32)

with the dimension
D = S + I (33)

each entry of the �rst subset of parameters pi; i = 1, . . . , S
is given as a signle value that has to be �xed during the
controller tuning.

There may also exist some uncertain (plant) parameters
pi ∈ 〈pimin, pimax〉 ; i = S + 1, . . . , S + I (34)

that vary over some (known) intervals. Next, we de�ne
such limits also for the �rst subset of parameters (e.g.
by some preliminary robust stability analysis method), so
that all parameters may be expressed in the above form.

In computation of the PP all parameters pi take just
discrete ni + 1 levels

pi,j = pimin + (pimax − pimin)j/ni;
j = 1, 2, . . . , ni;ni > 1; i = S + 1, . . . , S + I

(35)

Both the nominal as well as the robust control design may
now be carried out in two ways: as determination of an
optimal controller parameter set, or as a determination
of an optimal working point of a controller expressed by
means of the plant parameters vectors. When the number
of the controller parameters exceeds number of the plant
parameters, combination of both approaches is possible.
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When e.g. working with the uncertain plant model (1), the
controller (2- 3) is speci�ed by three parameters b,Kc, Ti.
In addition to the plant parameters Ks and Td, spec-
i�cation of the setpoint response (12, 13) additionally
requires determination of at least one time constant τc.
It means that in total there are 6 parameters that de-
termine the resulting dynamics. If two of them, Ks ∈
(Ksmin,Ksmax);Td ∈ (Tdmin, Tdmax) are uncertain, the
task of the control design may be formulated as:

a) to �nd directly the controller parameters b,Kc, Ti, or

b) for the controller parameter de�ned by formulas intro-
duced ich Chapter 2 to �nd an appropriate location of the
operating point Ks0, Td0 and the free design parameters b.

Both has to be done in such a way that over all grid points
corresponding to chosen tuning and to all possible values
of the uncertain interval parameters the required shape-
related performance measures will be achieved. The nec-
essary amout of computation and the achieved precision
will obviously depend on the level of quantization and on
the choice of the limits introduced for the free parameters
that have to be determined.

PP required for such a design may be generated by sim-
ulation, or by real time experiments. When it is based on
normalized parameters, it may then be repeatadly used for
di�erent tasks with di�erent values of particular loop pa-
rameters. Although such PP generation may be connected
with numerical problems, especially those related to the
nature of grid computations, when one has to balance pre-
cision of achieved results (quantization level in considered
grid) with the total number of evaluated points and the
corresponding computation time, it gives very promising
results especially when dealing with dead time systems.

The �rst attempt to analyze optimal robust tuning of
the IPDT plant by the performance method was done by
Huba et al. (2009) in 2D space of normalized parameters
K = KcKsTd and Ωf = Td/Ti. The setpoint weighting
b has been chosen as minimum of the optimal nominal
values calculated from the two above parameters over the
uncertainty set, what was leading to slightly conservative
tuning. Now, the setpoint weighting will be considered
as the third independent coordinate and the performance
portrait will be generated over grid of points in 3D with the
uncertainty subspace given by the coordinates vector K =
KcKsTd; τi = Ti/Td; and parameter b representing the
third coordinate. The integer variable describing particular
levels of this parameter will be displayed in the following
�gures as k.

6. COMPARATIVE ANALYSIS OF PI TUNINGS

6.1 Nominal Tuning for min IAE

The simplest strategy for designing robust controller tun-
ing seems to be to �nd such controller parameters b,Kc, Ti
that will guarantee for all possible plant parameters (1)
minimal mean IAE values subjected to amplitude or inte-
gral deviations on the plant input and output.

Fig. 1 shows several windows of one layer (with k = 16)
of the 3D performance portrait calculated for the setpoint
step responses over 27x27x21 points for K ∈ 〈0.1, 1.4〉 ;

Fig. 1. One layer of the PP ( k = 16) calculated for the
setpoint step responses over 27x27x21 points and con-
taining the optimal nominal tuning corresponding to
min IAE. Note the similarities between the amplitude
and integral measures for the plant output and input

τi ∈ 〈3.5, 15.5〉 ; b ∈ 〈0, 1〉. The position of the optimal
operating point gives minimal IAE value for the tolerated
output amplitude deviation from monotonicity and input
amplitude deviation from one-pulse control εy = εu =
10−3.

By comparing the amplitude and integral deviations from
ideal shapes it is possible to conclude that usually it would
be enough to work with one set of such measures, whereby,
due to their simplicity, the integral measures could be
preferred and the amplitude deviations could be estimated
as

εy ≤ TV0(y)/2; εu ≤ TV1(u)/2 (36)

The identity holds just then when the analyzed transition
has exactly one additional pulse with the amplitude given
by the particular value of ε.

The setpoint and disturbance responses in Fig. 2 and Fig.
3 corresponding to the found optimal parameters

Kc = 0.45;Ti = 10.88; b = 0.75 (37)
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Fig. 2. Setpoint step responses at the plant output and
input corresponding to the optimal tuning according
to Fig. 1 (red) compared with TRDP (7-9), SIMC (16)
and non-convex optimization (19).

do not represent an absolute optimum. By broadening the
PP to larger integral time constants and by increasing
number of grid points (decreasing the quantization step),
the identi�ed optimal solutions tend to those correspond-
ing to pure P control and Ti → ∞. This trivial handicap
(with respect to the disturbance response) can be avoided
by optimizing weighted sum of the setpoint and distur-
bance responses. But already without such modi�cation,
the achieved results show that the new method enables
to optimize the setpoint responses by keeping acceptable
disturbance response.

6.2 Nominal Tuning for max Ki

Next we are going to compare the new Performance
Portrait method with the optimization based approaches.
By their numerical procedures both approaches are very
close each other. Similarly as in the PI controller tuning by
the non-convex optimization Åström et al. (1998), or by
its later modi�cation Hägglund and Aström (2002), also
the PP method will be used to �nd the maximal integral
gain, but instead of the previously considered constraints
on the maximum sensitivity, the search will now be subject
to the shape related constraints puts on the plant input
and output step responses.

Fig. 3. Load-disturbance step responses at the plant out-
put and input corresponding to the optimal tuning
according to Fig. 1 (red) compared with TRDP (7-9),
SIMC (16) and non-convex optimization (19).

Fig. 4 shows several windows of one layer of the 3D per-
formance portrait from the above example corresponding
to the location of the optimal nominal point yielding

Kc = 0.65;Ti = 4.42; b = 0 (38)

The corresponding setpoint and disturbance responses in
Fig. 6 and Fig. 7 show that this approach does not give the
absolutely best setpoint response (this was not required),
but the achieved disturbance response is already the abso-
lutely best one. Again, the look up of the optimal tuning
was fully based on the performance portrait corresponding
just to the setpoint step response. Although the TV1 values
of the disturbance response are relatively close to the
absolute minimum, when necessary, this parameter may
be further improved by considering also the PP of the
disturbance response.

Transients in Fig. 6 and Fig. 7 show that the best nominal
setpoint step responses are achieved by the SIMC tuning
that also gives relatively good disturbance responses.

Surprisingly, the disturbance responses corresponding to
the non-convex optimization NCON Åström et al. (1998),
or the AMIGOs tuning Hägglund and Aström (2002) de-
rived by optimization for the optimal disturbance response
(maximal Ki gain) give the worst IAE results.
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Fig. 4. The �rst layer (k = 1) of the PP calculated for the
setpoint step responses over 27x27x21 points for K ∈
〈0.1, 1.4〉 ; τi ∈ 〈3.5, 15.5〉 ; b ∈ 〈0, 1〉 and indicating
the optimal nominal tuning corresponding to max
Ki corresponding to the tolerated output amplitude
deviation from monotonicity and input amplitude
deviation from one-pulse control εy = εu = 10−3. Note
the similarities and di�erences between the amplitude
and integral measures for the plant output and input.

6.3 Robust Tuning for max Ki

The seemingly bad results of the nominal tuning based
on the nonconvex optimization subject to sensitivity con-
straints may be explained by considering interval plant
parameters. Consider e.g. plant with the dead time uncer-
tainty

Tdmin = 0.3;Tdmax = 1.0 (39)

and the corresponding robust controller tuning. Since
the uncertain parameter Td is included both in the PP
parameter K = KcKsTd, as well as in τi = Ti/Td, all
possible operating points given by the optimal controller
tuning

Kc = 26;Ti = 1; b = 0 (40)

sweep in the corresponding layer of PP in Fig. 5 parabolic
curve segment. All its points need to satisfy the above
given tolerances on the deviations from the output mono-
tonicity and input one-pulse response ( εy = εu = 10−3).

Fig. 5. The �rst layer (k = 1) of the PP calculated
for the setpoint step responses over 27x27x21 points
for K ∈ 〈0.1, 1.4〉 ; τi ∈ 〈3.5, 15.5〉 ; b ∈ 〈0, 1〉 and
displaying the amplitude and integral deviations from
monotonicity at the plant output and from the 1P
at the plant input (above) and from the output
IAE values (below); The Uncertainty Curve Segment
corresponding to Td ∈ 〈0.3, 1.0〉 and εy = εu = 10−3

satis�es to the requirement Ki = Kc/Ti
!
= max.

For both limit values of Td show Fig. 8 and Fig. 9 that
the new method gives the best disturbance responses
by simultaneously keeping the shape related performance
measures for the setpoint step responses.

All previously mentioned method were tuned around the
symmetrically chosen nominal operating point

Td0 = (Tdmin + Tdmax)/2 = 0.65 (41)

The TRDP method that seems to be slightly conservative
in the nominal case gives now good performance over
the whole considered uncertainty interval, just for larger
di�erence between extreme dead time values it would
already lead to oscillatory behavior.

SIMC method is the best one for Td = Tdmin, but for Td =
Tdmax it already leads to oscillatory behavior what could
be at least partially compensated by non-symmetrical
choice of the nominal operating point. The PP method
could be used to �nd new position of the operating point
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Fig. 6. Setpoint step responses at the plant output and
input corresponding to the optimal tuning according
to Fig. 4 (red) compared with TRDP (7- 9), SIMC
(16) and non-convex optimization (19).

symmetrizing deviations corresponding to the limit dead
time values.

The NONC and AMIGOs tuning lead for extreme dead
time values to surprisingly better performance with lower
deviations from ideal schapes than in the nominal case.

7. CONCLUSIONS

New control design method based on amplitude and in-
tegral deviations of the transient responses at the plant
input and output from their ideal shapes was proposed
and illustrated by the frequently treated task of the PI
controller tuning in this paper.

The carried out comparative analysis including several
�rst-generation robust tuning approaches for the IPDT
uncertain plant has shown their typical features: in some
context they may give excellent properties, just to know
when, how and which controller tuning and the operating
point have to be used. The new approach showed to be
much more e�ective and e�cient than the approaches
based on the plant characteristics in the frequency do-
main in all analyzed situations. Whereas the traditional
methods are not only typical by a preprogrammed degree
of conservativeness and they also do not give information,

Fig. 7. Load-disturbance step responses at the plant out-
put and input corresponding to the optimal tuning
according to Fig. 2 (red) compared with TRDP (7-
9), SIMC (16) and non-convex optimization (19).

how the operating point should be chosen with respect
to uncertainty intervals of the considered uncertain pa-
rameters the new method directly gives solution optimally
�tting the speci�ed performance measures without any
redundant conservativism for all possible operating points
speci�ed by the uncertainty intervals, or indicates that the
speci�ed performance may not be achieved by any tuning
of the speci�ed controller.

The new method avoids the second step of the tradi-
tional approach, when, after deciding, how the controller
parameters should be expressed by means of the plant
parameters, for plants with parameters taking values from
an uncertainty interval it is not clear, how to choose the
operating point in order to get the results that are the
optimal for all possible values of the uncertain parameter.

In the comparative analysis it was shown that with respect
to symmetry of the deviations from ideal shapes at the
plant input and output an intuitive assignment of the
operating point of a particular parameter to the centre of
its uncertainty interval may not give satisfactory results. It
is e.g. important for the SIMC tuning that gives excellent
responses around the nominal operating point, but it is
non-symmetrically sensitive to the dead-time uncertainty,
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Fig. 8. Setpoint and disturbance steps for Td = Tdmin;
εy = εu = 0.02.

Fig. 9. Setpoint and disturbance steps for Td = Tdmax;
εy = εu = 0.02.
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what consequently requires non-symmetrical choice of the
nominal operating point over the uncertainty interval.

On the other hand, the TRDP method is able to guarantee
output-monotonic and input-one-pulse transients for a
broad neighborhood around the nominal working point,
whereby by increasing deviation from the nominal point
the conservativeness of the tuning decreases.

The robust tuning based on non-convex optimization
(NONC) does not allow monotonic output step responses
even in the nominal case, but the shape of responses is
rather robust against dead-time perturbation and with
increased deviation from the nominal case the performance
improves what could explain motivation leading to this
design. Its modi�ed version AMIGOs removes the high
overshooting of the nominal setpoint step responses and
still gives relatively robust responses in the perturbed
situations.

Analysis of the new approach to the robust PI controller
tuning based on experimental identi�cation of parameter
areas corresponding to tolerable deviations from output-
monotonic and input-one-pulse control clearly showed that
the new method represents new generation of optimal
tuning approaches that are able to guarantee believably
chosen performance requirements for all considered loop
parameters. So it is possible to avoid sti� character of the
�rst-generation tuning formulas that may not only be too
conservative, but also too sensitive in some applications.

Since the new method fully relies on a computer support,
its use may be very simple and besides of the recommended
tuning a lot of additional information characterizing the
optimal solution and the overall context of the proposed
tuning may be o�ered. Its drawback is that the designer
is no more able to fully rely just on his "pen and paper",
but the same happens in many other situations in our life.

For practical use, the above analysis of optimal controller
tuning should yet be completed by analysis of the control
constraint e�ects, since the parallel integral control is well
known by the integrator windup that can fully destroy the
control dynamics.
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Abstract: This paper presents the robust decentralized controller design in the frequency domain for stable 
plants. Robust condition based on M-delta structure is included in controller design. In controller design for 
MIMO systems equivalent subsystem method is used. For subsystems of equivalent model, frequency 
method ensuring desired phase margin is applied. Design procedure is illustrated on two tanks process.  

 

1. INTRODUCTION 

PID controllers are standard and well-proven solution for the 
majority of industrial applications. Over the years, a plenty 
of PID tuning rules were developed see e.g. (Šulc and 
Vítečková, 2005). In this paper decentralized PID controller 
design approaches are developed for stableand unstable 
systems and extended to satisfy robust stability conditions in 
terms of unstructured uncertainty developed in (Kozáková 
A., Veselý, 2005. Controllers for subsystems are designed 
for specified phase margin.  

The paper is organized as follows: preliminaries and 
problem formulation are given in Section 2, robust stability 
conditions, ESM, and robust design procedure in Section 3. 
In Section 4 is a detailed robust decentralized PID controller 
design procedure illustrated on two tanks process. 
Conclusions are drawn at the end of the paper.  

 

2. PRELIMINARIES AND PROBLEM FORMULATION 

In frequency domain robust controller design very often 
consists of two steps: controller design and robust condition 
verification. If robust condition is not passed than controller 
is redesigned and condition is verified again, so these types 
of approaches are iterative. 

Aim of this paper is to develop robust controller design 
method which will consist of only one step. So the robust 
stability condition will be included into the design procedure 
so that the designed controller will ensure robust stability 
without any iteration. 

3. THEORETICAL RESULTS 

 

3.1 Robust stability conditions 
 

When designing a controller a major source of difficulty is 
plant model inaccuracy; hence uncertainty models are to be 
used which means that instead of a single model a class Π of 

perturbed models is to be considered. Denote Π∈)(
~

sG  any 

perturbed plant model and Π∈)(sG the nominal plant 

model. A simple uncertainty model is obtained using 
unstructured uncertainty )(s∆ . Commonly used uncertainty 

forms are: additive (a) and input multiplicative (i) 
uncertainties  

Standard feedback configuration with unstructured 
uncertainty of any type can be rearranged to obtain the 
general ∆−M  structure in Fig. 1 where )(sM  represents 

the nominal model and )(s∆ : 1)]([max ≤∆ ωσ j  the 

normalized perturbation.  

u∆ 

M  

y∆ 

∆∆∆∆    

 

Fig. 1 – ∆−M structure 
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Robust stability condition for unstructured perturbations is 
formulated in terms of stability of the ∆−M  system: if both 
the nominal system )(sM  is stable (nominal stability) and 

the normalized perturbation )(s∆ is stable, closed-loop 

stability is guaranteed for 

 

 ωωσ ∀< ,1)]([max jM  (1) 

 

For individual uncertainty types ,kk MlM =  iak ,=  in 

particular 

- for additive uncertainty 

 

 )()]()([)( 1
sRsGsRIsM a

−
+−=   

 )]()(
~

[max)( max~ sGsGl
G

a −=
Π∈

σω  (2) 

 

- for input multiplicative uncertainty  
 

 )()()]()([)( 1
sGsRsGsRIsM i

−
+−=   

 )]}()(
~

)[({max)( 1
max~ sGsGsGl

G
i −=

−

Π∈

σω  (3) 

 

In view of (2), (3), condition (1) reads as follows  

 
|)(|

1
))((max

sl
sM

k

k <σ , iak ,=  (4) 

 

In the robust stability condition for input multiplicative 
uncertainty )(sM i  represent the complementary sensitivity 

function.  

 )()()()]()([)( 1
sTsGsRsGsRIsM i −=+−=

−  (5) 

 

Denote right side of inequality (4) as )(sU . 

 

 
|)(|

1
)(

sl
sU

i

=  (6) 

 

)(sU does not depend on controller )(sR so it can be 

calculated before controller design.  

Similar it is for additive uncertainty where inequality (4) is 
rearrange into following form: 

 

 
|)(|

)(
))()((max

sl

sG
sGsM

a

a <σ  (7) 

Than  

 )()()( sTsGsM a =  (8) 

And 

 
|)(|

)(
)(

sl

sG
sU

a

=  (9) 

 

If controller )(sR  is designed so that maximum value tM of 

complementary sensitivity function )(sT  is smaller than 

minimal value of )(sU , system with designed controller 

satisfy robust stability condition (1).  

This can be reached using any frequency controller design 
method ensuring desired phase margin (PM), for SISO 
systems because (Skogestad and Postletwaithe, 1997):  
 

 









≥

tM
PM

2

1
arcsin2  (10) 

 

For MIMO systems due to interactions is ensuring of desired 
phase margin in subsystems more complicated.  

Hence in this paper for MIMO systems equivalent subsystem 
method (Kozaková, et al., 2009) will be used for 
transforming nominal model )(sG  into diagonal model of 

equivalent subsystems )(sG
eq . For subsystems of equivalent 

model )(sG
eq , SISO method ensuring desired phase margin 

will be used. 

 

3.2 Equivalent subsystem method 
 

Equivalent subsystem method will be used to simplify the 
full nominal model matrix into diagonal equivalent one. 
Subsystems in equivalent matrix are called equivalent 
subsystems and are calculated with taking account into 
interactions.  

 

In this paper only equations necessary for equivalent 
subsystem calculation will be written. More details about 
this method are in (Kozaková, et al., 2009). 

Full matrix of nominal model )(sG can be split into matrix 

containing diagonal elements )(sGd  of )(sG  and 

)(sGm containing off-diagonal elements.  
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mi

eq

i

miiid

eq

sGdiag

spsGdiagsPsGsG

,...,2,1

,...,2,1

)}({

)}()({)()()(

=

=

=

=−=−=

  (11) 
eq

iG is a diagonal matrix of equivalent subsystems.  

For individual subsystems, (11) yields  
 

misGsR
eq

ii ,...,2,10)()(1 ==+  (12) 

 
which are the m equivalent characteristic equations.  

 

In the context of the independent design philosophy, the 
design parameters mispi ,,2,1),( K=  represent the bounds 

for individual designs. To be able to provide closed-loop 
stability of the full system using a DC controller, 

mispi ,,2,1),( K=  are to be chosen so as to cope with the 

interactions )(sGm .  

 

A general method for choosing )(sP  is not available yet, 

however interesting results have been obtained for the case 
when  

 IspsP i )()( =  (13) 

 

with identical entries. So )(sp i will be choose equal to one 

of the m  characteristic functions mig i ,...2,1, =  

of )]([ sGm− . 

 
 ki gsp −=)( , },...,2,1{ mk ∈  (14) 

 
 
3.3 Robust controller design procedure 
 

1. Calculation of nominal model )(sG ; 

2. Calculation of )(sU according (6, 9); 

3. Set of tM  as minimal value of )(sU ; 

4. Minimal phase margin calculation according (10); 

5. Equivalent model )(sG
eq calculation according (14, 13, 

11); 
6. Controllers design for equivalent model subsystems 

using SISO method ensuring phase margin greater than 
calculated in point 4.; 

 
Note: If controlled system is SISO point no.5 is omitted and 

controller is designed for nominal model )(sG . 

4. CASE STUDY 

Consider two tanks process with two inputs (pumps voltage) 
and two outputs (water level) depicted in figure 2.  

 

Fig.2 Two tanks process 

Process contains also valves which are used for decreasing 
water level in tanks. Valves voltage can be changed in range 
(0-10V). Different operating points were obtained using 
identification with valves at 7.5V, 8.5V and 9.5V. This 
system has normally no interactions so software interactions 
were added according to fig. 3. 

 

Fig. 3 Simulation diagram with interactions 
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Nominal model of this plant was calculated as average value 

of )(
~

1 sG , )(
~

2 sG , )(
~

3 sG . 
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In this example additive uncertainty will be used so 
)(sU calculates according (9) and it is depicted in fig. 4. 
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Fig.4 Behavior of )(sU  

Minimal value of )(sU , 205.1)(min =sU is set as tM  which 

can be recalculate according (10) into minimal phase margin 
49min =PM which presumably ensures robust stability. 

From nominal model equivalent model will be calculated. At 
first characteristic functions are calculated from )(sGm (Fig. 

5). 

 

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
characteristic functions

RE

IM

 

 

char. fun PQ
1

char. fun PQ
2

 

Fig.5 Characteristic functions PQ1 and PQ2 

For equivalent subsystems calculation according (14, 13 and 
11) we use 2PQ . Equivalent subsystems are depicted in fig. 

6,7. 
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Fig. 6 Bode plot of equivalent subsystem no.1 
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Fig. 7 Bode plot of equivalent subsystem no.2 

For each subsystem controller will be calculated. Aim of the 
controllers design is to fulfill robust conditions and for 
nominal model have overshoot less than 15%.   

Phase margin corresponding to overshoot 15% (Fig. 8) is 
approximately min60 PMPM >°= . 
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Fig. 8 Dependency of phase margin and overshoot 

For subsystem 1 was designed controller with following 
parameters, 
 

  s
s

sr 284.0
09.0

558.0)(11 ++=  (17) 

 

and for subsystem 2 controller with parameters: 
 

 s
s

sr 41.0
13.0

03.1)(22 ++=  (18) 

 

Decentralized controller )(sR  consists of controllers for 

both subsystems. 
 

 




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


=

22

11

0

0
)(

r

r
sR  (19) 

Reaching of desired crossover frequency and phase margin 
for both subsystems proofs Fig. 9,10. 

 

 

Fig. 9 Bode characteristics for subsystem 1 with PID 

 

 

Fig. 10 Bode characteristics for subsystem 2 with PID 
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Matlab simulation in nominal model (Fig. 11) show that 
system has overshoot less than 15% by step change in both 
outputs. So we can see that using controllers with desired 
phase margin for equivalent subsystems it is possible to 
reach desired overshoot for nominal model. 
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1
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time[s]

Nominal model

 

 

output 1

output 2

115%

 

Fig. 11 Nominal model simulation 

Because our process is stable, negative roots in operating 
points (20) proofs stability in this points and robust stability 
condition (Fig. 12) show that process with designed 
controller is also robust stable. 
 

}07.0;12.0;1.02.0;15.014,0{1 −−±−±−=Λ ii

}064.0;015.01.0;14.005.0;15.006.0{2 −±−±−±−=Λ iii

}053.0;015.009.0;15.007.0;22.0055.0{3 −±−±−±−=Λ iii

 (20) 
 

Finally designed controllers were set on the real process. 
Step responses in all operating points are depicted in fig. 13.   
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Fig. 12 Robust stability condition 

Real process experiments shows that overshoot is really less 
than 15%, but the step response is different from Matlab 
simulation. It is due to inaccuracy of models obtained by 
identification. 
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Fig. 13 Step responses of real process 

 

5. CONCLUSION 

The paper deals with the robust decentralized controller 
design in the frequency domain for stable and unstable 
plants. Equivalent subsystem method was used to simplify 
the full nominal model matrix into diagonal equivalent one. 
Controllers were designed for subsystems of equivalent 
matrix independently, so that desired phase margin in 
equivalent subsystems guaranteed overshoot for outputs in 
nominal model. Controller design process was illustrated on 
two tanks example. 
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Abstract: In the paper the first order sensitivity analysis is performed for a class of optimal
control problems for hyperbolic equations with the Neumann boundary conditions involving
constant time delays. A singular perturbation of geometrical domain of integration is introduced
in the form of a circular hole. The Steklov-Poincaré operator on a circle is defined in order to
reduce the problem to regular perturbations in the truncated domain. The optimality system is
differentiated with respect to the small parameter and the directional derivative of the optimal
control is obtained as a solution to an auxiliary optimal control problem.

Keywords: Sensitivity analysis, hyperbolic system, Neumann boundary condition, time delay.

1. INTRODUCTION

We consider an optimal control problem in the domain
with small geometrical defect. The size of the defect is
measured by small parameter ρ > 0. The presence of the
defect results in the singular perturbation of the hyperbolic
state equation. Such a perturbation is transformed to
the regular perturbation in the truncated domain ΩR for
any R > ρ > 0. We perform the sensitivity analysis in
the truncated domain using the Steklov-Poincaré operator
defined on the circle ΓR.

The problems of the sensitivity analysis for regular
perturbations of optimal control problems were stud-
ied in Lasiecka and Soko lowski (1991); Malanowski and
Soko lowski (1986); Malanowski (2001); Rao and Soko lowski
(2000); Soko lowski (1985 1987 1988); Soko lowski and Zole-
sio (1992). Singular perturbations of geometrical domains
are analysed in Jackowska et al. (2002 2003); Maz’ya et al.
(2000); Nazarov (1999); Nazarov and Soko lowski (2004

2003acb); Nazarov et al. (2004); Soko lowski and Żochowski
(1999abc 2001 2003). The construction of asymptotic ap-
proximation for the Steklov-Poincaré operator is given in
Soko lowski and Żochowski (2005).

In particular, in Kowalewski et al. (2010) the sensivity
analysis of optimal control problems defined for the wave
equation is performed. The small parameter describes
the size of an imperfection in the form of a small hole
or cavity in the geometrical domain of integration. The
initial state equation in the singularly perturbed domain
is replaced by the equation in a smooth domain. The
imperfection is replaced by its approximation defined
by a suitable Steklov’s type differential operator. For
approximate optimal control problems the well-posedness
is shown. One term asymptotics of optimal control are
derived and justified for the approximate model. The key
role in the arguments is played by the so called ”hidden
regularity” of boundary traces generated by hyperbolic
solutions.

The idea of ”hidden regularity” regalarization has been
used in the past successfully for boundary control prob-
lems, particulary in the context of numerical approxima-
tions (Hendrickson and Lasiecka (1993 1995); Lagnese and
Leugering (2004); Lasiecka and Triggiani (2000)). Regular-
izing parameter allows to obtain smooth on the boundary
approximations, which can be then taken to appropriate
limits. The property of ”hidden regularity” is displayed
by hyperbolic flows which satisfy the Lopatinski condition
(Harmander (1985); Lasiecka et al. (1986); Lasiecka and
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Fig. 1. The domain Ωρ in two spatial dimensions.

Triggiani (1990 1991); Sakamoto (1982)). The method of
”hidden regularity” regularization has been also applied
in domain decomposition procedures introduced and de-
scribed in Lagnese and Leugering (2004).

In the present paper an optimal control problem in sin-
gularly perturbed geometrical domain Ωρ is analysed with
respect to small parameter ρ > 0. We derive the one-term
asymptotic expansion of optimal controls. The first term of
the expansion, of the order ρ2 is uniquely determined as an
optimal solution to the auxiliary optimal control problem.
The control constraints for the auxiliary problem are ob-
tained by an application of the conical differentiability of
metric projection in L2 spaces. Our method is constructive
and can lead to numerical procedures for determination of
the first order approximations of the optimal controls.

2. PRELIMINARIES

Consider now the distributed parameter system described
by the following time delay hyperbolic equation

∂2y

∂t2
− ∆y = f in Ωρ × (0, T ),

∂y

∂η
= y(x, t − h) + Gv on Γ × (0, T ),

∂y

∂η
= 0 on Γρ × (0, T ),

y(x, 0) = y0(x) in Ωρ,
∂y

∂t
(x, 0) = yI(x) in Ωρ,

y(x, t′) = Ψ0(x, t′) in Γ × [−h, 0),





(1)

where:

∆ =

n∑

i=1

∂2

∂x2
i

, G ∈ L(L2(Σ), H−5/2Ξ−5/2(Σ)),

h is a specified positive number representing a time delay,
Ψ0 is an initial function defined on Γ × [−h, 0), ∂/∂η is a
normal derivative at Γρ directed towards the exterior of
Ωρ, Ωρ is presented on the Fig. 1.

We denote by

Ωρ = Ω \ B(ρ) ⊂ R2, ∂ Ωρ = Γ ∪ Γρ, (2)

where: Ω is a domain on the plane R2 with a smooth
boundary ∂ Ω and

Bρ = {x : |x − ϑ| < ρ} (3)

with a smooth boundary Γρ.

First we shall present sufficient conditions for the existence
of a unique solution of the problem (1) for the case where
the boundary control v ∈ L2(Σ).

For this purpose, we introduce the space D−1
A+D2

t
(Q) (Lions

and Magenes (1972), vol. 2, p.131) defined by

D−1
A+D2

t
(Q)

df
=

{y|y ∈ H−1,−2(Q), y′′ + Ay ∈ Ξ−3,−3(Q)},
(4)

where: the spaces H−1,−2(Q) and Ξ−3,−3(Q) are defined
by (9.5) and (10.4) of Chapter 5 in (Lions and Magenes
(1972), vol. 2) respectively. Under the norm of the graph
D−1

A+D2
t
(Q) is a Hilbert space.

The existence of a unique solution for the mixed initial-
boundary value problem (1) on the cylinder Q can be
proved using a constructive method, i.e. first solving (1)
on the subcylinder Q1 and in turn on Q2 etc., until the
procedure covers the whole cylinder Q. In this way the
solution in the previous step determines the next one.

For simplicity, we introduce the following notations:

Q = Ωρ × (0, T )
Σ = Γ × (0, T )

Ej
∧
= ((j − 1)h, jh)

Qj = Ωρ × Ej

Σj = Γ × Ej

Σ0 = Γ × [−h, 0)





for j = 1, ..., K. (5)

Using Theorem 10.1 of (Lions and Magenes (1972), vol. 2,
p. 132) we can prove the following result.

Theorem 1. Let y0, yI , Ψ0, v and f be given with y0 ∈
Ξ−3/2(Ω), yI ∈ Ξ−5/2(Ω),
Ψ0 ∈ H−5/2Ξ−5/2(Σ0), v ∈ L2(Σ) and f ∈ Ξ−3,3(Q).
Then there exists a unique solution y ∈ D−1

A+D2
t
(Q)

for the problem (1). Moreover, y(·, jh) ∈ Ξ−3/2(Ω) and
∂y

∂t
(·, jh) ∈ Ξ−5/2(Ω) for j = 1, ....K.

The spaces appearing in the Theorem 1 are defined in
Lions and Magenes (1972).

Let us surround Γρ by the circle ΓR such that
R > ρ > 0 (Fig. 2) .

Consequently, we denote

ΩR = Ω \ B(R), (6)

where:

B(R) = {x : |x − ϑ| < R}. (7)

We set the non-local Neumann boundary condition on ΓR:

∂y

∂η
= Aρ(y) on ΓR, (8)

where: Aρ is a Steklov-Poincare operator defined in the

domain C(R, ρ) = B(R) \ B(ρ).The operator Aρ is a
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Fig. 2. The domain ΩR.

mapping of H1/2(ΓR) → H−1/2(ΓR). Consequently, we
consider in ΩR ×(0, T ) the following time delay hyperbolic
equation:

∂2y

∂t2
− ∆y = f in ΩR × (0, T ),

∂y

∂η
= y(x, t − h) + Gv on Γ × (0, T ),

∂y

∂η
= Aρ(y) on ΓR × (0, T ),

y(x, 0) = y0(x) in ΩR.
∂y

∂t
(x, 0) = yI(x) in ΩR,

y(x, t′) = Ψ0(x, t′) in Γ × [−h, 0),





(9)

We shall investigate the dependence of optimal solutions
on the small parameter ρ > 0.

The small hole B(ρ) is a singular perturbation in the
domain Ωρ. Consequently, the same small hole constitutes
regular perturbation in the domain ΩR.

Using the results of Soko lowski and Żochowski (2005) we
obtain the following expansion for the operator Aρ:

Aρ = A0 + ρ2B + O(ρ4)

in the operator norm

L(H1/2(ΓR), H−1/2(ΓR)),

(10)

where: the remainder O(ρ4) is uniformly bounded on
bounded sets in the space H1/2(ΓR).

Corollary 1. In the space D−1
A+D2

t
(Q) the solution of the

hyperbolic equation (for ρ = 0) can be represented as

∂2y0

∂t2
− ∆y0 = f in ΩR × (0, T ),

∂y0

∂η
= y0(x, t − h) + Gv on Γ × (0, T ),

∂y0

∂η
= A0(y0) on ΓR × (0, T ),

y0(x, 0) = y0(x) in ΩR,

∂y0

∂t
(x, 0) = yI(x) in ΩR,

y0(x, t′) = Ψ0(x, t′) in Γ × [−h, 0).





(11)

We shall look the expansion of the solution yρ in ΩR ×
(0, T ):

yρ = y0 + ρ2y1 + ỹ =

= y0 + ρ2y1 + ρ4ŷ
(12)

Consequently, the Neumann boundary condition in (9) can
be rewritten as

∂yρ

∂η
= Aρ(yρ) =

= A0(yρ) + ρ2B(yρ) + ρ4Ã(yρ)

(13)

Substituting (12) into (13) we obtain

∂y0

∂η
+ ρ2B

∂y1

∂η
+

∂ỹ

∂η
=

= A0(y0 + ρ2y1 + ỹ)+

+ρ2B(y0 + ρ2y1 + ỹ) + ρ4Ã(yρ)

(14)

Comparing components with the same powers we get

ρ0 :
∂y0

∂η
= A0(y0)

ρ2 : ρ2 ∂y1

∂η
= ρ2[A0y

1 + By0]





(15)

Hence it follows the following expansion of solutions:

Let us denote by y0 the solution of the problem (11)
corresponding to a given parameter ρ = 0.

Subsequently, y1 corresponding to a given parameter ρ2 is
a solution of the following equation:

∂2y1

∂t2
− ∆y1 = 0 in ΩR × (0, T ),

∂y1

∂η
= y1(x, t − h) + Gv on Γ × (0, T ),

∂y1

∂η
= A0(y1) + B(y0) on ΓR × (0, T ),

y1(x, 0) = 0 in ΩR,
∂y1

∂t
(x, 0) = 0 in ΩR,

y1(x, t′) = Ψ0(x, t′) in Γ × [−h, 0).





(16)
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3. PROBLEM FORMULATION. OPTIMIZATION
THEOREM.

We shall now consider the optimal boundary control
problem in domains Ωρ and ΩR respectively. Let us denote
by U = L2(Γ × (0, T )) the space of controls. The time
horizon T is fixed in our problem.

Let us consider in Ωρ × (0, T ) the following time delay
hyperbolic equation

∂2y

∂t2
− ∆y = f in Ωρ × (0, T ),

supp f⊂ ΩR × (0, T ),
∂y

∂η
= y(x, t − h) + Gv on Γ × (0, T ),

∂y

∂η
= 0 on Γρ × (0, T ),

y(x, 0) = y0(x) in Ωρ

supp y0 ⊂ ΩR,
∂y

∂t
(x, 0) = yI(x) in Ωρ,

supp yI ⊂ ΩR,

y(x, t′) = Ψ0(x, t′) in Γ × [−h, 0).





(17)

The performance functional is given by

I(v) =
1

2

∥∥∥ y(v) − zd

∥∥∥
2

H−1,−2(ΩR×(0,T ))

+
α

2

∥∥∥ v
∥∥∥

2

L2(Γ×(0,T ))
.

(18)

Finally, we assume the following constraints on the control
v ∈ Uad:

Uad = {v ∈ L2(Γ × (0, T )), 0 ≤ v(x, t) ≤ 1}. (19)

Subsequently, we consider in ΩR × (0, T ) the following
hyperbolic time delay equation

∂2y

∂t2
− ∆y = f in ΩR × (0, T ),

∂y

∂η
= y(x, t − h) + Gv on Γ × (0, T ),

∂y

∂η
= Aρ(y) on ΓR × (0, T ),

y(x, 0) = y0(x) in ΩR,

∂y

∂t
(x, 0) = yI(x) in ΩR,

y(x, t′) = Ψ0(x, t′) in Γ × [−h, 0).





(20)

The performance functional and constraints on the control
are given by (18) and (19).

Result: The Solution of the problem (20) (in the domain
ΩR) is a restriction of the solution of the problem (17) (in
the domain Ωρ) to ΩR. Hence, we have the possibility of
replacing the singular perturbation of the domain B(ρ)
by the regular perturbation on the boundary ΓR in a
smaller domain ΩR. Consequently, we shall analyse the
optimal boundary control problem (18)-(20) in the domain
ΩR. Moreover, we assume the fixed parameter ρ > 0.

The solving of the formulated optimal control problem
is equivalent to seeking a v0 ∈ Uad such that I(v0) ≤
I(v) ∀v ∈ Uad.

From Lions’ scheme (Theorem 1.3 Lions (1971), p. 10)
it follows that for α > 0 a unique optimal control v0 is
characterized by the following condition

I ′(v0)(v − v0) ≥ 0 ∀v ∈ Uad. (21)

Using the form of the performance functional (18) we can
express (21) in the following form:

〈
(y(v0) − zd, y(v) − y(v0)

〉
H−1,−2(ΩR×(0,T ))

+α
〈
v0, v − v0

〉
L2(Γ×(0,T ))

≥ 0 ∀v ∈ Uad.
(22)

To simplify (22), we introduce the adjoint equation and for
every v ∈ Uad. we define the adjoint variable p = p(v) =
p(x, t; v) as the solution of the following equation

∂2p

∂t2
− ∆p = y(v)− zd in ΩR × (0, T ),

∂p

∂η
= p(x, t + h) on Γ × (0, T − h),

∂p

∂η
= 0 on Γ × (T − h, T ),

∂p

∂η
= Aρ(p) on ΓR × (0, T ),

p(x, T ; v) = 0 in ΩR,
p′(x, T ; v) = 0 in ΩR.





(23)

Theorem 2. Let the hypothesis of Theorem 1 be satisfied.
Then for given zd ∈ H−1,−2(ΩR × (0, T )) and any v0 ∈
L2(Σ), there exists a unique solution p(v0) ∈ H3,3(ΩR ×
(0, T )) ⊂ Ξ3,3(ΩR × (0, T )) for the problem (23).

We simplify (22) using the adjoint equation (23). Con-
sequently, after transformations we obtain the following
formula 〈

G∗p + α v0, v − v0

〉
L2(Γ×(0,T ))

≥ 0

∀v ∈ Uad.

(24)

Theorem 3. For the problem (20) with the performance
functional (18) with α > 0, and with constraints on
the control (19), there exists a unique optimal control
v0 which satisfies the maximum condition (24). Moreover,

v0 = PUad

(
− 1

α
G∗p

)
where PUad

is a projective operator.

4. THE SENSITIVITY OF OPTIMAL CONTROLS

Theorem 4. We have the following expansion of the opti-
mal control in L2(Γ × (0, T )), with respect to the small
parameter,

vρ = v0 + ρ2q + o(ρ2) (25)

for ρ > 0.

Moreover, we assume that ρ is a sufficiently small. The
function q in (25) is a optimal solution of the following
optimal control problem:
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The state equation

∂2w

∂t2
− ∆w = 0 in ΩR × (0, T ),

∂w

∂η
= w(x, t − h) + Gq on Γ × (0, T ),

∂w

∂η
= A0(w) + B(y0) on ΓR × (0, T ),

w(x, 0) = 0 in ΩR,

∂w

∂t
(x, 0) = 0 in ΩR,

w(x, t′) = Ψ0(x, t′) on Γ × [−h, 0),





(26)

where: w = y1.

The performance functional

I(u) =
1

2

∥∥∥w(q)
∥∥∥

2

H−1,−2(ΩR×(0,T ))

+
α

2

∥∥∥u
∥∥∥

2

L2(Γ×(0,T ))
.

(27)

The adjoint equation

∂2z

∂t2
− ∆z = w(q) in ΩR × (0, T ),

∂z

∂η
= z(x, t + h) on Γ × (0, T − h),

∂z

∂η
= 0 on Γ × (T − h, T ),

∂z

∂η
= A0(z) + B(p0) on ΓR × (0, T ),

z(x, T ) = 0 in ΩR,
z′(x, T ) = 0 in ΩR,





(28)

where: z = p1.

Then, the optimal control q is characterized by〈
w(q), w(u) − w(q)

〉
H−1,−2(ΩR×(0,T ))

+ α
〈
q, u − q

〉
L2(Γ×(0,T ))

≥ 0 ∀v ∈ Uad,
(29)

where: Sad is a set of admissible controls such that

Sad =
{
u ∈ L2(Γ × (0, T ))

∣∣∣
u(x, t) ≥ 0 on the set

E0 = {(x, t)|v0(x, t) = 0},

u(x, t) < 0 on the set
E1 = {(x, t)|v0(x, t) = 1},〈

G∗p0 + α v0, u
〉

L2(Γ×(0,T ))
= 0},

(30)

where:

p0 is a adjoint state for ρ = 0,

v0 is a optimal solution for ρ = 0 such that

0 ≤ v0(x, t) ≤ 1.

We simplify (29) using the adjoint equation (28). After
transformations we obtain the following maximum condi-
tion

〈
G∗z + α q, u − q

〉
L2(Γ×(0,T ))

≥ 0

∀u ∈ Sad.
(31)

Theorem 5. For the time delay hyperbolic problem

∂2w

∂t2
− ∆w = 0 in ΩR × (0, T ),

∂w

∂η
= w(x, t − h) + Gu on Γ × (0, T ),

∂w

∂η
= A0(w) + B(y0) on ΓR × (0, T ),

w(x, 0) = 0 in ΩR,
∂w

∂t
(x, 0) = 0 in ΩR,

w(x, t′) = Ψ0(x, t′) in Γ × [−h, 0),





(32)

with the performance functional (27) with α > 0, and
with constraints on the control (30), there exists a unique
optimal control q which satisfies the maximum condition
(31).

5. CONCLUSIONS

The results presented in the paper can be treated as a
generalization of the results obtained in Soko lowski and
Żochowski (2005) onto the case of hyperbolic systems with
boundary condition involving time delays.

In this paper we have considered the mixed initial bound-
ary value problems of hyperbolic type.

We can also consider similar optimal control problems for
parabolic-hyperbolic systems.

The ideas mentioned above will be developed in forthcom-
ing papers.
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Lasiecka, I., Lions, J., and Triggiani, R. (1986). Non-
homogeneous boundary value problems for second order
hyperbolic operators. Journal de Mathematiques Pures
et Appliquees, 65, 149–192.

Lasiecka, I. and Soko lowski, J. (1991). Sensitivity analysis
of constrained optimal control problem for wave equa-
tion. SIAM Journal on Control and Optimization, 29,
1128–1149.

Lasiecka, I. and Triggiani, R. (1990). Sharp regularity re-
sults for second order hyperbolic equations of Neumann
type. Annali di Matematica Pura ed Applicata, CLVII,
1128–1149.

Lasiecka, I. and Triggiani, R. (1991). Regularity theory of
hyperbolic equations with non-homogeneous Neumann
boundary conditions. Journal of Differetial Equations,
94, 112–164.

Lasiecka, I. and Triggiani, R. (2000). Control Theory for
Partial Differential Equations. Cambridge University
Press, Cambridge.

Lions, J. (1971). Optimal Control of Systems Governed by
Partial Differential Equations. Springer-Verlag, Berlin-
Heidelberg.

Lions, J. and Magenes, E. (1972). Non-Homogeneous
Boundary Value Problems and Applications –Vols. 1
adn. 2. Springer-Verlag, Berlin-Heidelberg.

Malanowski, K. (2001). Stability and sensitivity analy-
sis for optimal control problems with control-state con-
straints. Disertations Math. (Rozprawy Mat.), Warsaw.

Malanowski, K. and Soko lowski, J. (1986). Sensitivity of
solutions to convex, control constrained optimal control
problems for distributed parameter systems. Journal of
Mathematical Analysis and Applications, 120, 240–263.

Maz’ya, V., Nazarov, S., and Plamenevskij, B. (2000).
Asymptotic theory of elliptic boundary value problems in
singularly perturbed domains -vol.1. Birkhäuser Verlag,
Basel.

Nazarov, S.A. (1999). Asymptotic conditions at a point,
self adjoint extensions of operators and the method of
matched asymptotic expansions. American Mathemati-
cal Society Translations (2), 198, 77–125.

Nazarov, S.A., Slutskij, S.A., and Soko lowski, J. (2004).
Topological derivative of the energy functional due to
formation of a thin ligament on a spatial body. Les
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Soko lowski, J. and Żochowski, A. (2005). Topological
derivatives for obstacle problems. Les prépublications
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Abstract: This paper is devoted to investigation of certain issues that appear in solving of
deterministic global optimization problems (GOPs). Basically, we focus ourselves on introducing
a procedure which may serve to establish tighter convex relaxations for a certain class of non-
convex optimization problems. Tightness of these convex relaxations plays important role in
speeding of the convergence of branch-and-bound algorithm which is used as a basic framework
of solving GOPs in this study. Two case studies are solved where it is shown how significant
improvement can be achieved by considering proposed framework.

Keywords: Global Optimization, Convex Relaxation, αBB Method

1. INTRODUCTION

Global optimization (GO) represents a set of methods
which aim to find (global) solution of non-convex opti-
mization problems which may possess multiple suboptimal
(local) solutions and are typically encountered in many
engineering fields, including chemical engineering, process
design, computational biology, and many others. Over past
two decades, there was a significant effort dedicated to
deterministic GO by many scientists. Efficient algorithms
and methods were developed, many new interesting ap-
plications were introduced and lot of existing non-convex
optimization problems were solved to global optimality.
Essence of these can be found in works Floudas and
Visweswaran (1990); Adjiman and Floudas (1996); Singer
and Barton (2001); Papamichail and Adjiman (2002);
Chachuat et al. (2003); Čižniar et al. (2009).

There is a big range of problems addressed by global
optimization. Basically non-convex non-linear programs
(NLPs) are considered. However, it is popular to con-
vert mixed-integer linear programs (MILPs) and mixed-
integer non-linear (MINLPs) to non-convex NLPs. Also
the problems of dynamic optimization are usually dis-
cretized into NLPs, e.g. by using the method of orthogonal
collocation (Biegler, 1984). In all these problems GO plays
significant role. The problems are addressed using either
stochastic approaches, such as simulated annealing, parti-
cle swarm and genetic algorithms, or deterministic ones,
such as branch-and-bound or interval analysis methods.

Branch-and-bound (BB) methods are the most popular
deterministic GO frameworks. These methods successively
partition solution space on which optimization problem is
defined into smaller regions. In each region, the upper and
lower bounds to the objective function value are generated,
by solving the original (non-convex) problem together with
its convex relaxation. According to these bounds it is
decided whether region is going to be explored further

or whether it should be fathomed out of BB tree. Global
solution is then obtained once current best (lowest) upper
bound (UB) value is close to current best (highest) lower
bound (LB) value within specified tolerance ε.

Problems of GO are typically defined over a quite large
region of decision variables. However, each deterministic
GO algorithm investigates the whole solution space in
some manner. This is a critical issue and it is a reason why
very tight convex relaxations of non-convex problems are
needed. It is the aim of this study to present a technique
which involves simple algebraic manipulations but results
in a considerable improvement in terms of number of GO
algorithm iterations and algorithm run time.

The paper is organized as follows. Section 1 gives the
mathematical formulation of the problem, it shows how the
solution can be found and points out to some issues which
are motivating our research. Section 2 gives procedure of
how certain issues revealed in Section 1 may be avoided.
Finally in Section 3 selected case studies are solved to
prove efficacy of the proposed approach.

2. GLOBAL OPTIMIZATION PROCEDURE

In this section, general procedure is described for solving
of non-convex optimization problems to global optimality.

2.1 Problem Formulation

We address an optimization problem in following form

min
x

f0(x) (1a)

s.t. fi(x) ≤ 0, i = 1, . . . , ni (1b)

fj(x) = 0, j = 1, . . . , ne (1c)

x ∈ [xL, xU ] (1d)

where x ∈ Rn is a vector of decision variables which values
are initially bounded by box constraints (1d). According
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Fig. 1. Illustration of branch-and-bound procedure.

to Boyd and Vandenberghe (2004), this is a non-convex
optimization problem with ni inequality and ne equality
constraints, if any of functions in (1a) and (1b) is non-
convex, or any of functions in (1c) is not affine. We
assume that functions fk (k = 0, . . . , ni + ne) are twice
continuously differentiable (fk ∈ C2) and real-valued (fk :
Rn → R). Solution to problem (1) provides an upper
bound for BB algorithm. Lower bound is found by solving
a convex relaxation of (1).

Global minimum of the optimization problem is found
employing branch-and-bound framework (Horst and Tuy,
1990). At each branching node, original problem is solved
together with its convex relaxation. This is shown in Fig. 1
where first two stages of illustrative BB procedure are
shown. In node 0, convex relaxation (red line) of a non-
convex problem (black line) is found on a given interval
of decision variable x. This interval is then branched
creating the first and the second node. Formation of convex
relaxations of original problem on this branches follows. It
is clear that lower bound in the first node (LB1) is higher
than upper bound in the second node (UB2) and so the
first node is not considered further since global solution
does not lie there obviously. The ε-global optimum is found
once the UBi and LBi meet within specified tolerance ε.

2.2 Convex Relaxation of the Problem

According to Adjiman et al. (1998b), formulation of convex
relaxation of original (non-convex) problem requires de-
composition of each function fk (k = 0, . . . , ni +ne) in (1)
to a sum of linear, convex, special non-convex (univariate
concave UT(x), bilinear BT(x), . . . ), and arbitrary non-
convex (NT(x)) terms. These terms are then convexly
relaxed separately.

Linear terms do not require any convex relaxation since
they are already convex. The same applies for convex terms
unless they appear in equality constraint functions. In fact,
any non-linear equality constraint has to be rewritten such
that

fj(x) = 0 ⇔
{

fj(x) ≤ 0

−fj(x) ≤ 0
j = 0, . . . , ne (2)

For this inequality form, the original decomposition into
generic terms should be reconsidered. Hence that if fj is
convex then −fj is concave and vice versa.

Convex relaxation of univariate concave terms UT(x) is
done by linearization around the lower bound of the

variable range. Then, every occurrence of such term is
replaced by following expression

UT(xL) +
UT(xU ) − UT(xL)

xU − xL
(x − xL) (3)

Addition of a relaxation function to the arbitrary non-
convex term NT(x) establishes convex relaxation function
for such term in a form

NT(x) +

n∑

i=1

αi(x
L
i − xi)(x

U
i − xi) (4)

where values of αi’s are non-negative scalars found such
that

αi ≥ max

{
0, −1

2
min
xi

λ
(
∇2

xi
NT(x)

)}
(5)

where λ is eigenvalue of Hessian matrix of non-convex
term. Another option is just to concentrate on finding the
overall valid α which will guarantee convexity of function

NT(x) + α(xL − x)T (xU − x) (6)

Then the value of α is computed such that

α ≥ max

{
0, −1

2
min

x
λ

(
∇2

xNT(x)
)}

(7)

Problem of minimization of eigenvalue appearing in Eq. (5)
and (7) requires solution of non-convex problem in most
cases. To avoid this, an interval arithmetic methods can
be exploited, e.g. Gerschgorin’s theorem for interval ma-
trices (Floudas, 2000). Then, problem of calculation of
αi’s values boils down to finding of a minimal eigenvalue
of interval family Hessian matrix [∇2NT(x)]. Interval ap-
proaches which can be adopted for this purpose are dis-
cussed in Adjiman et al. (1998b) in detail.

As showed in Kearfott (1996), if interval arithmetic op-
erations (multiplication, division, addition, etc.) are com-
posed the interval arithmetic calculations overestimate the
range of resulting interval. For example (taken from Kear-
fott (1996)), if interval function f(x) = x2 − x over the
interval x = [0, 1] is considered, resulting interval calcula-
tion is done such that

[0, 1]2 − [0, 1] = [0, 1] − [0, 1] = [−1, 1] (8)

This effect is illustrated in Fig. 2 which shows a plot
of considered interval function together with its real-
valued function equivalent. It can be observed that real-
valued function takes values from -0.25 to 0, while its
interval extension overestimates this values as it is shown
in Eq. (8).

Illustrative Example. Let us consider a simple example
to show the effect of the range overestimation of interval
arithmetic calculations on convex relaxation of non-convex
functions. Here, it is desired to find a convex relaxation
of a function f(x, y)=cos(x) sin(y) on the interval x ×
y=[−1, 2] × [−1, 1]. This convex relaxation is found in
form (6). Using of (4) gives the same result. Value of α
is found by computing eigenvalues of Hessian matrix

∇2f(x, y) =

(
− cos(x) sin(y) − sin(x) cos(y)
− sin(x) cos(y) − cos(x) sin(y)

)
(9)

Using Gerschgorin’s theorem for interval matrices (cur-
rently implemented in INTLAB toolbox by Rump (1999)),
the value of α was computed according to Eq. (7) to be
greater than or equal to 0.92. Exact eigenvalue calculation
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Fig. 3. Original function and its convex underestimators.

of Hessian (9) found minimal value of α that guarantee
convexity of underestimator (relaxed function) to be 0.5.
Fig. 3 compares two convex underestimators obtained by
evaluating Eq. (6) with previously computed α values. It
is clearly seen that underestimator generated using value
of α obtained by an exact Hessian calculation produces

convex underestimator tighter almost twice compared to
the other one.

Throughout the BB algorithm run, a possibly large num-
ber of nodes may appear in BB tree. This happens if loose
lower bounds are provided and it results in keeping many
nodes where only suboptimal solutions lie. Then, BB algo-
rithm spends a fair amount of time exploring these nodes
which is an unwanted feature. It is then straightforward
that tighter convex relaxation will result in less iterations
needed for a convergence of BB optimization algorithm
and less running time of the algorithm as well. In next, we
will show how a simple algebraic manipulation can lead to
a significant benefit in terms of more efficient algorithm.

3. PROPOSED REFORMULATION PROCEDURE

In previous section we showed how composition of arith-
metic operations in interval calculus may result in large
overestimation of resulting interval (function). This may
be a certain issue if tight convex relaxation functions are
wanted to be established for arbitrary non-convex terms.
Addition and subtraction operations play just marginal
role here since the non-convex term where addition (sub-
traction) occurs can be rearranged to more non-convex
(some possibly convex) terms with no addition (subtrac-
tion) operation occurring. Multiplication operations can be
decomposed using a simple algebraic transform (Williams,
1993). Suppose that non-convex term in any of functions
in (1) is such that NT(x) = f1(x)f2(x). This can be
rewritten as

f1(x)f2(x) =
1

4
(f1(x) + f2(x))2 − 1

4
(f1(x) − f2(x))2 (10)

Equation (10) can be simplified by considering two new
(decision) variables with two equality constraints.

f1(x)f2(x) =
1

4
u2

1 − 1

4
u2

2 (11a)

f1(x) + f2(x) = u1 (11b)

f1(x) − f2(x) = u2 (11c)

Convex relaxation of this rewritten function is now found
by the convex relaxation of concave term −u2

2 appearing in
Eq. (11a). This is done by a replacement of concave term
using (3). Convex relaxation of constraint functions follow
in the same manner as described in previous section by
rewriting (11b) and (11c) into inequality form and then
founding convex relaxations of terms f1(x), −f1(x), f2(x)
and −f2(x). These convex relaxations then produce tighter
convex relaxation of problem (1). However, it is needed to
provide bounds (box constraints) on new added optimized
variables. There are two possibilities. One, is to use interval
arithmetic calculations such that uL

1 =min[f1(x) + f2(x)]
and so on. The second alternative is to consider an opti-
mization problem which minimizes/maximizes ui having
the same constraints as convex relaxation of (1). This
approach is similar to variable bound updates approach
presented in Adjiman et al. (1998a).

Illustrative Example (Continued) We continue here with
illustrative example considered previously. Non-convex
term cos(x) sin(y) is rewritten to following final form
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Fig. 4. Function f(u1, u2) (depicted in blue lines) and its
convex underestimator (red-orange surface).

cos(x) sin(y) =
1

4
u2

1 − 1

4
u2

2 (12a)

cos(x) + sin(y) − u1 ≤ 0 (12b)

− cos(x) − sin(y) + u1 ≤ 0 (12c)

cos(x) − sin(y) − u2 ≤ 0 (12d)

− cos(x) + sin(y) + u2 ≤ 0 (12e)

Convex relaxation is done by underestimation of terms
−u2

2, cos(x), − cos(x), sin(y) and − sin(y). Box constraints
used to bound new added decision variables are found
using interval arithmetic calculations. Resulting convex
relaxation of the function f(u1, u2) is shown in Fig. 4. By
transforming this function into original coordinates (by
inverting the reformulation) it can be seen that convex
relaxation of cos(x) sin(y) term using proposed transform
is clearly tighter than any of relaxations illustrated in
Fig. 3.

4. CASE STUDIES

The global optimization algorithm taken from Papamichail
and Adjiman (2004) was implemented in MATLAB 7.11.
Solution of NLP problems was found using MATLAB NLP
solver fmincon. It is an implementation of a general NLP
solver, provided by the Optimization Toolbox, uses either
a subspace trust region method, based on the interior-
reflective Newton method, or a sequential quadratic pro-
gramming method. The interval calculations needed were
performed using INTLAB toolbox by Rump (1999). This
toolbox finds the eigenvalues of interval family matrices
using Gerschgorin’s theorem for interval matrices. All case
studies were solved on a workstation with 4.0 GHz Intel R©

CoreTM 2 Duo Processor E8400 with 4GB RAM.

4.1 One dimensional non-convex problem

The first case study considers the problem of minimizing
univariate non-convex function over a box constraint of
decision variables. This problem was introduced in Pintér
(2002) as test problem for GO algorithms. Its objective
function is depicted in Fig. 5. Problem takes the form

min
x

0.05(x − x1)
2 + sin2(x − x1)+

+ sin2
(
(x − x1)

2 + (x − x1)
)

(13a)

s.t. − 10 ≤ x ≤ 10 (13b)
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Fig. 5. Plot of the objective function in first case study.

Table 1. Results of the αBB algorithm run
with different ranges of box constraints for

reformulated problem.

N No. of iterations CPU time [s]

1 4 1
10 6 1
100 10 2

Table 2. Results of the αBB algorithm run with
different ranges of box constraints for non-

reformulated problem.

N No. of iterations CPU time [s]

1 41 5
10 497 60
100 8110 1063

where x1 is a value of minimizer which can be chosen
arbitrarily. We choose a minimizer value equal to −3. The
first term present in objective function is convex and needs
no convex relaxation. The second and the third term are
non-convex due to periodicity of a sinus function. Using
the proposed procedure, we avoided the squaring of sinus
function in both of these terms by introduction of four
new decision variables and corresponding eight inequality
constraints.

Domain of the problem as it is introduced is arbitrarily set
to [−10, 10]. In our computations we allow problem domain
to be enlarged by a multiplication of box constraint by
factor N . If N is equal to 1, originally proposed domain
[−10, 10] is considered. When N is set to 10, domain of the
problem becomes [−100, 100]. This is done to investigate
how proposed procedure performs with expanded size of
box constraints. Resulting problems are solved to relative
global optimality ε = 1×10−3. Results for different values
of N are shown in Tab. 1. Comparison with performance
of non-reformulated problem αBB algorithm is shown in
Tab. 2.

It can be observed that αBB algorithm which exploits re-
formulation introduced in Section 3 performs significantly
better. This feature is most evident if the largest box
constraint (N = 100) is considered.
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Table 3. Results of the αBB algorithm run
with different ranges of box constraints for

reformulated problem.

N No. of iterations CPU time [s]

1 12 16
10 78 90
100 835 929

Table 4. Results of the αBB algorithm run with
different ranges of box constraints for non-

reformulated problem.

N No. of iterations CPU time [s]

1 20 9
10 305 111
100 3083 1243

4.2 Two-dimensional non-convex problem

In this case study, non-convex term cos(x) sin(y) appears
which was used as an illustrative example for the whole
proposed procedure. This optimization problem appears
in Adjiman et al. (1996) where it was used as tutorial ex-
ample to show how the α-based convexification procedure
works. The problem is as follows

min
x,y

cos(x) sin(y) − x

y2 + 1
(14a)

s.t. − 1 ≤ x ≤ 2 (14b)

− 1 ≤ y ≤ 1 (14c)

Second non-convex term present in objective function is
rewritten in a similar manner to avoid a multiplication
between the terms x and 1/(y2 + 1). By a reformulation
procedure, four new decision variables and eight inequality
constraints are introduced into a problem. Bounds on
new decision variables are found using interval arithmetic
calculations. To find out how reformulation procedure
performs, we consider not only the original range of
decision variables but we multiply the box constraints with
factor N equal to 10 and 100. These problems are again
solved to relative global optimality ε = 1 × 10−3. Results
are summarized in Tabs. 3 and 4 for the proposed and
original approaches, respectively.

This case study again shows that the GO of reformulated
problem performs better. However, the overall improve-
ment is not as significant as it is for the first case study. The
reduction in number of iterations is satisfying. However,
there is a room for improvement if tighter bounds on
new added optimized variables are provided. These bounds
can be obtained by considering variable bound updates
approach (Adjiman et al., 1998a). It can be observed
that computational time needed for a single iteration of
reformulated problem is almost double than CPU time
needed for a single iteration of non-reformulated problem.
This can be attributed to a greater size of the reformulated
problem.

5. CONCLUSIONS

In this paper, we focused on a problem of finding of a global
solution to non-convex non-linear problems. We considered
utilization of αBB procedure to solve GO problems in
deterministic fashion. Aim of this study was to introduce a

simple algebraic reformulation of the non-convex problem
to enhance the performance of αBB procedure. Chosen
case studies showed that proposed reformulation technique
resulted in significant improvement of αBB algorithm.
Particularly this was significant if problems were defined
over large region of decision variables.

Some issues of this approach were discussed, where one of
these is linked to increasing of order of original problem
by introducing new optimized variables into it. There is
also a possible problem of finding of tight bounds for
optimization variables added into reformulated problem.
These are the main problems which will be critically
addressed in a future work on this promising concept.
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Abstract: This paper deals with the problem of uncertainties in optimal control of real process.
The measurement-based optimisation is used to treat variations in terminal constraints, model
mismatch and process disturbances. It is assumed that this process will be carried out several
times in a row and so that run-to-run optimisation can be performed. The paper presents
an integrated two-time-scale control where constraints in optimisation problem are adopted
between runs and the pre-computed optimal inputs are corrected according to the on-line output
measurements during the run. Moreover, the proposed control approach has been implemented
to control level transition in two connected tanks with liquid interaction. The results uncover
better convergence properties with the resulting control scheme than individual schemes dealing
either with run-to-run adaptation or with neighbouring extremal corrections inside the run.

Keywords: dynamic optimisation, neighbouring-extremal control, optimal control, integrated
control scheme

1. INTRODUCTION

The processes in general are subject to substantial un-
certainty during their operation what lowers quality of
the performance and quantity along with operational con-
straint violations. Common sources of uncertainty include
measurement noise, inaccurate model, perturbations in
initial conditions, and disturbances during a run-time.
Model-based and measurement-based optimisation of dy-
namic processes are established frameworks that have the
ability to mitigate the effect of uncertainty on process per-
formance, especially in the presence of constraints (Kadam
and Marquardt, 2007).

In current literature, various optimisation techniques can
be found that improve process operation and deal with
the influence of uncertainty during the process operation.
The most straightforward approach is to implement the
optimal inputs obtained as off-line solution of dynamic
optimisation problem for the process model and then to
track the optimal trajectory on-line. However, in reality,
the presence of model mismatch shifts the precomputed
optimum what requires on-line corrections of the nominal
trajectory in order to ensure optimal operation policy. Dif-
ferent strategy, model predictive control (MPC) (Allgöwer
and Zheng, 2000; Garcia et al., 1989; Maciejowski, 2002),
implements a re-optimisation of the problem and uses
the measurements to update the current state of the
model. This strategy suffers two important deficiencies:
i) the presence of constraints may result in an infeasible
solution; ii) the re-optimisations may not be tractable
in real-time. Clearly, the time needed to re-optimise the
system depends on both the problem complexity and the
computing performance. Long computational time may
lead to performance loss, or worse constraint violations,
especially in processes with fast process dynamic. Some

efficient implementations have been proposed by Biegler
(2000); Diehl et al. (2002); Cannon et al. (2001). Explicit
MPC approach (Bemporad et al., 2002), multi-parametric
programming is used to pre-compute off-line all possible
control actions for a given range of the state variables.
The control inputs are then adjusted by simply selecting
the control law that corresponds to the actual state of the
process, as given by the latest measurements. Although
this method can accommodate fast sampling times, its
foremost limitation comes from the curse of dimensionality
and from the quality of the linearisations. This currently
limits the application of explicit MPC to problems having
no more than a few state variables as well as piece-wise
linear dynamics.

In the literature, another control strategy that reduces the
online computational effort can be found. Neighbouring
extremal (NE) control provides fast suboptimal solutions
by not re-solving optimisation problem thus it reduce
computational expense. This method was introduced in
seventies and eighties by Bryson and Ho (1975); Pesch
(1989). In neighbouring extremal control an optimum feed-
back law is applied to compute control corrections for small
variations in state vector. The feedback law is derived
around nominal control trajectory obtained from offline
solution of dynamic optimisation problem. The optimal
control problem and the approximation of the solution for
perturbed process are subject to boundary value problem.
The derivation of the boundary problem is not straightfor-
ward and the good initial guess are required to estimate
adjoint variables. Further drawback is a suboptimality of
the solution as the feedback law is derived for the small
variations in states in the neighbourhood of the nominal
solution. Also, the neighbouring extremal control exhibits
lower performance when applied to very non-linear pro-
cesses, e.g. chemical processes. Closely related real-time
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strategy has been proposed by Kadam and Marquardt
(2007) for computation of neighbouring extremal solution
using direct optimisation methods. With this strategy
neighbouring extremal is computed through sensitivity
information of the discretised optimal solution, instead of
deriving an optimum feedback law.

This paper presents a two-time-scale approach, whereby
a run-to-run adaptation strategy (Bonvin et al., 2006) is
implemented at the slow time scale (outer loop) and is in-
tegrated with a (constrained) neighbouring extremal con-
troller (Bryson and Ho, 1975) that operates at the fast time
scale (inner loop). More specifically, run-to-run adaptation
of the terminal constraints (Marchetti et al., 2007) is con-
sidered for the outer loop. In its original form, this scheme
proceeds by re-optimising the batch operation between
each run and adapting the terminal constraints based
on the mismatch between their predicted and measured
values; but no adaptation is made within a run. In order
to reject disturbances within each run and at the same
time promote feasibility and optimality, a NE controller is
here considered as the inner loop. The NE control which
avoids the costly re-optimisation of dynamic systems and
approximates the optimal solution of perturbed system,
is well-suited for this purpose. The integration between
the outer- and inner-loops occurs naturally since the NE
controllers are recalculated after each run based on the
solution to the outer-loop optimization problem. The re-
sulting integrated two-time-scale optimization scheme thus
offers promise to enhance performance and tractability.

The paper is structured as follows. Section 2 defines
dynamic optimisation problem and necessary conditions
of optimality, Next, Section 3 provides theoretical back-
ground on NE control and its numerical computation.
Run-to-run constraint optimisation is outlined in Sec-
tion 4. The proposed integrated two-times-scale optimisa-
tion scheme is closely described in Section 5. The perfor-
mance of the proposed approach is demonstrated on level
control of two connected tanks with liquid interaction, in
Section 6. Finally, Section 7 concludes the paper.

2. DYNAMIC OPTIMISATION PROBLEM

2.1 Problem Formulation

Throughout the paper, the following dynamic optimisation
problem with control and terminal bound constraints is
considered:

min
u

J = φ(x(tf )) +

∫ tf

0

L(x(t),u(t))dt (1)

s.t. ẋ = F (x(t),u(t)), 0 ≤ t ≤ tf (2)

x(0) = x0 (3)

ψ(x(tf ), tf ) ≤ ψref (4)

uL ≤ u(t) ≤ uU . (5)

In (1)–(5), t ≥ 0 denotes the time variable, with tf the final
time; u ∈ Rnu the control vector; x ∈ Rnx the state vector,
with initial value x0; J , φ and L the scalar cost, terminal
cost, and integral cost, respectively; and ψ the vector of
nψ terminal constraints. All the functions in (1)–(5) are
assumed to be continuously differentiable with respect to
all their arguments.

2.2 Necessary Conditions for Optimality

Following Bryson and Ho (1975), the Hamiltonian function
H is defined as follows:

H(x,u,λ,µL,µU ) = L(x,u) + F (x,u)Tλ+ (6)

+ µL(uL − u) + µU (u − uU ), (7)

λ ∈ Rnx denotes the so-called adjoint (or costate) vector
which satisfies

λ̇ = −Hx = −F Txλ−Lx, 0 ≤ t ≤ tf , (8)

with the terminal conditions given by

λ(tf ) =
[
φx + νTψx

]
t=tf

, (9)

µL(t),µU (t) ∈ Rnu are Lagrange multiplier vector func-
tions satisfying

µL
T

(uL − u) = 0; µL ≥ 0 (10)

µU
T

(u− uU ) = 0; µU ≥ 0, 0 ≤ t ≤ tf . (11)

and ν ∈ Rnψ are Lagrange multipliers for the terminal
constraints such that

0 = νkψk, νk ≥ 0, for each k = 1, . . . , nψ. (12)

Provided that the optimal control problem is not abnor-
mal, the first- and second- order necessary conditions for
optimality (NCO) read:

Hu = Lu + F Tuλ− µL − µU = 0 (13)

Huu ≥ 0 (14)

This latter determines the set of active terminal con-
straints at the optimum, which is denoted by the vector ψ̄
of dimension nψ̄ and by complementary multiplier ν̄∗. The
constraints are inactive when the crresponding Lagrange
multiplier is equal to zero. (The subscript such as y for a
given variable denotes partial derivatives of that variable
with respect to y.)

3. NEIGHBOURING-EXTREMAL CONTROL

3.1 Neighbouring Control

Let’s assume that the optimal control trajectory u∗(t) for
the optimisation problem (1)–(5) consists of a sequence of
constrained and unconstrained arcs. The optimal solution
then comprises x∗(t), λ∗(t), ν̄∗,µL,µU , 0 ≤ t ≤ tf .
For the control sequence, it is also assumed that the
uncertainty is sufficiently small for the perturbed optimal
control to have the same sequence of constrained and
unconstrained arcs as the nominal solution.

The constrained optimal control problem obtained with
a small variation in the initial condition x(0) = x0 +
δx0 and in active terminal constraints ψ̄(x(tf ), tf ) = δψ̄
produces variations in optimal control vector δu(t), state
vector δx(t), adjoint vector δλ(t) and Lagrange multiplier
vector δν̄ (for the active terminal constraints ψ̄). Along
unconstrained arcs, these variations can be calculated from
the linearisation of the first-order NCO (10)–(12) around
the extremal path (Bryson and Ho, 1975):

δẋ = F ∗
xδx+ F ∗

uδu (15)

δλ̇ = −H∗
xxδx− F ∗T

x δλ−H∗
xuδu (16)

0 = H∗
uxδx+ F ∗T

u δλ+H∗
uuδu (17)

δx(0) = δx0 (18)
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with additional conditions:

δλ(tf ) =
[(
φ∗

xx + ν̄∗T ψ̄∗
xx

)
δx+ ψ̄∗T

x δν̄
]
t=tf

(19)

δψ̄ =
[
ψ̄∗

xδx
]
t=tf

. (20)

A superscript ∗ indicates that the corresponding quantity
is evaluated along the extremal path u∗(t), 0 ≤ t ≤ tf , and
corresponding states, adjoints and Lagrange multipliers.

Let us assume that the Hamiltonian function is regular,
so that H∗

uu is invertible along 0 ≤ t ≤ tf . The control
variation δu(t) for these unconstrained arcs µL = µU = 0
is then given from (17):

δu(t) = −(H∗
uu)−1

[
F ∗T

u δλ(t) +H∗
uxδx(t)

]
. (21)

Overall, along constrained arcs, the control variation is
equal to zero δu(t) = 0. Then, δx(t) and δλ(t) satisfy the
following multi-point boundary value problem (MPBVP):(

δẋ(t)

δλ̇(t)

)
= ∆(t)

(
δx(t)
δλ(t)

)
,

δx(0) = δx0, δψ̄ =
[
ψ̄∗

xδx
]
t=tf

,

δλ(tf ) =
[(
φ∗

xx + ν̄∗T ψ̄∗
xx

)
δx+ ψ̄∗T

x δν̄
]
t=tf

(22)

where:

∆(t) =





(
α(t) −β(t)
−γ(t) −α(t)T

)
along unconstrained arcs

(
F ∗

x 0
−H∗

xx −F ∗T
x

)
along constrained arcs

(23)

and

α(t) := F ∗
x − F ∗

u(H∗
uu)−1H∗

ux (24)

β(t) := F ∗
u(H∗

uu)−1F ∗T
u (25)

γ(t) :=H∗
xx −H∗

xu(H∗
uu)−1H∗

ux. (26)

Clearly, at each switching point between an unconstrained
and a constrained arcs, a continuity of control, state and
adjoint profiles must be preserved. For example, at a
switching point between a lower bound and an interior arc,
the value of control on lower bound matches the value of
control in the interior arc uH = uL. Here, uH represents
the control obtained from solving the condition Hu = 0.
In addition, state and adjoint trajectories are continuous
at this point, too:

x∗(t+k ) = x∗(t−k ), λ∗(t+k ) = λ∗(t−k ) (27)

Variations in switching times are difficult to determine and
complicate the calculation of the NE control. To make
this implementable, it is considered that the switching
points are constant at their nominal times. The control
values are then updated only between the fixed times. In
practice, performance loss is negligible for small variations
of switching times.

3.2 Numerical Computation of Neighbouring Feedback
Control

The linear MPBVP (22) can be used to calculate the
neighboring-extremal control correction δu(t), 0 ≤ t ≤ tf ,
in either one of two situations:

i. The initial state and (active) terminal constraint
variations δx0 and δψ̄ are available at discrete time
instants, in which case the discrete feedback control

can be obtained by directly re-solving the MPBVP.
This can be done via a shooting method as described
in Pesch (1989);

ii. The variations δx0 and δψ̄ are available continu-
ously in time, in which case the backward sweep
method (Bryson and Ho, 1975) can be used to derive
an explicit feedback control law. This approach is
closely explained by Bryson and Ho (1975).

In this paper, we consider the first approach that is
summarised in Subsection 3.3.

3.3 Shooting Method

The linear TPBVP (22) can be rewritten in the form
(
δẋ(t)

δλ̇(t)

)
=

(
α(t) β(t)
−γ(t) −α(t)

)

︸ ︷︷ ︸
=: ∆(t)

(
δx(t)
δλ(t)

)
, (28)

with the boundary conditions(
I 0
0 0

) (
δx(0)
δλ(0)

)
+

(
0 0
B1 I

) (
δx(tf )
δλ(tf )

)
=

(
δx0

B2

)
, (29)

where

B1 = −
[
φ∗

xx + ν̄∗T ψ̄∗
xx

]
tf

B2 =
[
ψ̄∗T

x

]
tf
δν̄ (30)

The shooting approach proceeds by guessing the missing
initial (or terminal) conditions in (29), and adjusting them
in such a way that the corresponding terminal (or initial)
conditions are satisfied (see, e.g., Pesch, 1989). Given the
guess δλ(0) = δλ0 for the adjoint variations at initial time
t = 0, the (unique) solution to the linear ODE system (28)
is of the form:(

δẋ(t; δλ0)

δλ̇(t; δλ0)

)
=

(
Υ1(t; 0) Υ2(t; 0)
Υ3(t; 0) Υ4(t; 0)

)

︸ ︷︷ ︸
=: Υ(t; 0)

(
δx0

δλ0

)
, (31)

where the transition matrix Υ(t; 0) is obtained as the
solution to the initial value problem

∂

∂t
Υ(t; 0) = ∆(t)Υ(t; 0), 0 ≤ t ≤ tf ; Υ(0; 0) = I.

(32)

Substituting (31) into (29) and (20) leads to the following
linear system in the variables δλ(0), δν̄:

(
Z1 Z2

Z3 0

) (
δλ(0)
δν̄

)
=

(
0
I

)
δψ̄ −

(
Z4

Z5

)
δx0, (33)

where

Z1 =
[
φ∗

xx + ν̄∗T ψ̄∗
xx

]
tf

Υ2(tf ; 0)−Υ4(tf ; 0)

Z2 =
[
ψ̄∗T

x

]
tf

Z3 =
[
ψ̄∗

x

]
tf

Υ2(tf ; 0)

Z4 =
[
φ∗

xx + ν̄∗T ψ̄∗
xx

]
tf

Υ1(tf ; 0)−Υ3(tf ; 0)

Z5 =
[
ψ̄∗

x

]
tf

Υ1(tf ; 0) (34)

For given initial state and active terminal constraint vari-
ations δx0 and δψ̄, the solution to the linear system (33)
provides the corresponding initial adjoint and Lagrange
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multiplier variations δλ(0) and δν̄. Finally, the NE control
variation can be calculated from (21) as

δu(t) = −(H∗
uu)−1

(
H∗

ux F
∗T
u

)
Υ(t; 0)

(
δx0

δλ(0)

)
. (35)

4. RUN-TO-RUN CONSTRAINT ADAPTATION

The principle behind run-to-run optimization is similar
to MPC. But instead of adapting the initial conditions
and moving the control horizon as is done in MPC, the
adaptation is performed on the optimization model (e.g.,
model parameters or constraint biases) before re-running
the optimizer. In run-to-run constraint adaptation, more
specifically, the terminal constraints (4) in the optimiza-
tion model are adapted after each run as (Marchetti et al.,
2007):

ψ(x(tf ), tf ) ≤ δψ, (36)

where δψ stands for the terminal constraint bias. Such a
bias can be directly updated as the difference between the
available terminal constraint measurements, ψmeas, at the
end of each run and the predicted constraint values. This
simple strategy may however lead to excessive correction
when operating far away from the optimum, and it may
also exacerbate the sensitivity of the adaptation scheme to
measurement noise. A better strategy consists of filtering
the bias, e.g., with a first-order exponential filter:

δψk+1 = [I −W ] δψk+

+W [ψmeas
k −ψ(xk(tf ), tf )] , (37)

with k the run index, and W a gain matrix—typically, a
diagonal matrix.

u∗
k[0, tf ]

ψ(x∗
k(tf ), tf )

ψmeas
k

δψk

δψk+1

Fig. 1. Run-to-run constraint adaptation scheme.

The run-to-run constraint-adaptation scheme is shown in
Figure 1. The constrained dynamic optimisation problem
uses the available nominal process model. It is solved
between each run, using any numerical procedure, such as
the sequential or the simultaneous approach of dynamic
optimisation. The optimal control trajectory u∗

k(t), 0 ≤
t ≤ tf , is computed and applied to the plant during the
kth run. The predicted optimal response is denoted by
x∗
k(t). The discrepancy between the measured terminal

constraint values ψmeas
k and the optimizer predictions

ψ(x∗
k(tf ), tf ) is then used to adjust the constraint bias

as described earlier, before re-running the optimizer for
the next run.

Of course, optimal control trajectory calculated between
runs is suboptimal as the real process is never known
perfectly.

5. TWO-TIMES-SCALE OPTIMISATION SCHEME

Run-to-run constraint adaptation was shown to be a
promising technology in Marchetti et al. (2007). This ap-
proach provides a natural framework for handling changes
in active constraints in dynamic process systems and it is
quite robust towards model mismatch and process distur-
bances. Moreover, its implementation is simple. Inherent
limitations of this scheme, however, are that (i) it does not
perform any control corrections during the runs, and (ii)
it typically leads to suboptimal performance.

On the other hand, neighbouring-extremal control is able
to correct small deviations around the nominal extremal
path in order to deliver similar performance as with re-
optimisation. Since no costly on-line re-optimisation is
needed, this approach is especially suited for processes
with fast dynamics. However, the performance of NE
control typically decreases dramatically in the presence
of large model mismatch and process disturbances, and
it requires a full-state measurement. This leads to sub-
optimality or, worse, infeasibility when constraints are
present or limited measurements are available.

Our proposal is to combine the advantages of these two
approaches: Run-to-run constraint adaptation is applied
at a slow time scale (outer loop) to handle large model
mismatch and changes in active constraints, based on run-
end measurements only. Further, NE control is applied
at a fast time scale (inner loop) and uses measurement
information available within each run, in order to enhance
convergence speed and mitigate sub-optimality. It need to
be stated that full-state measurement is required even in
case of integrated scheme. The proposed integrated two-
time-scale optimization scheme is depicted in Figure 2.

The implementation procedure is as follows:

Initialisation:
(0) Initialise the constraint bias δψ = 0, select a gain

matrix W and set the run index to k = 1
Outer Loop:

(1) Determine u∗
k by solving the optimal control prob-

lem (1)–(5), then obtain the corresponding states
x∗
k and adjoints λ∗

k, with the active terminal con-
straints ψ̄ and Lagrange multipliers ν̄∗

k, and to-
gether with Lagrange multipliers for boundary con-
straints µL and µU that satisfy NCO (10)–(13).

(2) Design a NE controller around the extremal path
u∗
k, either by using the backward sweep approach

(continuous measurements), or by applying the
shooting method (discrete measurements).

(3) Inner Loop:
Implement the NE controller during the kth run in
order to calculate the corrections δuk(t) to u∗

k(t)
based on the available (continuous or discrete) pro-
cess measurements.
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u∗
k[0, tf ]

x∗
k[0, tf ]

λ∗
k[0, tf ]

ν∗
k

µL

µU

ψ(x∗
k(tf ), tf )

ψmeas
k

δψk+1

δψk

u∗
k[0, tf ]

x∗
k[0, tf ]

λ∗
k[0, tf ]

ν∗
k

δuk(t)

u∗
k(t) u∗

k(t) + δuk(t) xmeas
k (t)

x∗
k(t)

δxk(t)

Fig. 2. Two-times-scale optimisation scheme employing
NE control in the inner loop and run-to-run constraint
adaptation in the outer loop.

(4) Update the constraint bias δψk+1 as the filtered dif-
ference between the measured values of the terminal
constraints and their predicted counterparts.

(5) Increment the run index k ← k + 1, and return to
Step 1.

6. TWO CONNECTED TANKS WITH LIQUID
INTERACTION

The case study compares the performance of the two-
time-scale integrated solution with a pure constraint adap-
tation control scheme and a pure neighbouring-extremal
controller. At first, these control methods are tested in
simulations and then they are verified in experimental
conditions. The process and its model is introduced next.

6.1 Process Description

Level control of two connected tanks with liquid interac-
tion is considered to illustrate integrated two-times-scale
approach as can be seen in Figure 4. The experiment
has been carried out on Amira DTS200 device (see Fig-
ure 3). There are 3 connected tube-shaped tanks connected
through the bottoms and six valves to regulate the out-
flows. The levels are measured by pressure sensors situated
at the bottom of tanks. Also, two inlet flows are available:
the first pumps liquid to the first tank and the second
pumps liquid to the third tank.

For our purposes, only the first two tanks have been used.
The objective is to control level transition from an initial

level to the terminal level given for the second tank. The
manipulated variable is an inlet flow u(t) pumped into
the first tank at the top. The levels h1(t) and h2(t) are
controlled and measured variables. The measurements are
provided by pressure sensors. The outflow is situated at
the bottom of the second tank and it is regulated by half-
opened valve. Also, a liquid interaction take place, as the
tanks are connected through the bottoms.

Fig. 3. Amira DTS200 – Process for level control of
tanks.

Fig. 4. Configuration of two tanks connected in series.

6.2 Process Model

The model is derived based on the process introduced in
the previous subsection. In the model, it is assumed that a
liquid density is constant and the walls of tank are vertical
to the base. From material balance and from Bernoulli’s
equation in fluid dynamic, the resulting optimisation prob-
lem can be mathematically postulated as follows:

min
u
J =

∫ tf

t0

q(h2 − h2,ref )
2 + ru2dt (38)

s.t.

ḣ1(t) =
u

F1
− k11

F1

√
h1 − h2 (39)

ḣ2(t) =
k11

F2

√
h1 − h2 −

k22

F2

√
h2 (40)

(41)

The state values h1(t) and h2(t) are levels [cm] in the first
tank and in the second tank, respectively; constants F1 and
F2 defines cross-sectional area of tank bases [cm2]; k11 and
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k22 are valve constants [cm2.5 s−1]; variable u represents
inlet flow [ml s−1].

The initial level values are determined at constant inlet
flow u = 25 ml s−1 as h1(t) = 16 cm and h2(t) = 8 cm.
The numerical values of constants are: cross-sectional areas
F1 = 154 cm2 and F2 = 154 cm2; estimated values of valve
constants k11 = 10.68 cm2.5 s−1 and k22 = 7.5 cm2.5 s−1.
The final time is set to tf = 500 s and inlet flow u is
bounded as:

0 ≤ u ≤ 100 [ml s−1]. (42)

Desired level in the second tank is h2,ref = 25 cm, so the
additional terminal conditions read:

h2(tf ) = h2,ref (43)

ḣ1(tf ) = 0 (44)

ḣ2(tf ) = 0. (45)

Note that the integral term
∫ tf
t0
ru2dt augments the origi-

nal objective function in order to make the control problem
non-singular. Weighting variable r is set as low as possible
in order to retain the original objective. This way Hu

depends on the control variable and Hamiltonian H is
regular.

6.3 Nominal Solution

Solving the optimisation problem (38)–(45) with the se-
quential method (Edgar and Himmelblau, 1988; Guntern
et al., 1998), the piecewise constant control profile shows
the presence of one interior arc and two boundary arcs.
Further analysis of this solution indicates that optimal
control consists of a upper bound, lower bound, and an
interior constant arc. As the problem is regular, the control
action along interior arc can be explicitly determined from
the necessary conditions of optimality. Note that along
boundary arcs, the control action is determined by an
upper or a lower bound hence the control variations are
simply δu = 0. The switching times t1 and t2 between
these arcs are not explicitly known and they need to
be estimated, too. The switching times from piecewise
constant control profile give good initial guess for these
switching times. Overall, the optimal control solution is
given as:

(1) t ∈ (t0, t1), the control remains on its upper bound
u∗(t) = 100

(2) t ∈ (t1, t2), the control remains on its lower bound
u∗(t) = 0

(3) t ∈ (t2, tf ), the control is constant

The optimal control profile is obtained by computing the
switching times t1 and t2, and the constant control.

6.4 Simulation Results

In order to simulate real behaviour of the process, the
valve constants are perturbed to following values: k11 =
10.08 cm2.5 s−1 and k22 = 8.82 cm2.5 s−1. The initial condi-
tions remain unchanged. The measured outputs are states
with addition of white noise. It is also considered that full-
time measurements are available. While the NE controller
is designed using the nominal mathematical model, the
simulations are performed for measured outputs from the

perturbed model. Difference between nominal and per-
turbed model causes variations which in turn result in a
performance loss and terminal constraint violation, when
applying the open-loop control profile (see Figure 5). Run-
to-run constraint adaptation is initialised with a constraint
bias of δψ = 0 and considers a filter gain of W = 0.5.
For proposed integrated control scheme a filter gain was
set to W = 0.4. The filter parameters were chosen as a
compromise between a controller aggressiveness and an
ability to deal with measurement noise.

Figure 6 compares the evolution of the performance during
the first 15 runs. The evolution of the terminal constraint
is presented in the left plot. See that in the first run pure
constraint adaptation starts far from the desired value
compared to the neighbouring extremal approach. In the
consequent runs, the constraints remains inactive with the
pure neighbouring extremal approach. In contrast, with
pure constraint adaptation and with integrated two-time-
scale scheme, the terminal constraint is enhanced over the
runs to meet the goal. The pure constraint adaptation
approach needed 5 runs to converge. Then, in last 10 runs
approach oscillates around the desired value. Note that
this approach seems to be more sensitive to measurement
noise then the other approaches because only end-point
measurement is considered. The integrated scheme starts
in close proximity of terminal constraint. In the following
runs, this result is slowly enhanced to meet the terminal
constraint. Due to the fact that control corrections are
applied during each run as well, this approach is able
to correct the control profile with lower sensitivity to
measurement noise. These corrections affects also the end-
point measurement which is less variant over the runs.
Note that the sensitivity of NE controller to measurement
noise is relative to the chosen number of NE corrections.
Lower number expresses lower noise sensitivity but worse
corrections and vice versa. In this case study, 120 NE
corrections have been chosen.

The right plot of Figure 6 shows the evolution of the
modelled terminal constraint hence the original terminal
constraint plus constraint bias. This value varies a little
for the integrated scheme because the NE controller in the
inner loop is able to recover a large portion of optimality
loss. In contrast, constraint adaptation requires heavier
adaptation since no correction is made during the run.

The resulting control profile after adaptation within 15
runs is shown in left plot in Figure 7. The optimal control
profile still consists of the tree arcs, but the switching times
have changed compared to nominal solution displayed in
Figure 5, as a result of the constrained adaptation. The
corresponding measured levels are presented in the right
plot in Figure 7. It can be seen that the measured level in
second tank met the desired level with proposed integrated
two-time-scale control approach.

6.5 Experimental Results

The nominal solution was obtained for certain positions of
outflow valves (leakages). In order to test the performance
of the control approaches, the outflow was increased. This
change also invoked minor variation of initial conditions.
Measurements of levels were available on-line, as required.
The conversion between measured outputs (in volts) and
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Fig. 5. Left: Nominal control trajectory; Right: Response for open-loop implementation of nominal control trajectory,
solid line: nominal model, dashed line: perturbed model, and bold dotted line: desired level in the second
tank.
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Fig. 6. Control approaches in simulations. Dashed line with crosses: pure constraint adaptation, dotted line with
diamonds: pure neighbouring extremal control, solid line with circles: integrated two-time-scale scheme control,
bold dotted line: desired level. Left plot: Evolution of the measured terminal constraint; Right plot: Evolution
of the modelled terminal constraint.

states (in centimetres) was considered as another pertur-
bation. As in simulations, the difference between model
and process is causing performance loss and terminal
constraint violation. Run-to-run constraint adaptation is
initialised with a constraint bias of δψ = 0 and considers
a filter gain of W = 0.6. For proposed integrated control
scheme a filter gain was set to W = 0.5. As previously, the
filter parameters were chosen with respect to measurement
noise and controller dynamics. Sampling time was set to
2 ms as the highest time instant needed to redesign NE
controller. In order to reduce the sampling time, the design
of NE controller starts an instant before second switching
time as there are no control corrections along boundary
arc.

Performance evolution over 15 runs of stand-alone ap-
proach and proposed two-time-scale approach is displayed
in Figure 8. Left plot shows the development of termi-

nal constraint. Similar results as in simulations can be
observed. In the first run, NE and proposed two-time-
scale approach start closely to the desired value. NE con-
troller is able to recover some of performance loss but
not completely. In consequent runs, two-time-scale slowly
augments terminal constraint of model to satisfy the ob-
jective. In this case, first 3 runs were needed to almost
reach the optimum. In last 9 runs, terminal constraint
holds closely to desired level value and can be considered as
active. The performance of NE does not change as control
updates are only carried within the run and not between
them as in case of two-time-scale and pure constraint
adaptation. In contrast to proposed approach, pure run-to-
run adaptation of constraints needed first 6 runs to come
close to optimum but with higher value of filter gain. In the
following runs, terminal constraint values oscillates around
desired level value. This approach is more sensitive to
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Fig. 7. Performance of proposed scheme in simulations with perturbed valve constants after 1st and 15th run of
adaptation. Left plot: Control trajectory; Right plot: Measured outputs; Dashed line: First run; Solid line:
Last run; Bold dotted line: Desired level.

measurement noise in comparison to the other approaches
as only final measurements are taken. Proposed two-time-
scale approach is able to correct the control profile with
lower sensitivity to measurement noise, due to the fact that
control corrections are applied during each run as well.
This also results in more equal end-point measurements.
In experiment, 750 NE corrections were performed. This
higher number of NE updates caused high frequency noise
in control actions. Thus, these inputs were filtered on-line
in order to deliver smoother control actions.

Terminal constraint evolution plus constraint bias is de-
picted in the right plot of Figure 8. Observe small vari-
ations of this value for proposed scheme. In-run control
corrections by NE controller provided more equal perfor-
mance. Since no correction is made during the run, pure
constraint adaptation approach clearly requires heavier
adaptation.

Left plot in Figure 9 displays the resulting control profile
after adaptation within 15 runs. The suboptimal control
profile still begins with two boundary arcs but the switch-
ing times have changed compared to nominal solution
displayed in Figure 5, as a result of the constrained adap-
tation. The unconstrained arc is no longer constant as is
corrected by NE controller. Note that large state varia-
tions may cause unproportional control correction what
results into clipped control. Right plot in Figure 9 presents
corresponding measured levels. Obviously, the measured
level in second tank meets the desired level with proposed
integrated two-time-scale control approach.

7. CONCLUSIONS

In this paper, an integrated two-times-scale control scheme
for level control of two connected tanks has been pro-
posed. Simulation and experimental results show that
this control approach improves the performance of dy-
namic real-time optimisation applied to the real process.
The combination of two approaches, namely run-to-run
adaptation and neighbouring extremal control, allows to

complement the benefits of each other while mitigating
some of their deficiencies. Standalone implementation of
these approaches indicates lower performance compared
to proposed approach. On one side, the NE approach can
improve performance loss within the run, and on the other
side, constraint adaptation handles terminal constraints.
Advantages of the integrated scheme have been demon-
strated on the case study for level control of two connected
tanks with liquid interaction. As part of future work,
an extension of the current scheme to singular control
problems is currently under investigation, as well as the
ability to handle problems with state path constraints.
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J.P., and Allgöwer, F. (2002). Real-time optimization
and nonlinear model predictive control of processes
governed by differential algebraic equations. Jour. of
Process Control.

Edgar, T.F. and Himmelblau, D.M. (1988). Optimization
of Chemical Processes. McGraw-Hill, New York.

Garcia, C.E., Prett, D.M., and Morari, M. (1989). Model
Predictive Control: Theory and Practice – A Survey.
Automatica, 25(3), 335–348.

Guntern, C., Keller, A., and Hungerbuhler, K. (1998).
Economic Optimization of an Industrial Semi-batch Re-

actor Applying Dynamic Programming. Industrial and
Engineering Chemistry Research, 37(10), 4017–4022.

Kadam, J.V. and Marquardt, W. (2007). Integration of
economical optimization and control for intentionally
transient process operation. Lecture Notes in Control
and Information Sciences, 358, 419–434.

Maciejowski, J.M. (2002). Predictive Control with Con-
straints. Prentice-Hall, London.

Marchetti, A., Chachuat, B., and Bonvin, D. (2007).
Batch process optimization via run-to-run constraints
adaptation. In European Control Conference. Kos,
Greece.

Pesch, H.J. (1989). Real-time computation of feedback
controls for constrained optimal control problems. Part
II: A correction method based on multiple shooting.
Optimal Control Applications & Methods, 10, 147–171.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Friday

551



Optimal Control via Initial State of an
Infinite Order Time Delay Hyperbolic

System

A. Kowalewski ∗

∗ Institute of Automatics
AGH University of Scince and Technology
al. Mickiewicza 30, 30-059 Cracow, Poland

fax: +48 -12 -6341568, e-mail: ako@ia.agh.edu.pl

Abstract: In this paper, we consider an optimal control problem for a linear infinite order
hyperbolic system. One from the initial conditions is given by control function. Sufficient
conditions for the existence of a unique solution of such hyperbolic equations with the Dirichlet
boundary conditions are presented. The performance functional has the quadratic form. The
time horizon T is fixed. Finally, we impose some constraints on the control. Making use of the
Lions scheme (Lions (1971)), necessary and sufficient conditions of optimality for the Dirichlet
problem with the quadratic performance functional and constrained control are derived.

Keywords: optimal control, infinite order, hyperbolic system, time delay

1. INTRODUCTION

Various optimization problems associated with the optimal
control of second order time delay distributed parame-
ter systems have been studied in Wang (1975); Knowles
(1978); Kowalewski (1988b 1993ab 1998 2000 2001) re-
spectively.

In Knowles (1978), the time optimal control problems
of linear parabolic systems with the Neumann boundary
conditions involving constant time delays were considered.

These equations constitute in a linear approximation, a
universal mathematical model for many diffusion processes
in which time-delayed feedback signals are introduced at
the boundary of a system’s spatial domain. For example,
in the area of plasma control (Wang (1975)), it is of
interest to confine a plasma in a given bounded spatial
domain Ω by introducing a finite electric potential barrier
or a ”magnetic mirror” sorrounding Ω. For a collision-
dominated plasma, its particle density is describable by
a parabolic equation. Due to particle inertia and finite-
ness of electric potential or the magnetic -mirror field
strength, the particle reflection at the domain boundary is
not instantaneous. Consequently, the particle flux at the
boundary of Ω at any time depends on the flux of particles
which escaped earlier and reflected back into Ω at a later
time. This leads to the boundary conditions involving time
delays.

Using the results of Wang (1975), the existence of a unique
solution of such parabolic systems was discussed. A char-
acterization of the optimal control in terms of the adjoint
system was given. Consequently, this characterization was
used to derive specific properties of the optimal control
(bang-bangness, uniqueness, etc.). These results were also
extended to certain cases of nonlinear control without
convexity and to certain fixed-time problems.

Consequently, in Kowalewski (1988b 1993ab 1998 2000
2001) linear quadratic problems for second order hyper-
bolic systems with time delays given in the different form
(constant time delays, time-varying delays, integral time
delays, etc.) were presented.

Moreover, in Lions (1971) and Kowalewski (2004) optimal
control problems via initial state for second order hyper-
bolic systems were investigated.

Such hyperbolic systems constitute in a linear approxi-
mation mathematical models of representative convection-
reaction processes, e.g. fixed-bed reactors, pressure swing
absorption processes, etc.

In particular, in Kowalewski (2010), the optimal control
problems via initial condition for infinite order hyperbolic
systems were considered. The presented optimal control
problem can be generalized onto the case of time delay
infinite hyperbolic systems.

For this reason, in the present paper we consider an opti-
mal control problem for a linear time delay infinite order
hyperbolic system with constant time delay appearing in
the state equation.

We consider a different type of equations, namely, time
delay infinite order partial differential equations of hyper-
bolic type with one from the initial conditions given by
control function.

The paper is organized as follows. The existence and
uniqueness of solutions for such hyperbolic equations were
proved - Lemma 1 and Theorem 2. The optimal control
is characterized by the adjoint problem - Lemma 3. The
necessary and sufficient conditions of optimality with the
quadratic performance functional and constrained control
are derived for the Dirichlet problem - Theorem 4.
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2. PRELIMINARIES

Let Ω be a bounded open set of Rn with smooth boundary
Γ.

We define the infinite order Sobolev space
H∞{aα, 2}(Ω) of functions Φ(x) defined on Ω Dubinskij
(1975) and Dubinskij (1976) as follows

H∞{aα, 2}(Ω) =

=



Φ(x) ∈ C∞(Ω) :

∞∑

|α|=0

aα ‖ DαΦ ‖2
2< ∞



, (1)

where: C∞(Ω) is a space of infinite differentiable functions,
aα ≥ 0 is a numerical sequence and ‖ · ‖2 is a norm in the
space L2(Ω), and

Dα =
∂|α|

(∂x1)α1 . . . (∂xn)αn
, (2)

where: α = (α1, . . . , αn) is a multi-index for differentiation,

|α| =

n∑

i=1

αi.

The space H−∞{aα, 2}(Ω) is defined as the formal conju-
gate space to the space H∞{aα, 2}(Ω), namely:

H−∞{aα, 2}(Ω) =

=



Ψ(x) :Ψ(x)=

∞∑

|α|=0

(−1)|α|aαDαΨα(x)



, (3)

where: Ψα ∈ L2(Ω) and

∞∑

|α|=0

aα ‖ Ψα ‖2
2 < ∞.

The duality pairing of the spaces H∞{aα, 2}(Ω) and
H−∞{aα, 2}(Ω) is postulated by the formula

〈Φ, Ψ〉 =

∞∑

|α|=0

aα

∫

Ω

Ψα(x)DαΦ(x) dx, (4)

where: Φ ∈ H∞{aα, 2}(Ω), Ψ ∈ H−∞{aα, 2}(Ω).

From above, H∞{aα, 2}(Ω) is everywhere dense in L2(Ω)
with topological inclusions and H−∞{aα, 2}(Ω) denotes
the topological dual space with respect to L2(Ω) so we
have the following chain:

H∞{aα, 2}(Ω) ⊆ L2(Ω) ⊆ H−∞{aα, 2}(Ω). (5)

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Consider now the distributed-parameter system described
by the following infinite order hyperbolic equation

∂2y

∂t2
+ Ay + y(x, t − h) = u x ∈ Ω, t ∈ (0, T ), (6)

y(x, t′) = Φ0(x, t′) x ∈ Ω, t′ ∈ [−h, 0), (7)

y(x, 0) = 0 x ∈ Ω, (8)

y′(x, 0) = v x ∈ Ω, (9)

y(x, t) = 0 x ∈ Γ, t ∈ (0, T ), (10)

where Ω has the same properties as in the Section 1.

y ≡ y(x, t; v), u ≡ u(x, t), v ≡ v(x)

Q = Ω × (0, T ), Q̄ = Ω̄ × [0, T ],

Q0 = Ω × [−h, 0), Σ = Γ × (0, T ),

h is a specified positive number representing a time delay,
Φ0 is an initial function defined on Q0.

The operator
∂2

∂t2
+ A in (6) is an infinite order hyperbolic

operator and A (Dubinskij (1986)) is given by

Ay =
( ∞∑

|α|=0

(−1)|α|aαD2α + 1
)
y (11)

and

∞∑

|α|=0

(−1)|α|aαD2α is an infinite order elliptic partial

differential operator.

The operator A is a mapping of H∞{aα, 2} onto
H−∞{aα, 2}. For this operator the bilinear form Π(t; y, ϕ)
= (Ay, ϕ)L2(Ω) is coercive on H∞{aα, 2} i.e. there exists

λ > 0, λ ∈ IR such that Π(t; y, ϕ) ≥ λ‖y‖2
H∞{aα,2}. We as-

sume that ∀ y, ϕ ∈ H∞{aα, 2} the function t → Π(t; y, ϕ)
is continuously differentiable in [0, T ] and Π(t; y, ϕ) =
Π(t; ϕ, y).

The equations (6) - (10) constitute a Dirichlet problem.

First we shall prove sufficient conditions for the existence
of a unique solution of the mixed initial-boundary value
problem (6) - (10) for the case where v ∈ L2(Ω).

The existence of a unique solution for the mixwd initial-
boundary value problem (6) - (10) on the cylinder Q can
be proved using a constructive method, i.e. first solving
(6) - (10) on the subcylinder Q1 and in turn on Q2, etc.,
until the procedure covers the whole cylinder Q. In this
way the solution in the previous step determines the next
one.

For simplicity, we introduce the notations

Ej
∧
= ((j − 1)h, jh), Qj = Ω × Ej , j = 1, ..., K

Using the results of Section 6 of (Lions (1971), p. 314) we
can prove the following lemma.

Lemma 1. Let

u ∈ L2(Q), (12)

fj ∈ L2(Qj), (13)

where
fj(x, t) = u(x, t) − yj−1(x, t − h),

yj−1(·, (j − 1)h) ∈ H∞{aα, 2}(Ω), (14)

y′
j−1(·, (j − 1)h) ∈ L2(Ω). (15)

Then, there exists a unique solution

yj ∈ L2(Ej ; H
∞{aα, 2}(Ω)) with

dyj

dt
∈ L2(Ej ; L

2(Ω)) for

the mixed initial-boundary value problem (6), (14) and
(15).

Proof. We observe that for j = 1 we have
yj−1

∣∣
Q0

(x, t − h) = Φ0(x, t − h). Then the assumptions
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(13), (14) and (15) are fullfilled if we assume that

Φ0 ∈ L2(−h, 0; H∞{aα, 2}(Ω)),
dΦ0

dt
∈ L2(−h, 0; L2(Ω)),

y0(x, 0) ∈ H∞{aα, 2}(Ω) and y′
0(x, 0) ∈ L2(Ω). These

assumptions are sufficient to ensure the existence of a

unique solution y1 ∈ L2(E1; H
∞{aα, 2}(Ω)) with

dy1

dt
∈

L2(E1; L
2(Ω)).

In order to extend the results to Q2, we have to to
prove that y1(·, h) ∈ H∞{aα, 2}(Ω), y′

1(·, h) ∈ L2(Ω)
and f2 ∈ L2(Q2). From the Theorem 3.1 of Lions and
Magenes (1972) (Vol.1, p.19) y1 ∈ L2(E1; H

∞{aα, 2}(Ω))

jointly with
dy1

dt
∈ L2(E1; L

2(Ω)) imply that the mappings

t → y1(·, t) and t → y′
1(·, t) are continuous from [0, h] →

H∞{aα, 2}(Ω) and [0, h] → L2(Ω) respectively. Thus,
y1(·, h) ∈ H∞{aα, 2}(Ω) and y′

1(·, h) ∈ L2(Ω).

Also it is easy to notice that the assumption (13) fol-
lows from the fact that y1 ∈ L2(E1; H

∞{aα, 2}(Ω)) and
u ∈ L2(Q). Thus, there exists a unique solution y2 ∈
L2(E2; H

∞{aα, 2}(Ω)) with
dy2

dt
∈ L2(E2; L

2(Ω)).2

The foregoing result is now summarized for j = 1, ..., K.

Theorem 2. Let y(x, 0), y′(x, 0), Φ0 and u be given with
y(·, 0) ∈ H∞{aα, 2}(Ω), y′(·, 0) ∈ L2(Ω),

Φ0 ∈ L2(−h, 0; H∞{aα, 2}),
dΦ0

dt
∈ L2(−h, 0; L2(Ω))

and u ∈ L2(Q). Then, there exists a unique solution

y ∈ L2(0, T ; H∞{aα, 2}(Ω)) with
dy

dt
∈ L2(0, T ; L2(Ω)) for

the mixed initial-boundary value problem (6) - (10).

4. PROBLEM FORMULATION. OPTIMIZATION
THEOREM.

We shall now formulate the optimal control problem for
the Dirichlet problem. Let us denote by U = L2(Ω) the
space of controls. The time horizon T is fixed in our
problem.

The performance functional is given by

I(v) = λ1

∫

Ω

| y(x, T ; v) − zd |2 dx+

+λ2

∫

Ω

(Nv)v dx, (16)

where: λi ≥ 0 and λ1 + λ2 > 0; zd is a given element in
L2(Ω); N is a positive linear operator on L2(Ω) into L2(Ω).

Finally, we assume the following constraint on controls
v ∈ Uad , where

Uad is a closed, convex subset of U. (17)

Let y(x, t; v) denote the solution of the mixed initial-
boundary value problem (6) - (10) at (x, t) corresponding
to a given control v ∈ Uad. We note from the Theorem
2 that for any v ∈ Uad the performance functional (16)
is well-defined since y(x, T ; v) ∈ H∞{aα, 2}(Ω) ∈ L2(Ω).
The solving of the formulated optimal control problem

is equivalent to seeking a v0 ∈ Uad such that I(v0) ≤
I(v) ∀v ∈ Uad.

Then from the Theorem 1.3 (Lions (1971), p. 10) it follows
that for λ2 > 0 a unique optimal control v0 exists;
moreover, v0 is characterized by the following condition

I ′(v0) · (v − v0) ≥ 0 ∀v ∈ Uad. (18)

Using the form of the performance functional (16) we can
express (18) in the following form

λ1

∫

Ω

(y(x, T ; v0) − zd)(y(x, T ; v) − y(x, T ; v0))dx+

+λ2

∫

Ω

(Nv0)(v − v0)dx ≥ 0 ∀v ∈ Uad. (19)

To simplify (19), we introduce the adjoint equation and for
every v ∈ Uad, we define the adjoint variable p = p(v) =
p(x, t; v) as the solution of the equation

∂2p(v)

∂t2
+ Ap(v) + p(x, t + h; v) = 0

x ∈ Ω, t ∈ (0, T − h), (20)

∂2p(v)

∂t2
+ Ap(v) = 0 x ∈ Ω, t ∈ (T − h, T ), (21)

p(x, T ; v) = 0 x ∈ Ω, (22)

p′(x, T ; v) = −λ1(y(x, T ; v) − zd) x ∈ Ω, (23)

p(x, t) = 0 x ∈ Γ, t ∈ (0, T ). (24)

The existence of a unique solution for the problem (20)-
(24) on the cylinder Q can be proved using a constructive
method. It is easy to notice that for given zd and v,
problem (20)-(24) can be solved backwards in time starting
from t = T , i.e., first, solving (20)-(24) on the subcylinder
QK and in turn on QK−1, etc. until the procedure covers
the whole cylinder Q. For this purpose, we may apply The-
orem 2 (with an obvious change of variables) to problem
(20)-(24).

Lemma 3. Let the hypothesis of Theorem 2 be satisfied.
Then, for given zd ∈ L2(Ω) and any v ∈ L2(Ω), there exists
a unique solution such that p(v) ∈ L2(0, T ; H∞{aα, 2}(Ω))

and
∂p(v)

∂t
∈ L2(0, T ; L2(Ω)) for the problem (20)-(24).

We simplify (19) using the adjoint equation (20)-(24). For
this purpose setting v = v0 in (20)-(24), multiplying both
sides of (20)-(21) by (y(v) − y(v0)) and then integrating
over Ω × (0, T − h) and Ω × (T − h, T ) respectively and
then adding both sides of (20), (21) we get

∫

Q

(
∂2p(v0)

∂t2
+ Ap(v0)

)
(y(v) − y(v0)) dxdt

+

T−h∫

0

∫

Ω

p(x, t + h; v0)(y(x, t; v) − y(x, t; v0))dxdt

=

∫

Ω

p′(x, T, v0)[y(x, T ; v) − y(x, T ; v0)]dx
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−
∫

Ω

p′(x, 0, v0)[y(x, 0; v) − y(x, 0; v0)]dx

−
∫

Ω

p(x, T, v0)[y
′(x, T ; v) − y′(x, T ; v0)]dx

+

∫

Ω

p(x, 0, v0)[y
′(x, 0; v) − y′(x, 0; v0)]dx

+

∫

Q

p(v0)
∂2

∂t2
(y(v) − y(v0)) dxdt

+

∫

Q

Ap(v0)(y(v) − y(v0)) dxdt

+

T−h∫

0

∫

Ω

p(x, t + h; v0) ·

·(y(x, t; v) − y(x, t; v0))dxdt = 0 (25)

and so, by (22) and (23),

λ1

∫

Ω

(y(x, T, v) − zd)[y(x, T ; v) − y(x, T ; v0)]dx

=

∫

Ω

p(x, 0, v0)[y
′(x, 0; v) − y′(x, 0; v0)]dx

+

∫

Q

p(v0)
∂2

∂t2
(y(v) − y(v0)) dxdt

+

∫

Q

Ap(v0)(y(v) − y(v0))dxdt

+

T−h∫

0

∫

Ω

p(x, t + h; v0) ·

·(y(x, t; v) − y(x, t; v0))dxdt (26)

Using the equation (6), the second integral on the right-
hand side of (26) can be rewritten as

∫

Q

p(v0)
∂2

∂t2
(y(v) − y(v0))dxdt

= −
∫

Q

p(v0)A(y(v) − y(v0))dxdt

−
T∫

0

∫

Ω

p(x, t; v0) ·

·(y(x, t − h; v) − y(x, t − h; v0))dxdt

= −
∫

Q

p(v0)A(y(v) − y(v0))dxdt

−
T−h∫

−h

∫

Ω

p(x, t′ + h; v0) ·

·(y(x, t′; v) − y(x, t′; v0))dxdt′ (27)

Substituting (27) into (26) we obtain

λ1

∫

Ω

(y(x, T ; v0) − zd)(y(x, T ; v) − y(x, T ; v0))dx

=

∫

Ω

p(x, 0, v0)[y
′(x, 0; v) − y′(x, 0; v0)]dx

−
∫

Q

p(v0)A(y(v) − y(v0))dxdt

−
0∫

−h

∫

Ω

p(x, t + h; v0)(y(x, t; v) − y(x, t; v0))dxdt

−
T−h∫

0

∫

Ω

p(x, t + h; v0)(y(x, t; v) − y(x, t; v0))dxdt

+

∫

Q

p(v0)A(y(v) − y(v0))dxdt

+

T−h∫

0

∫

Ω

p(x, t + h; v0) ·

·(y(x, t; v) − y(x, t; v0))dxdt (28)

Afterwards using the formulae y′(x, 0; v) = v and
y′(x, 0; v0) = v0 in (28) we get

λ1

∫

Ω

(y(x, T ; v0) − zd)(y(x, T ; v) − y(x, T ; v0))dx

=

∫

Ω

p(x, 0; v0)(v − v0)dx (29)

Substituting (29) into (19) we obtain

∫

Ω

(p(x, 0; v0) + λ2Nv0)(v − v0)dx ≥ 0

∀v ∈ Uad (30)

Theorem 4. For the problem (6)-(10) with the perfor-
mance functional (16) with zd ∈ L2(Ω) and λ2 > 0 and
with constraints on controls (17), there exists a unique
optimal control v0 which satisfies the maximum condition
(30).

We must notice that the conditions of optimality derived
above (Theorem 4) allow us to obtain an analytical formula
for the optimal control in particular cases only (e.g. there
are no constraints on controls). This results from the
following: the determining of the function p(v0) in the
maximum condition from the adjoint equation is possible
if and only if we know y0 which corresponds to the control
v0. These mutual connections make the practical use of
the derived optimization formulas difficult. Therefore we
resign from the exact determining of the optimal control
and we use approximation methods.

In the case of the performance functional (16) with λ1 > 0
and λ2 = 0, the optimal control problem reduces to the
minimizing of the functional on a closed and convex subset
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in a Hilbert space. Then, the optimization problem is
equivalent to a quadratic programming one (Kowalewski
(1988a)) which can be solved by the use of the well-known
algorithms, e.g. Gilbert’s in Kowalewski (1988a).

5. CONCLUSIONS

The results presented in the paper can be treated as
a generalization of the results obtained in Kowalewski
(2010) onto the case of infinite order time delay hyperbolic
systems with one of the initial conditions given by control
function.

In this paper we have considered optimal control problem
for such hyperbolic systems with the Dirichlet boundary
conditions.

We can also consider similar optimal control problems
for time delay infinite order hyperbolic systems with
Neumann boundary conditions.

Finally we can consider optimal control problem for infi-
nite order hyperbolic systems with two initial conditions
given by control functions.

The ideas mentioned above will be developed in forthcom-
ing papers.
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Abstract: Time-delays (dead times) are found in many processes in industry. Time-delays are mainly 
caused by the time required to transport mass, energy or information, but they can also be caused by 
processing time or accumulation. The contribution is focused on a design of algorithms for self-tuning 
digital control for processes with time-delay. The algorithms are based on the some modifications of the 
Smith Predictor (SP). One modification of the SP based on the digital PID controller was applied and it 
was compared with new designed modification based on polynomial (pole assignment) approach. The 
program system MATLAB/SIMULINK was used for simulation verification of these algorithms. 

 

1. INTRODUCTION 

Time-delays appear in many processes in industry and other 
fields, including economical and biological systems (see 
Normey-Rico and Camacho 2007). They are caused by some 
of the following phenomena: 

• the time needed to transport mass, energy or information, 
• the accumulation of time lags in a great numbers of low 

order systems connected in series, 
• the required processing time for sensors, such as 

analyzers; controllers that need some time to implement 
a complicated control algorithms or process. 

Consider a continuous time dynamical linear SISO (single 
input ( )u t  – single output ( )y t ) system with time-delay dT . 

The transfer function of a pure transportation lag is dT se− , 
where s is complex variable. Overall transfer function with 
time-delay is in the form 

( ) ( ) dT s
dG s G s e−=  (1) 

where ( )G s is the transfer function without time-delay. 

Processes with significant time-delay are difficult to control 
using standard feedback controllers mainly because of the 
following:  

• the effect of the disturbances is not felt until a 
considerable time has elapsed;  

• the effect of the control action requires some time to 
elapse; 

• the control action that is applied based on the actual error 
tries to correct a situation that originated some time 
before. 

The problem of controlling time-delay processes can be 
solved by some control methods using 

• PID controllers; 
• time-delay compensators; 
• model predictive control techniques. 

It is clear that many processes in industry are controlled by 
the PID controllers. When the process contains a time-delay, 
the tuning of the PID controller is difficult. The most popular 
tuning rules for processes with small time-delay were 
proposed by Ziegler and Nichols 1942. Several methods for 
new tuning rules were proposed for stable and unstable 
processes with time-delay. A presentation and review of 
some these methods are introduced in (Åström and Hägglund 
1995). 

When a high performance of the control process is desired or 
the relative time-delay is very large, a predictive control 
strategy must be used. The predictive control strategy 
includes a model of the process in the structure of the 
controller. The first time-delay compensation algorithm was 
proposed by (Smith 1957). This control algorithm known as 
the Smith Predictor (SP) contained a dynamic model of the 
time-delay process and it can be considered as the first model 
predictive algorithm. 

Historically first modifications of time-delay algorithms were 
proposed for continuous-time (analogue) controllers. On the 
score of implementation problems, only the discrete versions 
are used in practice in this time. 

The majority of processes met in the industrial practice have 
stochastic characteristics and eventually they embody 
nonlinear behaviour. Traditional controllers with fixed 
parameters are often unsuitable for such processes because 
their parameters change. One possible alternative for 
improving the quality of control for such processes is the use 
of adaptive control systems. Different approaches were 
proposed and utilized. One successful approach is 
represented by self-tuning controller (STC). The main idea of 
an STC is based on the combination of a recursive 
identification procedure and a selected controller synthesis. 
Some STC modifications of the digital Smith Predictors are 
designed and verified by simulation in this paper.  

The paper is organized in the following way. The problem of 
a control of the time-delay systems is described in Section 1. 
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The general principle of the Smith Predictor is described in 
Section 2. The discretization of analogue version and    
principle of digital Smith Predictor is introduced in Section 3. 
Two modifications of digital controllers that are used for self-
tuning versions SPs are proposed in Section 4. Section 5. 
contains brief description of the recursive identification 
procedure. Simulation configuration is presented in Section 6. 
Results of simulation experiments are summed in Section 7. 

2. PRINCIPLE OF SMITH PREDICTOR 

The principle of the SP is shown in Fig. 1. It can be divided 
into two parts – the primary ( )cG s  controller and predictor 
part. This algorithm was primarily designed for continuous 
time PID controller. The predictor is composed of a model of 
the process without time delay and ( )mG s (so called as the 

fast model) and a model of the time delay dT se− . Then the 
complete process model is  

( ) ( ) dT s
p mG s G s e−=  (2) 

The fast model ( )mG s is used to compute an open-loop 
prediction. The difference between the output of the 
process ( )y t  and the model including time delay ( )ŷ t  is the 

predicted error ( )pê t  as shown is in Fig. 2, where 

( )u t , ( )w t , ( )e t and ( )se t  are the control signal, reference 
signal, the error and the noise. If there are no modeling errors 
or disturbances, the error between the current process output 
and the model output will be null and the predictor output 
signal ( )pŷ t will be the time-delay-free output of the process. 

Under these conditions, the controller ( )cG s can be tuned, at 
least in the nominal case, if the process had no time delay.         

 
Fig. 1 Block diagram of an analogue Smith Predictor  
 
The Smith Predictor structure for the nominal case (without 
modelling errors) has three fundamental properties: time-
delay compensation, prediction and dynamic compensation. 

3. DIGITAL SMITH PREDICTORS 

Although time-delay compensators appeared in the mid 
1950s, their implementation with analogue technique was 
very difficult and these were not used in industry. Since 
1980s digital time-delay compensators can be implemented. 
In spite of the fact that all these algorithms are implemented 
on digital platforms, most works analyze only the continuous 

case. The digital time-delay compensators are presented e.g. 
in (Vogel and Edgar 1980, Palmor and Halevi 1990, Normey-
Rico and Camacho 1998). 

The discrete versions of the SP and its modifications are 
suitable for time-delay compensation in industrial practice. 
Most of authors designed the digital SP using discrete PID 
controllers with fixed parameters. However, the SP is more 
sensitive to process parameter variations and therefore 
requires an auto-tuning or adaptive approach in many 
practical applications (Hang et al.  1986, Hang et al.  1993). 
In (Torrico and Normey-Rico 2005), the structure of the 
discrete disturbance observer time-delay compensator is 
analyzed.  

  
Fig. 2 Block diagram of a digital Smith Predictor with tuning  

 

3.1 Structure of Digital SP 

The block diagram of a digital SP (see Vogel and Edgar 
1980, Hang et al.  1986, Hang et al.  1989, Hang et al.  1993)  
is shown in Fig. 2. The function of the digital version is 
similar to the classical analogue version. The block 

( )1
mG z− represents process dynamics without the time-delay 

and is used to compute an open-loop prediction. The 
difference between the output of the process y  and the model 
including time delay ŷ  is the predicted error pê  as shown is 
in Fig. 2, where u , w , e and se  are the control signal, the 
reference signal, the error and the noise. If there are no 
modelling errors or disturbances, the error between the 
current process output and the model output will be null and 
the predictor output signal pŷ will be the time-delay-free 
output of the process. Under these conditions, the controller 

( )cG s can be tuned, at least in the nominal case, as if the 
process had no time-delay. The primary (main) controller 

( )1
cG z−  can be designed by the different approaches (for 

example digital PID control or methods based on algebraic 
approach). The outward feedback-loop through the block 

( )1
dG z−  in Fig. 2 is used to compensate for load 

disturbances and modelling errors. The dash arrows indicate 
the self-tuned parts of the Smith Predictor.  
Most industrial processes can be approximated by a reduced 
order model with some pure time-delay. Consider the 
following second order linear model with a time-delay 

_ 

_ 

+

+ 
Gm (z-1) 

w e u y 

+ 

+ 

 

+ 

 es 

Gc(z-1) Gp (z-1) 

Gd (z-1) 

pê

ŷ
Tdŷ  

pŷ  

PROCESS 

+ 

_ 

_ 

+

+ 

Gc  Gp 

Gm 

( )u t  

+ 

+ 

+ 

e-sTd
 

( )dŷ t T+  

( )se t

( )ŷ t

( )pê t  ( )pŷ t

( )e t  

+ 

( )y tPROCESS 

( )w t  
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( ) ( )
( )

1 1 2
1 1 2

1 21
1 21

d d
B z b z b z

G z z z
a z a zA z

− − −
− − −

− −−

+
= =

+ +
 (3) 

for demonstration of some approaches to the design of the 
adaptive Smith Predictor. The term z-d represents the pure 
discrete time-delay. The time-delay is equal to 0dT  where 

0T is the sampling period. 

If the time-delay is not an exact multiple of the sampling 
period 0T , then 0dT  represents the largest integer multiple of 
the sampling period with remaining fractional deal absorbed 
into ( )1B z−  using the modified z-transformation (Åström  
and Wittenmark 1984).  

3.2 Identification of Time-delay 

In this paper, the time-delay is assumed approximately 
known or possible to be obtained separately from an off-line 
identification using the least squares method (Ljung 1987).  

( ) 1ˆ −
= T TΘ F F F y  (4) 

where the matrix F has dimension (N-n-d, 2n), the vector y 
(N-n-d) and the vector of parameter model estimates Θ̂ (2n). 
N is the number of samples of measured input and output 
data, n is the model order. 

Equation (4) serves for a one-off calculation of the vector of 
parameter estimates Θ̂  using N samples of measured data. 
The individual vectors and matrix in equation (4) have the 
form 

( ) ( ) ( )1 2T y n d y n d y N= + + + +⎡ ⎤⎣ ⎦y  (5) 

1 2 1 2
T

n n
ˆ ˆ ˆˆ ˆ ˆ ˆa a a b b b⎡ ⎤= ⎣ ⎦Θ  (6) 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1
1 2

1 2

1 1
1 2

1 2

y n d y n d y d
y n d y n d y d

y N y N y N n

u n u n u
u n u n u

u N d u N d u N d n

⎡ − + − + − − +
⎢− + + − + − +⎢= ⎢
⎢

− − − − − −⎢⎣

− ⎤
⎥+ ⎥
⎥
⎥

− − − − − − ⎥⎦

F

  

  (7) 
For the second order model (3) are these expressions e.g. for 
N =10 

( ) ( ) ( )5 6 10T y y y= ⎡ ⎤⎣ ⎦y  

1 2 1 2
T ˆ ˆˆ ˆ ˆa a b b⎡ ⎤= ⎣ ⎦Θ  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4 3 2 1
5 4 3 2

9 8 7 6

y y u u
y y u u

y y u u

⎡− − ⎤
⎢ ⎥− −⎢ ⎥= ⎢ ⎥
⎢ ⎥
− −⎢ ⎥⎣ ⎦

F  

Consider that model (3) is the deterministic part of the 
stochastic process described by the ARX (regression) model 

( )
( )

( ) ( ) ( ) ( )
1

1 1

1
d

s

B z z
y k u k e k

A z A z

− −

− −
= +  (8) 

where ( )se k is the random nonmeasurable component. 

The ARX model (8) can be expressed as a stochastic 
difference equation 

( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

1 2

1 2 s

y k a y k a y k

b u k d b u k d e k

= − − − − +

+ − − + − − +
 (9) 

The vector of parameter model estimates is computed by 
solving equation (4)  

( ) 1 2 1 2
ˆ ˆˆ ˆ ˆT k a a b b⎡ ⎤= ⎣ ⎦Θ  (10) 

and is used for computation of the prediction output  

( ) ( ) ( )
( ) ( )

1 2

1 2

1 2

1 2

ˆ ˆ ˆy k a y k a y k
ˆ ˆb u k d b u k d

= − − − − +

− − + − −
 (11) 

The quality of ARX model can be judged by the prediction 
error, i.e. the deviation 

( ) ( ) ( )ˆ ˆe k y k y k= −  (12) 

The prediction error plays a key role in identification of 
regressions model parameters derived from measured data. It 
is important for selecting the structure (order) of the 
regression model and a suitable sampling period. The quality 
of the model is also judged by the purpose for which it is 
used. In this paper, the prediction error was used for suitable 
choice of the time-delay 0dT . The LSM algorithm (4) – (7) is 
computed for several time-delays 0dT and the suitable time-
delay is chosen on the based of quality identification by using  
prediction error (12).      

4. ALGORITHMS OF DIGITAL SMITH PREDICTORS 

4.1 DigitalPID Smith Predictor (PIDSP)  

Hang et al. 1989, 1993 used to design of the main controller 
( )1

cG z−  the Dahlin PID algorithm (Dahlin 1968). This 
algorithm is based on the desired close-loop transfer function 
in the form 

( )1
1

1
1e

eG z
z

α−
−

−

−
=

−
 (13) 

where 0

m

T
Tα = and mT  is desired time constant of the first 

order closed-loop response. It is not practical to set mT  to be 
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small since it will demand a large control signal ( )u k  which 
may easily exceed the saturation limit of the actuator. Then 
the individual parts of the controller are described by the 
transfer functions 

 ( ) ( )
( )

( )
( )

1
1

1

1

11c

ˆe A z
G z

B̂z

α− −
−

−

−
=

−
; ( ) ( )

( )
1

1
1

1
m

ˆz B
G z

Â z

−
−

−
=   

( ) ( )
( )

1
1

1 1

d

d

ˆz B z
G z ˆz B

− −
−

−
=  (14) 

where ( ) ( )1
1 21

1
z

ˆ ˆˆ ˆB B z b b−

=
= = + .  

Since ( )1
mG z− is the second order transfer function, the main 

controller ( )1
cG z− becomes a digital PID controller having 

the following form: 

 ( ) ( )
( )

1 2
1 0 1 2

11c

U z q q z q z
G z

E z z

− −
−

−

+ +
= =

−
 (15) 

where 0 1 1 2 2ˆ ˆq , q a , q aγ γ γ= = =  using by the substitution 

( ) ( )1 1ˆe / Bαγ −= − . The PID controller output is given by  

( ) ( ) ( ) ( ) ( )0 1 21 2 1u k q e k q e k q e k u k= + − + − + −  (16) 

4.2 Digital Pole Assignment  Smith Predictor (PASP) 

The second controller applied in this paper was designed 
using a polynomial approach. Polynomial control theory is 
based on the apparatus and methods of a linear algebra (see 
e.g. Kučera 1991, Vidyasagar 1985). The polynomials are the 
basic tool for a description of the transfer functions. They are 
expressed as the finite sequence of figures – the coefficients 
of a polynomial. Thus, the signals are expressed as infinite 
sequence of figures. The controller synthesis consists in the 
solving of linear polynomial (Diophantine) equations (Kučera 
1993).  

The design of the controller algorithm is based on the general 
block scheme of a closed-loop with two degrees of freedom 
(2DOF) according to Fig. 3.  

 
 Fig. 3 Block diagram of a closed loop 2DOF control system 

 
The controlled process is given by the transfer function in the 
form  

1
1

1

( ) ( )( )
( ) ( )

p
p

Y z B zG z
U z A z

−
−

−= =  (17) 

where A and B are the second order polynomials. The 
controller contains the feedback part Gq and the feedforward 
part Gr. Then the digital controllers can be expressed in the 
form of a discrete transfer functions 

( ) ( )
( )

1
1 0

11
11r

R z r
G z

p zP z

−
−

−−
= =

+
 (18) 

( ) ( )
( ) ( )( )

1 1 2
1 0 1 2

1 1 1
11 1q

Q z q q z q z
G z

P z p z z

− − −
−

− − −

+ +
= =

+ −
 (19) 

According to the scheme presented in Fig. 3 (for es = 0), the 
output y can be expressed as  

( ) ( ) ( )
( ) ( ) ( )1 1

1
p r

p q

G z G z
Y z W z

G z G z
− −=

+
 (20) 

Upon substituting from Equation (17) - (19) into Equation 
(20) it yields  

1 1
1 1

1 1 1 1

( ) ( )( ) ( )
( ) ( ) ( ) ( )

B z R zY z W z
A z P z B z Q z

− −
− −

− − − −=
+

 (21) 

where  
1 1 1 1 1( ) ( ) ( ) ( ) ( )A z P z B z Q z D z− − − − −+ =  (22) 

is the characteristic polynomial. 

The procedure leading to determination of polynomials Q, R 
and P in (18) and (19) can be briefly described as follows 
(see Bobál et al. 2005). A feedback part of the controller is 
given by a solution of the polynomial Diophantine equation 
(22). An asymptotic tracking is provided by a feedforward 
part of the controller given by a solution of the polynomial 
Diophantine equation 

( )1 1 1 1 1( ) ( ) ( ) ( )wS z D z B z R z D z− − − − −+ =  (23) 

For a step-changing reference signal value, polynomial 
( )1 11wD z z− −= −  and S is an auxiliary polynomial which 

does not enter into controller design.  

A feedback controller to control a second-order system 
without time-delay will be derived from Equation (22). A 
system of linear equations can be obtained using the 
uncertain coefficients method 

1 0 1 1

1 2 1 22 1 1

2 3 22 1 2 1

1 42 2

ˆ 0 0 1 ˆ1
ˆ ˆ ˆ ˆˆ0 1

ˆˆ ˆ ˆ ˆ0
ˆ0 0

b q d a
q d a ab b a
q d ab b a a
p db a

⎡ ⎤ + −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥+−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦−⎣ ⎦

 (24) 

where the characteristic polynomial is chosen as  

( )1 1 2 3 4
1 2 3 41D z d z d z d z d z− − − − −= + + + +  (25) 

For a step-changing reference signal value it is possible to 
solve Equation (23) by substituting z = 1 

1 2 3 4
0

1 2

1(1)
(1)

d d d dDR r
B b b

+ + + +
= = =

+
 (26) 

w 

u y Gp Gq 

Gr 

es 

yp uq 

ur 

_ 

+ 

+ 

+ 
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The 2DOF controller output is given by 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0 0 1 2

1 1

1 2

1 1 2

u k r w k q y k q y k q y k

p u k p u k

= − − − − − +

+ + − + −
 (27) 

 

5. RECURSIVE IDENTIFICATION PROCEDURE 

The regression (ARX) model of the following form 

( ) ( ) ( ) ( )T
sy k k k e k= +Θ Φ  (28) 

is used in the identification part of the designed controller 
algorithms, where 

( ) [ ]1 2 1 2
T k a a b b=Θ  (29) 

is the vector of model parameters and 

( ) ( ) ( ) ( ) ( )1 1 2 1 2T k y k y k u k d u k d− = − − − − − − − −⎡ ⎤⎣ ⎦Φ (30) 

is the regression vector. The non-measurable random 
component es(k) is assumed to have zero mean value   
E[es(k)] = 0 and constant covariance (dispersion) 
R = E[es

 2(k)]. 

All digital adaptive SP controllers use the algorithm of 
identification based on the Recursive Least Squares Method 
(RLSM) extended to include the technique of directional 
(adaptive) forgetting. Numerical stability is improved by 
means of the LD decomposition (Kulhavý 1987, Bobál et al. 
2005). This method is based on the idea of changing the 
influence of input-output data pairs to the current estimates. 
The weights are assigned according to amount of information 
carried by the data. 

6. SIMULATION VERIFICATION ADAPTIVE DIGITAL 
SP CONTROLLER ALGORITHMS. 

Simulation is a useful tool for the synthesis of control 
systems, allowing one not only to create mathematical 
models of a process but also to design virtual controllers in a 
computer. The mathematical models provided are sufficiently 
close to a real object that simulation can be used to verify the 
dynamic characteristics of control loops when the structure or 
parameters of the controller change. The models of the 
processes may also be excited by various random noise 
generators which can simulate the stochastic characteristics 
of the processes noise signals with similar properties to 
disturbance signals measured in the machinery.  

The above mentioned SP controllers are not suitable for the 
control of unstable processes. Therefore, three types of 
processes were chosen for simulation verification of digital 
adaptive SP controller algorithms. 

Consider the following continuous-time transfer functions: 

1) Stable non-oscillatory ( ) ( )( )
4

1
2

1 4 1
sG s e

s s
−=

+ +
 

2) Stable oscillatory ( ) 4
2 2

2
4 2 1

sG s e
s s

−=
+ +

  

3) With non-minimum phase ( ) ( )( )
4

3
5 1

1 4 1
ssG s e

s s
−− +

=
+ +

 

Let us now discretize them a sampling period 0 2 sT = . The 
discrete forms of these transfer functions are (see Equation 
(3))   

( )
1 2

1 2
1 1 2

0 4728 0 2076
1 0 7419 0 0821

. z . zG z z
. z . z

− −
− −

− −

+
=

− +
 

( )
1 2

1 2
2 1 2

0 6806 0 4834
1 0 7859 0 3679

. z . zG z z
. z . z

− −
− −

− −

+
=

− +
 

( )
1 2

1 2
3 1 2

0 5489 0 8897
1 0 7419 0 0821

. z . zG z z
. z . z

− −
− −

− −

− +
=

− +
  

A simulation verification of proposed design was performed 
in MATLAB/SIMULINK environment.  A typical control 
scheme used is depicted in Fig. 4. 

 

 

 

 

 

 

Fig. 4 Simulink control scheme 

 

Fig. 5 Internal structure of the controller 

This scheme is used for systems with time-delay of two 
sample steps. Individual blocks of the Simulink scheme 
correspond to blocks of the general control scheme presented 
in Fig. 2.  Blocks Compensator 1 and Compensator 2 are 
parts of the Smith Predictor and they correspond to ( )1

mG z−  

and ( )1
dG z−  blocks of Fig. 2 respectively. The control 

algorithm is encapsulated in Main Pole Assignment 
Controller which corresponds to ( )1

cG z−  Fig. 2 block. The 
Identification block performs the on-line identification of 
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controlled system and outputs the estimates of 2nd order 
ARX model (a1, b1, a2, b2) parameter. 

The internal structure of the Main Pole Assignment 
Controller block is shown in Fig. 5. Block MATLAB Fcn is 
the heart of the controller. The inputs to this function are 
current ARX estimates, current and previous values of 
process without time-delay, reference signal as well as 
previous control values and sample time. The MATLAB Fcn 
is a standard m-function which carries out desired control 
algorithm as described in Section 4. 

The on-line identification part of the scheme, which is 
represented by block Identification block in Fig. 3, uses 
several parameters that are entered via standard Simulink 
dialog. This dialog is presented in Fig. 6. 

 

Fig. 6. Dialog for setting identification parameters 

The most important parameters form the point of view of the 
problem this papers is coping with are sample time, initial 
parameters estimations and dead time. The dead time is not 
entered in time units but in sample times. The other 
parameters affect the method used to compute ARX model 
and their detailed description can be found in (Kulhavý 1987, 
Bobál et al. 2005). 

7. SIMULATION RESULTS 

The configuration for simulation verification of the designed 
algorithms was chosen as follows: 
 All three control loops were verified in the non-adaptive 

versions without a random noise. 
 A suitable time constant mT  was chosen for the control 

using the PIDSP controller and the pole assignment of the 
closed-loop was calculated. These poles were used for the 
design of the PASP controller. 

 Both control loops were verified in the adaptive versions 
with a random noise. Firstly, without a priori information 
(the initial values of the model parameter estimates were 
chosen randomly). Secondly, using a priori information 
(the initial estimates were chosen on the basis of the 
previous experiments).  

 The outputs of the process models were influenced by 
White Noise Generator with mean value E = 0 and 
covariance R = 10-4.    

7.1 Simulation verification of Adaptive Digital PIDSP 

Figs. 7 - 10 illustrate the simulation control performance 
using PIDSP controller (14) - (16). From Figs. 7 and 8 (the 
control of the stable model ( )1

1G z− ) is obvious that the 
control process is dependent on knowledge of a priori 
information. The process output y has a large overshoot, 
when the initial model parameter estimates are chosen 
randomly. 
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Fig. 7 Simulation results: control of the model ( )1

1G z− , 
controller PIDSP (without a priori information) 
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Fig. 8 Simulation results: control of the model ( )1
1G z− , 

controller PIDSP (with a priori information)  
 
Using a priori information (the initial estimates were chosen 
on the basis of the previous experiments) leads to very good 
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control quality (without overshoot of y and with short settling 
time). 
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Fig. 9 Simulation results: control of the model ( )1

2G z− , 
controller PIDSP (with a priori information) 
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Fig. 10 Simulation results: control of the model ( )1

3G z− , 
controller PIDSP (with a priori information) 
 
Simulation results for the models ( )1

2G z− (the stable 

oscillatory model) and ( )1
3G z− (the non-minimum phase 

model) are shown in Figs. 9 and 10. The control quality (with 
a priori information) is very good. 

7.2  Simulation verification of Adaptive Digital PASP 

Figs. 11 - 13 illustrate the simulation control performance 
using PASP controller (14), (27). From Figs. 11 and 12 (the 
control of the stable model ( )1

1G z− ), it is obvious that the 
control process is not dependent on knowledge of a priori 
information (the control courses in both cases are practically 
identical). In the case of choosing of the suitable closed-loop 
poles, the adaptive PASP controller is more robust than the 
adaptive PIDSP controller. 

Fig. 13 illustrates the simulation control performance of the 
stable oscillatory model ( )1

2G z− . The control process is 
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Fig. 11 Simulation results: control of model ( )1

1G z− , 
controller PASP (without a priori information) 
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Fig. 12 Simulation results: control of the model ( )1

1G z− , 
controller PASP (with a priori information) 
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relatively slow without overshot of y and u (it is the cautious 
adaptive controller). 

Fig. 14 illustrates the simulation control performance of the 
non-minimum phase model ( )1

3G z− . The control process is 
good after initial part. 
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Fig. 14 Simulation results: control of the model ( )1

3G z− , 
controller PASP (with a priori information) 

7. CONCLUSION 

Adaptive Smith Predictor algorithms for control of processes 
with time-delay based on polynomial design (pole 
assignment) was proposed. The polynomial controllers were 
derived purposely by analytical way (without utilization of 
numerical methods) to obtain algorithms with easy 
implementability in industrial practice. The pole assignment 
control algorithm was compared by simulation with adaptive 
digital Smith PID Predictor. Three models of control 
processes were used for simulation verification (the stable 
non-oscillatory, the stable oscillatory and the non-minimum 
phase). Results of simulation verification demonstrated 
advantages and disadvantages of individual approaches (see 
Figs. 7 – 14) for control of above mentioned processes with 
time-delay. The control quality depended on suitable start-up 
conditions of the recursive identification – important part 
plays a priori information. For the pole assignment method is 
very important suitable choice of the closed – loop poles. The 
designed adaptive SP algorithms will be verified in real time 
conditions for a control of the laboratory heat exchanger.             
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Abstract: A state space approach to a design of PSD robust controllers is studied for linear uncertain 
system with affine (polytopic) uncertainty. The discrete time PSD controller design is based on stability 
condition derived using parameter dependent Lyapunov-Krasovskii function in the form for time-delay 
system. The resulting design employs solution of BMI, the results are illustrated on the example. 

 

1. INTRODUCTION 

Robustness belongs to important issues in control design for 
real plants. In practice, uncertainties are always present in 
modelling and control of real systems (modelling errors due 
to linearization and approximation, disturbances etc.), which  
must be taken into consideration. The appropriate control has 
to cope with uncertainties and guarantee closed loop stability 
and required performance qualities overall the uncertainty 
domain. Various approaches have been developed in robust 
control both in time and frequency domains. A frequently 
used paradigm developed in past decades formulates the 
problem of robust stability and robust control as an 
optimization problem. Efficient computational techniques 
have been developed recently for solving Linear Matrix 
Inequality (LMI), which enables to solve a large set of 
convex problems in polynomial time (e.g. Boyd et al., 1994). 
Significant effort has been made in this field to formulate 
control problems within algebraic framework (Skelton et al., 
1998), and transform them into LMI. Though many control 
problems for uncertain linear systems can be formulated as 
convex one, there are still many important control problems 
even for linear systems, that have been proven as NP hard 
(Blondel and Tsitsiklis, 1997). Robust static output feedback 
(SOF) control belongs also to this class, generally it can be 
formulated as bilinear matrix inequality (BMI). In this case 
either solution through BMI solver (as PENBMI) can be 
used, or, convex approximation or linearization can be 
applied (deOliveira et al., 2000; Han and Skelton, 2003, 
Veselý, 2003; Rosinová and Veselý, 2003). Characterization 
of basic LMI and BMI features  in control problems can be 
found in (Van Antwerp and Braatz 2000). 
Proportional-integral-derivative (PID) controllers belong to 
the most popular and frequent ones in the industrial 
applications. For a discrete time case often PSD abbreviation 
is used instead of PID, where “S” stands for a summation 
term (instead of integration). Results on LMI approach to 
design PID controller can be found e.g. in (Ge et al. 2002, 
Zheng Feng et al. 2000). Robust PSD controller design can 
be treated as dynamic controller, which further can be 

formulated as SOF problem for augmented system including 
controller dynamics, (Rosinová and Veselý, 2007). As 
indicated above, SOF problem, which is generally non-
convex, can be either solved by solving BMI or by 
linearization (convex approximation) and then through LMI. 

In this paper, another approach is proposed for robust PSD 
controller design, where the difference term is considered in 
the framework of time-delay systems and the respective 
Lyapunov-Krasovskii function comprising two parts. In 
Section 2, robust PSD controller problem is formulated for 
linear uncertain polytopic system with quadratic performance 
index. Section 3 presents the main result- robust stability 
condition with guaranteed cost formulated for robust PSD 
controller. This condition is developed using parameter 
dependent Lyapunov function in the form for time- delay 
systems. The proposed approach is illustrated on the example 
in Section 4.  

2. PRELIMINARIES AND PROBLEM FORMULATION 

Consider the class of linear uncertain discrete-time systems 
described as: 
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2.1  PSD controller  

Assuming that the input reference variable )(tw is constant 
(its changes are relatively slow in comparison with system 
dynamics), PSD control algorithm for uncertain system (1), 
(2) can be considered as 

 )]1()([)()()(
0

−−++= ∑
=

tytykkyktyktu ddd

t

i
iip   (3) 

where )()(),()( txCtytxCty ddii ==  denote the respective 
outputs for summation (discrete approximation of 
integration) and difference term of control algorithm 
respectively, which in general can differ from output )(ty ; 

dip kkk ,,  are constant matrices of corresponding dimensions.   

In parallel with standard approach for continuous-time case, 
to include summation term we introduce augmented state 
vector defined by 

⎥
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where )()()1( tytrtr i+=+ , ,...1,0=t  (4) 

Using (4), PSD control algorithm can be rewritten as 
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From (1), (4) and (5) we obtain the uncertain closed-loop 
polytopic system described in a compact form as 
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2.2  Performance index 

A performance for closed loop system (6) is assessed using 
quadratic cost function  

 ∑
∞

=

=
0

)(
t

tJJ     

)1()1()()()()()( −−++= tzStztRututQztztJ TTT    (8)       

where mmnn RRRSQ ×× ∈∈ ,, are symmetric positive definite 
matrices. 

 

Definition 1 

Control law (5) is called guaranteed cost control when there 
exist PID controller parameter matrices dip kkk ,,  and a 
constant J0  such that  
 

0JJ ≤    
 
 

holds for closed loop system (6); J0 is the guaranteed cost. 

2.3  Robust stability with guaranteed cost 

Let )(tV is Lyapunov function for uncertain closed-loop 
system (6). From LQ theory, see e.g. (Rosinova et al. 2003), 
the following lemma for robust stability of system (6) with 
guaranteed cost holds. 

Lemma 1 

Control algorithm (5) is the guaranteed cost control law for 
the closed loop system (6) if and only if there exist 

0)( >tV and constant matrices dip kkk ,,  such that the 
following inequality holds for ,...1,0=t  

 0)()()( <+= tJtVtB ∆  (9) 

Moreover, summarizing (9) from initial time t0 to ∞→t , the 
following inequality is obtained 

0)( 0 <+− JtV  (10) 

Definition 1 with inequality (10) provides guaranteed cost 

)( 00 tVJ =  

 for closed loop system (6) with control law (5).  

3. MAIN RESULT: ROBUST PSD CONTROLLER 
DESIGN 

In this section a robust stability condition including 
guaranteed cost is developed based on Lyapunov-Krasovskii 
function. Due to the presence of )1( −tz in control algorithm, 
we consider parameter dependent Lyapunov-Krasovskii 
function consisting of the respective two parts for )(tz  and 

)1( −tz  

)()()( 21 tVtVtV +=   (11) 

where )()()()( 11 tzPtztV T α=  (11a) 

)1()()1()( 22 −−= tzPtztV T α  (11b) 

and nnRP ×∈)(1 α , nnRP ×∈)(2 α  are parameter dependent 
symmetric positive definite matrices of the corresponding 
dimensions. 

In the following developments we employ the backward 
difference given by 

)1()()( −−= tztztz∆  (12) 
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“to interconnect” actual and past values of z, which can be 
interpreted as discrete counterpart to Leibnitz-Newton 
formula used for continuous time-delay systems.  

In the development of a robust stability condition for 
uncertain closed-loop system we use augmented state vector  
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Firstly, we express particular components which will be used 
later in terms of denotation (7), (12) and (13).  

Control law (5) can be rewritten as 
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Closed loop system (6) can be analogically rewritten as 
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The first difference of Lyapunov-Krasovskii function (11) is 
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 (17c) 
Substituting (17b) and (17c) into (17a) and rearranging, we 
obtain )(tV∆  in a compact form as 
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The main result on robust stability condition is given in the 
next theorem. 

Theorem 1 

Consider the uncertain discrete-time system (1) with PID 
controller (3) and parameter dependent Lyapunov-Krasovskii 
function (11),(11a),(11b). Control algorithm (3), or, 
alternatively, (14) is guaranteed cost robust control law for 
performance index (8) if and only if there exist positive 
definite matrices nnRP ×∈)(1 α , nnRP ×∈)(2 α and constant 
matrices 321 ,, NNN of appropriate dimensions such that 
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Proof 

To derive robust stability condition we use (9) together with 
(16). Due to (16), the following equality holds 
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By substituting from (17), (14) and (8) to (9) for )(tJ and 
)(tV∆ respectively, and adding (20) to the left hand side of 

(9), the resulting inequality (19) is obtained. □ 

Robust stability condition (19) can be advantageously applied 
for polytopic systems with uncertainties respective to (2). 
Parameter dependent Lyapunov-Krasovskii function is 
considered in the form 
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Robust stability condition (19) is in this case linear with 
respect to α (there are no products of matrices depending on 
α), therefore it is equivalent to  

0)()()( <tvWtv i
T α , Ni ,...,1=  (22) 

where ∑
=

≥=
N

i
ii

1
0,1 αα . 

Note, that robust stability condition (22) is in LMI form for 
stability analysis – for unknown matrices 321 ,, NNN , ii PP 21 , . 
For robust PID controller design, where unknown controller 
parameter matrices dip kkk ,,  are to be found, inequality (22) 
turns to bilinear matrix inequality (BMI), which can be 
solved either directly using some BMI solver or through  
linearization of nonlinear terms, see e.g. (deOliveira et al. 
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2000).  We have applied the former approach and solved 
BMI (22) via PENBMI solver with YALMIP interface. 

4. EXAMPLE 

In this section the proposed approach to design a robust PSD 
controller is illustrated on the example.  

Consider uncertain system (1), (2) with 3 states, 2 inputs and 
2 outputs with nominal model 
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The respective uncertain polytopic model vertices for (2) are: 

vertex 1: uu BBBAAA +=+= 0101 , , 

vertex 2: uu BBBAAA −=−= 0202 ,  

eigenvalues of vertex system matrices 1A , 2A  are: 

:)( 1Aeig
4606.0
6032.0
0004.1

  :)( 2Aeig
4602.0
5951.0
8905.0

   

Vertex 1 corresponds to unstable system. 

Performance index (8) is considered, with weighting matrices 

555522 *1.0,*1.0, xxx ISIQIR === . 

The aim is to find PSD controller parameter matrices 
dip kkk ,,  (of dimensions 2x2) so that the closed loop system 

(6) is robustly stable with guaranteed cost. The outputs for 
summation and difference part of control algorithm 
are CCCC di == , . 

PSD controller has been designed by solving (19) as BMI. 
Two alternative PSD controllers have been computed:  

using parameter dependent Lyapunov function (11) denoted 
as PQS 

using simple quadratic Lyapunov function, with the same 
Lyapunov function matrices   21 , PP in (11) for the whole 
uncertainty domain; this case is computed for comparison 
and denoted as QS 

The obtained results are summarized in Tab.1    

 PQS QS 

pk  
⎥
⎦

⎤
⎢
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⎡
−−

−−
257.56602.0
2486.06450.5  ⎥

⎦
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−−
−−

2184.35043.0
2483.07366.3  
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−−
−−
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1716.06671.1  

dk  
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⎡ −
2494.10473.0
1006.02917.1  ⎥

⎦

⎤
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⎣

⎡ −
0731.00174.0
0085.01044.0  

Closed-loop system eigenvalues 

Vertex1     0.4054 
    0.5990 
    0.7277 
    0.8415 
    0.9968 

    0.4721 
    0.6962 
    0.7126 
    0.8715 
    0.9968 

Vertex2     0.4052 
    0.5788 
    0.7412 
    0.8433 
    0.8846 

    0.4713 
    0.6537 
    0.7500 
    0.8729 
    0.8837 

Tab.1  PSD controller design results for parameter dependent 
Lyapunov function (PQS) and quadratic Lyapunov function 
(QS). 

Step responses obtained from simulation in Simulink for 
vertices 1A  and 2A  are shown in Fig. 1 and 2. 
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Fig.1 Comparison of closed-loop step responses for PSD 
controllers QS and PQS in vertex 11, BA . 
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Fig.2 Comparison of closed-loop step responses for PSD 
controllers QS and PQS in vertex 22 , BA . 

From Fig.1 and 2 it can be seen that the closed-loop 
dynamics favours parameter dependent Lyapunov function 
based design over the quadratic one. 

The respective control inputs are shown in Fig.3. 
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Fig.3 Comparison of control inputs in vertex 22 , BA  

5. CONCLUSION 

In the paper the novel PSD controller design procedure is 
presented, which is based on Lyapunov function with special 
term corresponding to time-delay part of control algorithm. 
The resulting robust stability condition is in BMI form, in the 
illustrating example the PSD controller design has been 
performed using BMI solver.  
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Abstract: The contribution presents a verification of the fast and chattering-free robust variable structure 
fixed-target position control of the 2-DOF robot manipulator considering both the mutual interaction 
between the links and the gravitational forces influence as the signal disturbances. Numerical simulations 
in the joint space show the feasibility and effectiveness of the provided algorithm in the control of 
a complex mechatronic system. 

 

1. INTRODUCTION 

Any feasible control of the multi-DOF mechatronic system 
has to face the problem of an extreme variability of the plant 
parameters as well as a strong influence of the variable 
external forces (gravitational, Coriolis and centrifugal). The 
classical control methods are not able to manage satisfactory 
such a complex and difficult task at all. One of the promising 
control approaches is the contemporary variable structure 
control (VSC) theory with its specific and unique attribute – 
the sliding mode (sliding mode control – SMC) (Utkin et al. 
1999), (Utkin 2002), (Kardoš 2009). The basic feature of the 
sliding mode is the high frequency oscillation of the actuating 
variable because of the switching principle in the control 
algorithm. In sliding mode, the system’s phase trajectory is 
robust and independent of the parametric and external 
disturbances due to reserve in power. 

Based on the VSC, the equivalent time sub-optimal control 
(ETSC) algorithm has been formulated for a single-DOF 
motion control system (Kardoš 2005). The main benefits of 
this control are a simple control structure, the fastest possible 
and overshoot-free response and the insensitivity to any 
(parametric and/or signal) type of disturbances. One of the 
problems of SMC, the chattering elimination, has been solved 
via the reaching law approach (Hung et al. 1993). The aim of 
this contribution is the implementation of the prospective 
ETSC algorithm in the control structure of a multi-DOF robot 
manipulator. Using the Euler-Lagrange formalism, a dynamic 
model of the robot manipulator has been derived (Kardoš 
2010). For the purposes of this paper, the reduced model of 
a 2-DOF manipulator has been considered without loss of 
generality. 

2. THE OUTLINE OF THE CONTROL ALGORITHM 

The goal of the original time sub-optimal control (TSC) 
algorithm (Kardoš 2007) is the fast and overshoot-free 
positioning of the motion control system despite its variable 
dynamics. Let for the basic model of the generalized position 

q generator given in the phase space ( )ee &,  by the system of 
the differential equations 

 

( )eKu
Tdt

ed

e
dt
de

&
&

&

+−=

=

1
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the time sub-optimal control be described by the group of 
expressions 
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eeF
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In (1) and (2), qqe d −=  stands for the control error (qd – 

desired position value), ( )Tee &,=e  corresponds to the 
system’s error vector (the phase vector), F(e) represents the 
linear switching function (a switching line with the slope α), 
u is the system’s input (the control), M > 0 refers to the value 
of a natural limitation of the control u, K stands for the 
control channel gain and the time constant T represents the 
dominant variable parameter 

 

maxmin,TTT ∈  (3) 

 

Note that control (2) belongs to the switching type 
(discontinuous) VSC algorithms and that the majority of VSC 
prefers the linear switching function with its simple 
computation and realization. To avoid the chattering problem 
in a motion control system (the chattering denotes a low 
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frequency oscillation of system variables in sliding mode due 
to presence of parasitic dynamics and non-linearities in real 
mechatronic systems), the reaching law modification of the 
original control algorithm (2) has been performed (Kardoš 
2005). The main idea of the reaching law is to force the 
system’s state (the representative point in the phase portrait) 
to reach the switching function using the prescription given 
by the differential equation 

 

( ) ( )ee kF
dt

dF
−=  (4) 

 

where 1/k represents the time constant of the switching 
function exponential evolution (decrease). Equation (4) meets 
the sliding mode existence condition (Utkin et al. 1999) and 
assures the chattering elimination replacing the discontinuous 
control by its smooth equivalent (close to mean value) in the 
vicinity of the switching function. Assuming the non-
oscillating behaviour of the controlled variable q, using (1) 
and (2), we obtain a linear continuous equivalent control uEQU 
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Combining equation (5) with the control u limitation 
( ( ) Mu ≤abs ) in (2) yields the resultant equivalent time sub-
optimal control (ETSC) (Kardoš 2005) in the form 

 

( )
( ) ( )⎩
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EQUEQU
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abs
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The recommended value of parameter k 

 

α>>
>>

k
k 1

 (7) 

 

corresponds with the requirement of the fast and accurate 
control. 

Algorithm (6) guarantees the robust and near-to-time optimal 
control of a single-DOF mechatronic system (SISO) (1) with 
the parametric uncertainty (3) in time constant (Kardoš 
2005), (Kardoš 2007) as well as the chattering elimination in 
control structure (Kardoš 2005), which implies the low 
energy consumption. Furthermore, it is evident that signals 
necessary for the control algorithm completion, i.e. the 
position signal and the velocity one (cf. (5)), are in 
mechatronic systems directly accessible. 

 

3. CONTROL OF THE ROBOT MANIPULATOR 

The implementation of the proposed control strategy in the 
robot manipulator positioning control requires the thorough 
analysis of both the mutual interaction among the 
manipulator’s degrees of freedom and the interaction between 
any DOF and the environment (e.g. the friction, the influence 
of the gravitation etc). Due to robustness of the presented 
control algorithm, such an interaction can be viewed as the 
signal disturbance. Consequently, the robot manipulator 
representing a complex MIMO system can be decoupled to 
a set of SISO systems, one for each DOF. Thus, any DOF can 
be controlled by its individual control algorithm (6). 

Based on the Euler-Lagrange formalism, let the robot 
manipulator’s dynamics be described by the matrix 
differential equation (Kardoš 2010) 

 

( ) ( ) ( )qgqqcqBqqJ −−−= &&&& ,τ  (8) 

 

where q and τ stand for the vectors of generalized 
coordinates and generalized driving forces or torques 
respectively, J(.) represents the inertia matrix, B denotes the 
diagonal matrix of viscous friction coefficients, c(.) 
corresponds to the vector of Coriolis and centrifugal forces 
and g(.) stands for the vector of gravitational forces. 

To keep the controllability of the manipulator DOF’s, for the 
ith DOF, the limitation Mi of the control ui (in this particular 
case a limitation of the driving torque τi as an element of the 
driving forces vector τ) in the corresponding ETSC algorithm 
(6) should satisfy the condition 

 

( ) ( ) ( )
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⎨
⎧
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jijiiiii qjgcqBM &&&& qqqq,max  (9) 

 

where Bi, ci, gi, jij, iq&  and jq&&  are the elements of the related 
matrices or vectors in (8). Note, that the values of elements in 
matrix J as well as the ones in vectors c and g are extremely 
variable for the period of the robot positioning, which makes 
the utilization of conventional control theory methods almost 
impossible. To get the values of the control boundary Mi, the 
maximal values of both the joint angular acceleration and the 
joint angular velocity should be known. These values are 
given by the particular industrial technology where the 
controlled robot manipulator is supposed to be utilized. 
Taking into consideration the requirement of the fastest 
possible motion as well as the boundaries of acceleration and 
velocity, the command (desired value qdi) in high-quality 
controllable robot positioning should have the form of S-
curve. 

For the control purposes, after the decoupling of the original 
controlled plant (8), the values of the ith DOF parameters are 
given by the pair of expressions 
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4. EXPERIMENTAL RESULTS 

The provided control algorithm has been applied in 
a numerical model of the robot manipulator control. 
A corresponding kinematic structure of the two-link 
manipulator is depicted in Figure 1, with the positive 
orientation of joint variables qi (i = 1, 2) indicated by arrows. 
Both the controlled manipulator and the control algorithm 
parameters are given in Table 1. The resultant control 
structure in Matlab-Simulink can be seen in Figure 2. 
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Fig. 1. Kinematic structure of the two-link manipulator 
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Fig. 2. Diagram of the Matlab control structure 

The dynamic parameters of the robot endpoint trajectory (in 
the task space) equivalent to the angular values in the joint 
space are as follows: the maximal value of the acceleration 
amax = 1.767ms-2, the maximal value of the velocity 
vmax = 1.767ms-1. Such parameters represent a sufficiently 
dynamic motion in robotized technologies, particularly in 
mechatronic systems with a strong coupling between the 
DOF’s and with extremely variable time constants 
(proportional to the square of the varying distance between 
the revolute joint and the gravity centre of any rotating mass). 

 

Joint number i Parameter 1 2 
Length li of a link [m] 0.75 0.75 
Total mass mi of a link [kg] 30 32 
Coefficient of the viscous 
friction Bi [kgms-1] 2 2 

Control channel gain Ki 0.5 0.5 
Max. value of the moment 
of inertia jiimax [kgm2] 88.875 18 

Max. value of the system’s 
time constant Timax [s] 44.4375 9 

Joint angular velocity 
boundary maxiq&  [rads-1] 0.7854 0.7854 

Joint angular acceleration 
boundary maxiq&&  [rads-2] 0.7854 0.7854 

Driving torque (control) 
boundary Mi [Nm] 840 300 

Control parameter αi (2) 0.0733 0.3621 
Control parameter ki (5) 10000 10000 

 

Tab. 1. Parameters of the 2-DOF robot control 

Figures 3 to 8 show the control system behaviour in the time 
domain for a period of positioning between the starting 
position q1 = q2 = 0 and the target one q1 = q2 = π/2 (in 
radians) in both joints. The left column of figures 
corresponds to the first link of the manipulator, the right 
column to the second one. The perfect accuracy of 
positioning is evident in Figures 3 and 6, where the desired 
(S-curve) angular position qdi (i = 1, 2) and the controlled 
position qi are depicted. The perfect tracking performance is 
assured by the high value of parameter k in (5). The related 
trapezoidal plots of the desired angular velocity diq&  and the 
output velocity iq&  in Figures 5 and 8 show the accuracy and 
robustness of the ETSC algorithm. In Figures 4 and 7 there is 
a time history of the driving torques τi in manipulator joints. 
The discontinuities in plots correspond with the intentional 
discontinuities in the motion acceleration. Neither of the 
driving torques exceeds the prescribed limitation Mi defined 
by (9) (cf. Table 1). A non-zero value of the driving torque in 
steady state represents in both joints the reaction of the 
driving force to the gravitational one (the second link is in 
a horizontal position). 

To prove the robustness of the proposed control despite the 
significant coupling between the DOF’s, a simulation with 
the constant mutual position of the robot links has been 
performed. Figures 9 to 14 show the system variables versus 
time plots in the case of the maximally stretched manipulator 
arm (q2 = 0) during the whole period of motion (the initial 
angular position of the first link q1 = 0, the target position 
q1 = π/2). Again, the perfect accuracy and robustness of the 
proposed control is illustrated in Figures 9 and 12 with the 
angular position in the time domain. The stretched arm of the 
manipulator matches with the zero value of the angular 
position q2. A minimal difference between the desired and the 
actual angular position of the second link can be seen in 
Figure 14 with the 900-times enlarged scale of the vertical 
axis. 
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Fig. 3. First link: desired position qd1 and link position q1 
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Fig. 4. First link: driving torque τ1 
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Fig. 5. First link: desired angular velocity 1dq& and link 
angular velocity 1q&  
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Fig. 6. Second link: desired position qd2 and link position q2 
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Fig. 7. Second link: driving torque τ2 

0 0.5 1 1.5 2
t [s]

2.5 3 3.5 4
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

q 
[ra

ds
]

-1

qd2

q2

 

Fig. 8. Second link: desired angular velocity 2dq& and link 
angular velocity 2q&  
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Fig. 9. First link, stretched arm: desired position qd1 and link 
position q1 
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Fig. 10. First link, stretched arm: driving torque τ1 
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Fig. 11. First link, stretched arm: desired angular velocity 
1dq& and link angular velocity 1q&  
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Fig. 12. Second link, stretched arm: desired position qd2 and 
link position q2 
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Fig. 13. Second link, stretched arm: driving torque τ2 
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Fig. 14. Second link, stretched arm, detailed view: desired 
position qd2 and link position q2 
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Notice the zero value of driving torques in steady state in 
Figures 10 and 13. This is the consequence of the vertical 
final position of the stretched link pair and therefore the zero 
influence of the gravitational forces. The wide interval of the 
driving torque variation in the second DOF, mirroring the 
torque in the first joint in spite of the constant mutual 
position between the links, shows the influence of the first 
link motion to the second link and proves the robustness of 
the control algorithm. 

5. CONCLUSIONS 

In this paper, the robustness and accuracy of a motion control 
algorithm based on the VSC theory – the equivalent time sub-
optimal control – is verified and illustrated by the numerical 
simulation of a multi-DOF control system. Both the dynamic 
(tracking) and the steady-state accuracy have been achieved 
despite the enormous influence of the mechanical coupling 
among the DOF’s of the robot manipulator. It has been 
demonstrated, that the proposed method assures the 
robustness against the signal as well as the parametric 
disturbances. The key to this method is the sliding mode 
control combined with the reaching law approach. The simple 
implementation of the control algorithm, given by the linear 
combination of the mechatronic system’s straightforwardly 
accessible phase variables, represents an additional benefit of 
the presented method. 
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Abstract: A linear algebra result known as Elimination lemma is frequently used in lot of filtering and 
control problems to transform products of unknown matrices to LMI form, however, the robust counterpart 
to elimination lemma is not known. In this paper, sufficient robust stability condition inspired by 
elimination lemma is developed and the respective robust static output feedback controller design 
procedure based on LMI formulation and solution is proposed. The proposed robust controller design 
procedure is computationally not demanding and is illustrated on examples. 

 

1. INTRODUCTION 

Linear algebraic result known as Elimination lemma plays an 
important role in the study of robust stability conditions for 
linear systems with polytopic uncertainties (Boyd et al. 1994, 
Skelton et al. 1998). The following matrix inequality often 
appears in robust control problem formulation 

         NiUXVXVUG T
i

TT
iiii ,...,2,1,0 =<++  (1) 

The matrices XVUG iii ,,,  may all depend on the control 
system parameters to be designed; X may represent control 
gain which is the same for the whole uncertainty domain, 
when robust controller is concerned. Elimination lemma 
enables to eliminate unknown matrix X from (1) when N = 1, 
thus simplifying the resulting design inequality, which then 
often turns to LMI. Unfortunately, for 1>N , which is the 
case of uncertain polytopic linear system, the elimination 
lemma cannot be directly extended, (deOliveira 2005; 
Vesely, et al 2009). Moreover, it is not clear if such 
counterpart in the form of necessary and sufficient condition 
can be found since the class of structured linear control 
problems such as decentralized control and simultaneous 
static output feedback (SOF) belongs to NP hard problems as 
have been proven in (Blondel and Tsitsiklis, 1997). 
Nevertheless, various techniques have been developed to 
reformulate the problem as LMI one using certain convex 
approximation as linearizing or convexifying functions 
(deOliveira et al., 2000; Han and Skelton, 2003, Veselý, 
2003; Rosinová and Veselý, 2003). The problem remains in 
linearizing the off-diagonal terms, since in this case, the 
upper bound based linearization formulas are not quite 
suitable to receive workable results. 
In this paper, sufficient condition for (1) is developed, which 
can be advantageously used for robust static output feedback 
controller design. The respective control design procedure, 
which is computationally not demanding, is presented. 

Section 2 brings problem formulation and preliminaries. In 
Section 3, the sufficient condition for (1) is developed, in 
which the unknown matrix X is eliminated from off-line 
terms of the respective matrix determining robust stability 
condition. The corresponding robust control design procedure 
is proposed and in Section 4 it is illustrated on two examples.    

2. PRELIMINARIES AND PROBLEM FORMULATION 

The robust static output feedback control design problem is 
formulated in this section and the respective sufficient robust 
stability condition in the form (1) is presented. Consider the 
class of linear uncertain continuous or, alternatively, discrete-
time systems described by convex polytopic model: 
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=

+= ααδ
              (2) 
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δ
δ &

 

lmn RtyRtuRtx ∈∈∈ )(,)(,)(  are state, control and output 
vectors respectively; uncertain model matrices )(),( αα BA  
are from convex polytopic uncertainty domain given by 
polytope vertices NiRBRA nxm

i
nxn

i ,...,1,, =∈∈ : 
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 (3) 
Consider a static output feedback control law 

)()()( tFCxtFytu ==   (4) 

and the respective closed loop uncertain system 
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)()()( txAtx C αδ =  (5) 

where 

.0,1,)(
11 ⎭

⎬
⎫

⎩
⎨
⎧

≥=∈ ∑∑
==

N

i
ii

N

i
CiiC AA αααα  (6) 

FCBAA iiCi +=  
To study the stability of uncertain linear system (2), the 
parameter-dependent quadratic Lyapunov function is used 

( ) )()()( txPtxtV T α=  (7) 

and the respective robust stability condition is considered in 
compliance with (Oliveira et al. 1999).  

Definition 1  

System (5) is robustly stable in the convex uncertainty 
domain (6) with parameter-dependent Lyapunov function (7) 
if and only if there exists a matrix 0)()( >= TPP αα such 
that 
 

0)()()(

)()()()()(

22

11
*

1212

<+

+++

ααα

ααααα

C
T
C

T
CC

APAr

PrPArAPr
     (8)  

 

for all α such that ( )αCA  is given by (6) and r11= 0, r12= 1, 
r22= 0  for a continuous-time system; r11= -1, r12= 0, r22= 1 
for a discrete-time system.        

In the following we consider Lyapunov matrix )(αP  in the 
form 

0where)(
1

>== ∑
=

T
ii

N

i
ii PPPP αα , Nj ,...,1=  (9) 

Robust static output feedback control design aims at finding 
an output feedback gain matrix F for control law (4) so that 
the uncertain closed loop system (5) is robustly stable.  

Recall a sufficient robust stability condition proposed in 
(Peaucelle et al., 2000), which has been favoured in 
comparison of several available results (Grman et al. 2005) 
 

Lemma 1 
If there exist matrices nxnnxn RHRE ∈∈ ,  and N symmetric 

positive definite matrices nxn
i RP ∈  such that for all 

i=1,…,N:  
 

 0
)(22

*
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+−++

T
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T
CiiCi
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    (10)           

FCBAA iiCi +=  
then system (5) is robustly stable, where  r11= 0, r12= 1, r22= 0  
for a continuous-time system; r11= -1, r12= 0, r22= 1 for a 
discrete-time system.   

Matrix inequality (10) is in the form of LMI for robust 
stability analysis with for unknown matrices iPHE ,, . On the 
contrary, for robust control design (10) is no more LMI since 
in this case, F is unknown matrix as well as iPHE ,, , and 

these unknown matrices appear in bilinear terms. One 
possibility to cope with nonlinear (bilinear) terms is to use 
bilinear matrix inequality (BMI) solvers; this approach, 
however, has its limitations (e.g dimension of problem, case 
sensitivity). To improve numerical tractability, there is an 
effort to transform (10) to LMI, the frequent approach is to 
employ linearization (deOliveira et al. 2000). In this paper the 
upper bound on the left hand side of (10) is used, based on 
the following well known matrix inequality. 

Lemma 2 

For any 0>iε following inequalities hold for any matrices 
XVU ii ,,   

Ni
XVXVUUUXVXVU i
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T
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T
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+≤+ = εε  (11) 

Lemma 2 immediately follows from inequality  
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                         (12) 
which holds for any 0>iε and any matrices XVU ii ,, .  

A closed loop performance is assessed considering the 
guaranteed cost notion. The quadratic cost function is used.  

  dttRututQxtxJ TT
c ])()()()([

0
∫
∞

+=  

                        for a continuous-time and 

  ∑
∞

=

+=
0

)]()()()([
k

TT
d tRututQxtxJ    

for a discrete-time system,      (13) 

where mmnn RRRQ ×× ∈∈ , are symmetric positive definite 
matrices. 

Control law (4) is called guaranteed cost control when there 
exist a feedback gain matrix F and a constant J0  such that  
 

0JJ ≤                                    (14) 

holds for the closed loop system (5), (6); J0 is the guaranteed 
cost. 

Extending robust stability condition (10) by guaranteed cost 
requirement as known from LQ theory, the robust stability 
condition with guaranteed cost is obtained in the form 

0
)(22

*
12

1211 <⎥
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⎢
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+−++++

T
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TT
i

T
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Cii

HHPrAHEPr
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 (15) 
Inequality (15) is LMI for stability analysis, i.e. for unknown 
matrices HEPi ,, . In the case of controller design, where F is 
also unknown, the bilinear terms appears in (15) both in 
diagonal and off-diagonal terms. Nonlinear diagonal terms in 
(15) can be treated by existing convexifying approaches as in 
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(deOliveira et al., 2000; Han and Skelton, 2003, Veselý et al, 
2009). 
The respective potential convexifying function for terms as 

1−X  and XWX has been proposed in the linearizing form 
(Han and Skelton, 2003): 

- The linearization of  nxnRX ∈−1  about the value 0>kX is  

 1111 )(),( −−−− −−=Φ kkkkk XXXXXXX  (16)      (13) 

-  The linearization of  nxnRXWX ∈  about kX is  

 WXXXWXWXXXXWX kkkkk ++−=Ψ ),( .  (17) 

Both functions defined in (16) and (17) meet one of the basic 
requirements on convexifying function: to be equal to the 
original nonconvex term if and only if XX k = . However, 
the question how to choose the appropriate “nice” 
convexifying function remains still open. 

In fact, linearization (16) and (17) is based on using upper 
bounds on bilinear terms, which is suitable for treating 
diagonal terms in (15). As soon as the bilinear terms in the 
off-diagonal part of testing matrix are to be linearized, the 
upper bounds based approaches are no more appropriate and 
a different way to linearization must be found. One possible 
way to transform robust stability condition to LMI is 
proposed in the next section.   

In the sequel, 0>X denotes positive definite matrix; * in 
matrices denotes the respective transposed term to make the 
matrix symmetric; I denotes identity matrix and 0 denotes 
zero matrix of the respective dimensions. 

3. ROBUST SOF CONTROLLER DESIGN PROCEDURE 

In this section, the novel static output feedback design 
procedure is proposed based on sufficient robust stability 
condition, which yields LMI formulation for controller 
design. 

The following corollary of Lemma 2 provides the bound 
(sufficient condition) which will be used below. 

Corollary 1 

If there exists 0>iε such that  

NiXVXVUUG i
TT

ii
T
iiii ,...,2,1,01 =<++ − εε  (18) 

then 

NiUXVXVUG T
i

TT
iiii ,...,2,1,0 =<++  (19) 

Sufficient robust stability condition is then formulated in 
Theorem 1.  

Theorem 1 
If there exist matrices nxnnxnnxn RHRHRE ∈∈∈ 21 ,, , N 

symmetric positive definite matrices nxn
i RP ∈  and 0>iε  

such that for all  i = 1,…,N: 
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and Xρ  is a chosen positive constant, 

then closed loop uncertain system (5), (6) is stable with 
guaranteed cost.   

Proof 

Robust stability condition (10) can be for 
21 HHH += rewritten in the form (19) where 
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Let us apply now Corollary 1 to the matrices defined in (21).  
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2H  is any matrix, let us consider it as diagonal: IH Xρ=2 , 
where Xρ  is a chosen constant.  

Substituting (21) and (22) into (18), the sufficient robust 
stability condition (20) is obtained.    □ 

Note, that the nonlinear (bilinear) terms appear only in the 
diagonal part of matrix iG~ in robust stability condition (20). 

The robust SOF controller can be now designed using (20) as 
described above, by the following proposed procedure. 

Procedure for robust SOF controller design: 

1. Choose an upper bound constant 0r  for 

                      IrPi 00 ≤≤  

2.  Choose 01 8.0 rH ≈  and 004.0 rX ≈ρ . 

3.  Choose starting value of 0>iε  

4.  Apply linearization of the diagonal terms using (17) and 
the respective iterative procedure and solve LMI (20) for 
unknown matrices FHEPi ,,, . 

If (20) is infeasible, change the constant 0>iε and repeat 
steps 3. and 4. 
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The outlined procedure requires iterative computation in 
steps 3. and 4., in fact it is one dimensional search for 
appropriate value of  0>iε  so that the outlined procedure 
provides feasible solution of  (20). 

4. EXAMPLES 

In this section the proposed robust controller design 
procedure is illustrated on two examples. The previous result  
for robust SOF design with guaranteed cost (Veselý et al, 
2009) is recalled and used for comparison. 

Sufficient robust stability condition for uncertain system (5), 
(6) with guaranteed cost can be formulated in the following 
form (Veselý et al, 2009): 

If there exist matrices nxnnxn RHRE ∈∈ , , N symmetric 

positive definite matrices nxn
i RP ∈  and 0>γ  such that for 

all  i = 1,…,N: 
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where  

RFCFCQEAEAPrw TT
Ci

TT
Cii ++++= 1111  

then closed loop uncertain system (5), (6) is stable with 
guaranteed cost. 

In inequality (23) scalar parameter 0>γ is to be 
appropriately chosen. 

Example 1 

Consider uncertain system with 10 states, 2 inputs and 4 
outputs with nominal model described by matrices CBA ,, 00  
and uncertainty matrices 2121 ,,, uuuu BBAA . 
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The respective uncertain polytopic model (2), (3) for the 
above matrices has 4 vertices given by: 

2211022110 , uuiuui BqBqBBAqAqAA ++=++= , (24) 
where { }1,1, 21 −∈qq . 
Output matrix is 
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1000000000
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Cost function matrices are: IRIQ == ,1.0 . 

The robust controller design procedure proposed in the end of 
Section 3 has been realized for the above described uncertain 
system. Upper bound on Lyapunov matrix iP  has been 
chosen as 10000 =r , 01 8.0 rH =  and 004.0 rX =ρ . Results 
obtained using new design procedure and results 
corresponding to a solution of (23) are summarized as 
follows. 

New procedure based on (20): 

values of ε  providing a feasible solution to 
(20): 016.0,006.0∈ε  

SOF gain matrix for 0075.0=ε : 

⎥
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⎢
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⎡
−−

−−
=

0586.007996.00
01462.001873.1

1F  

maximal closed-loop system eigenvalue = -0.0397 

maximal eigenvalue of Lyapunov matrices = 999,899. 

Results for previously designed procedure  – solution of (23): 

values of γ  providing a feasible solution to 
(23): 71.4,51.0∈γ  

SOF gain matrix for 51.1=γ : 

⎥
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⎤
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⎣

⎡
−−

−−
=

1026.004172.10
02725.009138.1

2F  

maximal closed-loop system eigenvalue = -0.0496 

maximal eigenvalue of Lyapunov matrices = 942,388. 

Example 2 

Consider double integrator described by a nominal model 
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with uncertainties: 
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Analogically as in Example 1, uncertain system is described 
by a polytope with four vertices given by (24). 

Cost function matrices are: IRIQ == ,1.0 . 

Parameters for new design procedure has been the same as in 
Example 1: Upper bound on Lyapunov matrix iP  chosen as 

10000 =r , 01 8.0 rH =  and 004.0 rX =ρ . Results obtained 
using new design procedure and results corresponding to a 
solution of (23) are summarized below. 

New procedure based on (20): 

values of ε  providing a feasible solution to 
(20): 026.0,001.0∈ε  

SOF gain matrix for 0055.0=ε : 

[ ]9369.13716.01 −−=F  

maximal closed-loop system eigenvalue = -0.2275 

maximal eigenvalue of Lyapunov matrices = 866.95. 

Results for previously designed procedure  – solution of (23): 

values of γ  providing a feasible solution to 
(23): 51.10,51.0∈γ  

SOF gain matrix for 31.2=γ : 

[ ]0514.2664311.222 −−=F  

maximal closed-loop system eigenvalue = -0.0675 

maximal eigenvalue of Lyapunov matrices = 889,52. 

In both examples the proposed procedure has been 
successfully applied to compute the robust control gain 
matrix including guaranteed cost requirement. 

5. CONCLUSION 

Robust static output feedback control design procedure has 
been proposed based on new developed sufficient robust 
stability condition. This condition is in the form of matrix 

inequality, where the off diagonal terms of testing matrix are 
linear with respect to unknown matrices and bilinear terms in 

the matrix diagonal can be readily linearized using upper 
bound linearization approach. The proposed procedure 

includes scalar parameters to be chosen by a designer, the 
proposed values of these parameters have been tested on 

various examples, and two of them are shown in Section 4. 
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Online design of SciLab/Xcos block schemes 
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Abstract: The paper presents a tool that supports design of simulation structures for online laboratories 

accomplished in SciLab/Xcos environment. For running such simulations, it is necessary to build a block 

scheme corresponding to a control of virtual or remote device. The presented tool offers a comfortable way 

of such solution. It’s programmed in widely used technologies to ensure wide compatibility and platform 

independence. This application can be used as a supporting tool in virtual and remote laboratories. 



1. INTRODUCTION 

The importance of virtual and remote laboratories becomes 

more and more significant mainly in the area of technical 

education. They help students to understand basic problems 

because they illustrate and visualize controlled dynamics, and 

the necessity to exercise all design steps starting with the 

plant identification and ending with the evaluation of the 

control results achieved with a particular model. The 

advantage is that such laboratories are available to all 

interested users 24 hours a day and from any place. Students 

and interested users can access them via commonly used Web 

browser on any machine that has Internet connection. 

Described web-based application supports block schemes 

created in SciLab/Xcos desktop application. SciLab is free 

software for numerical computation and simulation such as 

Matlab. It is available for all major operating systems: Linux, 

Mac OS and Windows. The Xcos is a free graphical editor 

that offers graphical user interface to design and run 

simulations of dynamical system models. Xcos is distributed 

together with SciLab. 

2. TECHNOLOGY OVERVIEW 

The created tool is based on XHTML, CSS and JavaScript 

language. The incorporated export and import is performed 

by PHP technology mainly through AJAX
1
 requests. These 

technologies are selected in order to keep the widest 

availability of this tool. There are no special demands at 

client’s side. The only thing that is required is compatible 

web browser (the application was tested mainly in FireFox 

3.5 and Internet Explorer 8, but it should work with no 

limitations in IE 6.0+, FF 2+, Safari 3.0+, Opera 9.0+, 

Chrome). 

                                                 
1
 Asynchronous JavaScript and XML – it enables to exchange 

data with a server and update parts of a web page without 

reloading the whole page 

JavaScript library jQuery is used to speed up the development 

and simplify the source code. The library is used for the 

object manipulation, changing CSS
2
 properties, visual 

functions and AJAX requests. 

The application internally operates with XML and JSON
3
 

formats. Therefore the support of XML and JSON handling 

functions are required. In fact, these functions are natively 

supported by PHP version 5.2 or higher, thus it is the only 

requirement to the web server. 

3. FRONT-END 

The front-end of the application is demonstrated in Fig. 1. 

Our aim was to prepare a design that would be familiar for 

users using Matlab/Simulink or SciLab/Xcos environment. 

The whole application consists of 3 parts: main menu, block 

toolbar and canvas. 

 

Fig. 1. Web editor interface 

Block toolbar contains automatically generated list of all 

available blocks in the form as they appear in canvas. Each 

block is set to be draggable. After dragging starts, the clone 

of selected block is created in order it could be dropped into 

the canvas. The new block is inserted into canvas exactly in 

                                                 
2
 Cascading Style Sheets 

3
 JavaScript Object Notation – set of key-value pairs 
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place where it has been dropped. In the case that the block is 

dropped outside canvas, it is not considered as valid and the 

user can see only visual feedback of moving dropped block 

back to its original position in toolbar. 

 

In the application we considered 2 types of blocks: 

 standard blocks are blocks from the toolbar panel 

that are used for modeling of dynamical behavior of 

systems; 

 “pseudo” blocks are blocks that are generated 

automatically by the application for establishing an 

additional connection feature. In this way we 

recognize the node block that is used for multiple 

line connection and the line block that enables to 

modify the position of line segment placed between 

two blocks. 

Block attributes can be changed in the pop-up window that is 

displayed after clicking on any standard block in the canvas. 

The content of the attributes window is fully dynamic. It is 

loaded via AJAX request from other script that builds the 

form (i.e. all window items) from attribute settings included 

in the configuration file whereby the form contains pre-filled 

values of current block attributes. The configuration file also 

defines the type of each attribute input that can be considered 

as text field, select box, checkbox or radio button group. 

 

 

Fig. 2. Dialog window for changing block’s attributes 

Each block has at least one connection point – input or/and 

output port. These are marked by different color when the 

user moves the mouse cursor over the block. To connect two 

blocks, two connection points have to be selected by the 

clicking on them. The connection is possible only between 

input and output of two different blocks or between input and 

some other connection line. In this case the new node is 

created at selected spot on existing connection automatically. 

The used connection points (input and output ports) appear as 

inactive and they are not able to be marked and included to 

a new connection. 

If a connection consists of more than two line segments, 

a line block is inserted automatically at the center of the 

connection line. This pseudo block can be used to adjust 

position of the middle line segment of the connection. 

4. BACK-END 

The back-end server is used for running scripts that perform 

tasks such as import or export. These scripts work with Xcos 

files. In fact, the Xcos file has the same structure as standard 

XML file (see Fig. 3). This format makes handling Xcos files 

very simple. 

 

Fig. 3. Example of Xcos file structure (part of the file) 

4.1 Export 

The export process is done in four basic steps. Firstly, the 

scheme in web editor is sent to back-end server. The editor 

and back-end communicate via AJAX requests using JSON 

as data exchange format. 

In the second phase, the back-end export script transforms the 

scheme into Xcos format. This step include generation of 

standard Xcos file header, listing of each block used in 

scheme together with relevant group of attributes, input and 

output ports. Block parameters are defined in configuration 

file (see Section 5) and actual values are taken from the 

exported scheme. When the blocks are processed, the 

connections between blocks are specified and the scheme is 

finalized with Xcos file footer 

In the next step, the transformed scheme is saved into file and 

it’s offered to user to download afterwards. 

4.2 Import 

The import process realizes the same steps as the export but 

in reverse order. First, user has to upload file containing 

scheme that is going to be imported. The import script parses 

the whole file and stores it as XML object. 

The loaded content is searched for list of blocks and their 

attributes. In a case of blocks or attributes that are not present 

in web editor’s configuration file, the warning message is 
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shown. These unknown blocks will not appear in 

the imported scheme. Processing of unknown attributes is 

skipped but the parent block will still appear in the scheme. 

Blocks are followed by a list of connections among blocks 

that are also being processed. 

5. CONFIGURATION 

The key part of application is the common configuration file 

used by front-end part of the application as well as by the 

back-end scripts for export and import. The configuration is 

stored in XML format. The XML file contains settings for 

each block that is available in the web editor. These settings 

include information about attributes that are used for 

displaying blocks in the editor: image file name, dimensions, 

block class name (e.g. BasicBlock, ConstBlock or other – 

used as XML tag that encapsulates block attributes in Xcos 

document), input and output ports. 

 

Fig. 4. Part of configuration file (Constant block) 

Each block has a list of attributes (constant block in Fig. 4 

has a single attribute – ConstantValue). The attribute 

definition contains its displayed name, input type (used in 

web editor’s attributes window) and default value. Each 

attribute has its own specific location in Xcos file inside tags 

representing current block (e.g. <ConstBlock> … 

</ConstBlock> as seen in Fig. 3). This location needs to be 

defined in configuration file as an XPath
4
 address. 

Data contained in the configuration file are used not only for 

visualization in web editor’s interface, but also for correct 

function of import and export scripts. 

The application is easily extendable by editing configuration 

file by the application administrator. It is not necessary to edit 

source codes of the application. New blocks can be easily 

added by modifying configuration XML file. Currently, the 

web editor includes the most common blocks used in Xcos 

block schemes. The set of included blocks is being extended 

simultaneously with further development of the web editor. 

Since the well-formed and error-free configuration file is 

very important for the correct function of the whole 

application, the DTD
5
 document for configuration XML is 

also provided to prevent errors after modifications. 

 

Fig. 5. Part of DTD for configuration file 

6. CONCLUSION 

The introduced application enables to prepare Xcos block 

scheme in online environment that in next step can be used 

for control of dynamical systems in frame of virtual and 

remote laboratories. Since it is developed by wide spread 

technologies it can be combined with the most of solutions 

that enable to use SciLab via Internet. It is to say that in the 

same time we are also developing similar tool for 

Matlab/Simulink environment (Janík and Ţáková, 2009). 

 

                                                 
4
 XPath is used to navigate through elements and attributes in 

an XML document. 
5
 Document Type Definition – defines legal document 

structure (list and structure of elements and attributes) 
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Abstract: This paper describes development of a remote control laboratory. The main aim
of this work is to create computer software for remote access and control of thermo-optical
device uDAQ28/LT. We describe solutions that have been chosen for meeting the requirements
for a fully user-friendly and an easy to use application. We choose the software programming
platform Adobe Flash for client side application development and we develop a solution based
on technologies PHP, MySQL, and MATLAB for server side.

Keywords: Remote Laboratory, Process Control

1. INTRODUCTION

Today, in a field of automation and process control ed-
ucation, it is necessary to create quality conditions, also
by enabling students to use real experimental devices, on
which they can carry out their experiments and improving
their skills. This aim can be fulfilled by several different
ways.

One of the most used solution is real technological labora-
tory. However, from the students view, it can be used only
during school opening hours and it depends on accessibility
of teachers. But there is another way how to provide
students access to real experiments. It is remote laboratory
that can be used for control of real technological plants
from any location with access to Internet.

There are some solutions of remote laboratories over the
Internet, created by software developers from another
universities.

Interesting solution comes from FEI STU in Bratislava,
where remote control software for the same thermo-optical
device uDAQ28/LT has been developed. This solution is
based on Java Applet and Java Servlet communication,
and MATLAB used as main control software. Used tech-
nology is described in detail in Bisták and Beránek (2006).
This solution was later extended by new reservation sys-
tem (Bisták and Čirka, 2009) and has been applied to
another type of device (hydraulic plant) (Žilka et al., 2008).

A DSP(Digital Signal Processor)-based remote control
laboratory was proposed by Hercog et al. (2007). Their
solution is based on in-house developed control hardware
with MATLAB as control software and client application
created in LabVIEW graphical programming environment.
It is used for control of some real systems like electric
motor, robot mechanism, power converter, etc.

Another remote control laboratory was created at De-
partment of Industrial Systems Engineering of University

Miguel Hernández in Elche, Alicante, Spain. Puerto et al.
(2010) suggested remote control of two mechanical devices,
a DC motor and sliding cylinder. The client side of software
is built on HTML/PHP technologies. The communication
part of software is based on Common Gateway Interface
(CGI) and the main control software is MATLAB.

We develop a remote laboratory that can be accessed by
Internet, using a web browser, but propose a different
combination of technologies than above mentioned. Our
remote control application is created as Adobe Flash pro-
gram, framed in regular web page, accessible through e-
learning system Moodle (Dougiamas, 2005). It also pro-
vides a video stream from remote web camera that is
aimed at controlled device, so the remote user can ob-
serve the behavior of the experiment in real time. The
Flash application is used on the client side. The server
side with the real controlled device uDAQ28/LT consists
of PHP/MySQL Apache-type server containing programs
serving communication between every parts of our software
solution, MATLAB that directly controls remote device,
and Java database software drivers for providing access to
MySQL from MATLAB.

In comparsion with client applications from Bisták and
Beránek (2006), and Puerto et al. (2010), based on
HTML/PHP and Java Applet, the Adobe Flash program-
ing platform is more suitable for graphical design devel-
opment and also it provides more options for graphical
user interface (GUI) customization. From the simplicity
point of view and software/hardware requirements, Java
and HTML/PHP solutions seems to be better, but not
so far. Hercog et al. (2007) used for building GUI the
LabVIEW environment, which is directly designed for such
use, but it is questionable if LabVIEW is an appropriate
environment for building features like interface for commu-
nication between users, dynamically generated forms and
fully animable GUI. The main advantages of our solution is
the possibility of direct storage and data managment from
experiments. This advantage stems from the using MySQL
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Fig. 1. Thermo-optical device uDAQ28/LT

database system, also as communication channel. Another
difference is that we use technology based on asynchronous
communication, so we can prevent the crash of experiment
due to short-time losses of connection between client and
server. MySQL, PHP layer, and MATLAB are located on
the same physical server, therefore in the case of link out-
age between client PC and server, the local communication
channels on server side stay unaffected by this issue, so
the measuremnet remains running and data are collected
in MySQL. In this case, user does not lose the measured
data. The experiment is turned off only in case of longer-
time link outage. Using PHP is fast and efficient way to
secure communication between Flash application on client
side and MySQL.

This is not our first attempt of using Adobe Flash platform
in software development. Recently, we created an virtual
laboratory based on Flash (Čirka et al., 2010), and MAT-
LAB computation online laboratory based on Java (Kalúz
et al., 2010).

2. UDAQ28/LT DEVICE

For purposes of remote laboratory and application testing,
we chose a thermo-optical device uDAQ28/LT (Fig. 1)
created by DigiCon Corporation (Huba et al., 2006). It
is originally designed for education in fields of automation
and process control. Device can be connected directly to
computer by universal serial bus (USB) and after simple
driver installation it can communicate with MATLAB.
Manufacturer provides with device the installation CD
including software drivers, Simulink schemes, and user
manual. Plant can be controlled by 3 analog inputs (bulb
voltage, fan voltage, and LED voltage), and has 4 primary
outputs (light intensity, temperature inside light tube, fan
rpm, and voltage taken by fan).

3. SOFTWARE SOLUTIONS

Our software solution combines several technologies, which
were chosen depending on selected criteria. The main cri-
teria were data storing ability, connection robustness, pro-
gram processing rate, easy-to-use graphical user interface,
and low system and hardware requirements.

In this section, we will explain the realization of links
between every part of chosen technology and its principles.

Every user instruction from Flash application is processed
on server side by PHP scripts.

PHP is used in three different ways.

(1) The first is a group of scripts, which serves application
timing and simple computations with results directly
sent back to application.

(2) The second group of PHP scripts is used to serving
connection between Flash application and MySQL
database system.

(3) The third group of scripts is used for executing of
server system commands.

We use MySQL system for storing data like device
states, running experiment states, MATLAB states, con-
nection states, user accounts, and other. The uDAQ28/LT
device on server-side is directly controlled by MAT-
LAB/Simulink. We have created a Simulink block func-
tion, which sends the measured data to database in every
sample time period of running experiment. These data
are collected by Flash application and sent to user. The
connection between MATLAB and MySQL is performed
by Java database connection driver (JDBC).

The communication between every part is shown in Fig. 2.
Technology of experiment execution and data collecting
is as follows. MATLAB is executed by PHP script that
sends execution command directly to operating system
command line. This command is built in client-side ap-
plication and consist of two parts. The first is system
command for MATLAB execution with program setup pa-
rameters, and the second is command for MATLAB com-
mand line. This second part contains all instructions for
experiment execution, as names of Simulink schemes and
m-files to run, input parameters, and other instructions for
MATLAB. When MATLAB/Simulink program is running,
the specific m-file script writes to MySQL information
about its state (1 – MATLAB is running). Another state
is collected from Simulink. These states are periodically
checked by client application, and if both are set to 1, it
means that experiment is properly running, and client-side
application switches to screen for data observation. Data
collecting is based on asynchronous technology. Every new
measured state from device is sent by Simulink to MySQL
and periodically collected by client application. Sampling
period for Simulink experiment is set up by user and for
data collection by Flash application is set to 0.2 seconds.
MATLAB uses JDBC for database connection and Flash
application connects to database through PHP layer. After
experiment is finished, MATLAB is automatically turned
off by its script. It can be turned off also manually by the
user from client application.

4. APPLICATION OVERVIEW

The remote laboratory can be used by anyone who is
registered as user of Moodle. After sign in to remote
laboratory course, user fills a simple registration form to
create a new account. After registration, user receives a
confirmation e-mail with account activation link and can
sign in to remote control application.
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Fig. 2. Scheme showing connections between client and server side of software solution, and controlled device

The Flash application is accessible through any web
browser, because it is embedded into regular web page. The
only requirement to run the application is Adobe Flash
Player (downloadable software plug-in). The application
web site is located on e-learning system LMS Moodle,
and it is accessible through the main web site of our
department.

Application GUI consists of several screens. The first is
login interface (Fig. 3), where user has to put his login
name and password to sign up for experiment.

In the actual version of our solution, it is necessary
to use accout login option directly in client application,
because the actual version of application is aimed to be
independent on web location. Due to fact that our solution
is a part of remote laboratory course, located on Moodle,
in future we plan to create extension that will provide
access to application user accout directly through Moodle,
by using its session cookies.

On the second screen (Fig. 4) user can reserve the time ses-
sion for experiment and communicate with other signed up
users by chat. Application provides option for reservations
management, like creation, removal, and sort.

Before proceeding to the experiment itself a new time
reservation has to be created. Flash program scripts run
in background of application to compare new reserva-
tion with those which are saved in database to avoid
time collision between experiments. One user can register
maximum three reservations with maximal duration of 30
minutes (sufficient time for performing the experiment on
uDAQ28/LT).

If session reservation is finished, user can switch to another
screen, where he can set up the experiment. On setup
screen (Fig. 5) user chooses Simulink scheme which will
be executed in remote MATLAB. All Simulink schemes

are located at server and registered in MySQL database
system. Content of each scheme is automatically detected
by parsing software. This software part is necessary for
gathering informations about Simulink model files (MDL-
files) and their content. In application, when user selects
scheme for measurement, the parsing PHP script reads the
MDL file and detect all important objects in it. The script
looks for Simulink blocks and their parameters, and sends
information about them back to Flash application, where
the input form is dynamically generated. This way, user
can view and edit all important parameters that model
requires. The script detects most commonly used blocks
and their parameters, like constant, step, transfer function,
and PID controller blocks. User can change their values
before measurement starts and also select parameters that
may be changed during experiment.

Application contains all default simulation schemes pro-
vided by device manufacturer, but there is also an option
to upload custom scheme created by user. For this purpose
we have created upload form that provides all necessary
features important for keeping software security and oper-
ationality. Before a new schema is uploaded to server and
saved to database, the security PHP script checks if file has
proper extension, size, and if contains all necessary parts,
like database connector block and block for data export.
In last step PHP script reads file to look for dangerous
content (for example system commands writen by user).

When all input parameters for experiment are correctly
filled, user can execute the experiment. After connection
between user-side application and MATLAB is established
and MATLAB/Simulik is properly running, the applica-
tion switches to experiment screen (Figs. 6 and 8). User
can observe experiment results and remote device states
and also can send commands for setting up new values of
device inputs (Fig. 7).
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Fig. 3. First screen of Flash application, showing the picture of remote device and login form

Fig. 4. Second screen of Flash application, showing reservation system for experiment

Fig. 5. Input form for experiment parameters associated to chosen scheme
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Fig. 6. Running experiment (input/output view)

Fig. 7. Running experiment (input form where user can change parameters in real time)

Fig. 8. Running experiment (selected variable graph view)
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When experiment is finished, user can download all mea-
sured data from database in chosen format. Application
can provide data in the form of structured XML file, plain
text file or MATLAB m-file. Every experiment result is
stored in database with unique identificator, and can be
accessed later. Web module for data export is shown in
Fig. 9.

Fig. 9. Data export form. Results are sorted by user name
and time of measurement

5. CONCLUSION

Remote laboratories can be a suitable way to improve
education in field of automation engineering and process
control. Our proposed solution presents one of many
different ways how can remote laboratory be realized.
We have chosen technologies which can easily handle
features that are required for this kind of solution. MySQL
database system is suitable for fast storage and data
management and it is also robust enough for programs
with high database access traffic. Adobe Flash Application
on user side provides easy-to-use GUI and can be run
directly through web browser without any installation
procedure.
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Abstract: This paper presents some problems of remote control of real systems. Firstly, it compares the 
quality of local control (controller are located on the server PC) and remote control (controller are located 
on client PC) for systems with small time constant. Consequently it deals with solving the problems in the 
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reduction of the quantity of transferred and processed data. After that, communication will be faster and 
the application will be usable for systems with a lower time constant. 
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1.INTRODUCTION 

The existence of transport delays is a normal feature of many 
technological processes in the input-output relations. 
Production devices with a time delay often can’t be 
controlled using standard controller designed without 
considering the presence of transport delays. Action value 
generated by controller faces to destabilize the feedback loop. 
This paper is dedicated to analyze the influence on the quality 
of the control system and eliminate their effects.  

2. TRANSPORT DELAY OF SYSTEM 

Our control system consists of several parts, between which 
delays of data can occur and it can cause reduction of control 
quality. The whole system is composed of client-server 
application, the computer with running Matlab and the real 
system, which is connected to a computer.  
 

 
a) 

 

 
b) 

 
Fig.1. Block diagram of the system: a) local control;             
b) remote control 

In the early stages of my work was control scheme created in 
Matlab, that was controlled the system (Fig. 1.a ). The task of 
server has to been transfer the necessary data between client 
and Matlab, especially the parameters necessary to run the 
simulation. Consequently it sent the measured data from the 
system to the client that can visualize it for the users. This 
solution of telematics control was restrictive for the user, 
because they could not design their own controller. More 
appropriate solution is to move the controller from the 
scheme in Matlab directly into the client application, where 
user can freely modify it (Fig. 1.b ). This solution has brought 
to the feedback loop a transfer delay that was before minimal. 
It is only an academic example and it can never be used in 
practice, because it does involve significant security risk and 
eliminates the possibility to achieve quality closed loop 
behavior. It was developed only to show an impact of 
transport delays on quality of control process for students. In 
the final version of the application the user can choose 
between server-side control (in Matlab scheme) and the 
client-side control (its own controller). 
 

2.1Transport delay between client and server 

Seeing that client and server run in simulations on the same 
computer, network delay is minimal. Network delay will 
increase when running a client application on another 
computer on the network. Its duration depends on your 
connection speed and also the network traffic. When the 
network is without traffic, the network delay is around 
several tens of millisecond. When the network is with traffic, 
the value of transport delay is increasing on the value of 
hundreds of milliseconds, which can lead to the instability of 
the system for systems with small time constant. Seeing that 
client can connect to the server from anywhere on the 
Internet, it is necessary to consider which type of control in 
simulation will be better. 
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Fig.2. Transport delay between client and server  
 
In Fig. 2 you can see evolving of time delay between running 
the simulation and the time at which the sample was created. 
The values are in second. Time was measured by creating 
timer and run it on the client side at a time when it was 
confirmed to launch simulation on the server side. Their 
difference was the transfer delay with which the sample was 
received from the server. 

These delays are total, and it includes itself all parts of the 
delays which occurring during the simulation. Highest part of 
delay takes the delay of the communication between server 
and Matlab. Seeing that client and server run in simulations 
on the same computer, network delay is minimal. Network 
delay will increase when running a client application on 
another computer on the network using a video stream from 
the camera. Delays in some points are more than 1 second. It 
is necessary to reduce this delay or to use it only to systems 
with large time constant. 

In Fig. 4 is shown the delay if the network is loaded. To 
made a traffic, we used a video stream, that transmits data 
over the network at 6Mbps. The picture shows that delays in 
some samples adding up to less than 3 seconds. This delay 
leads to system instability. We will show the impact of this 
delays on the control quality on real thermo-optical plant  
uDAQ28/LT (Fig. 3) (Huba, 2008).   

 

 
a) 

 
b) 

Fig.3.  a) Thermo-optical plant uDAQ28/LT  b) Basic electric 
diagram of thermo-optical plant uDAQ28/LT 
 
This system was designed to support of education of process 
control. System has three manipulated inputs: bulb voltage 
(0-5V) which represents heater and light source, fan voltage 
(0-5V) which can be used for temperature decreasing and 
voltage of led diode (0-5V) which represents another source 
of light. On the output is possible to measure seven variables: 
temperature insight the system (direct or filtrated), outsight 
temperature, light intensity (direct or filtrated), fan velocity 
and fan current. In the next two figures (Fig. 5. and Fig. 6.) is 
a comparison of the output of optical channel with control on 
the server side (without transport delay) and control on the 
client side (with transport delay). The network was with 
traffic 6 Mbps. 
After elimination of network traffic delay was reduce (Fig. 
2.) and the quality of regulation was better (Fig. 7.). Values 
of transfer delays are stil quite high and the system we can 
not regulate.  

Control process for this delay may not work properly because 
it is a system with time constant less than 2 second. In Fig. 8 
and Fig. 9 are shown traces of the outputs of the system with 
time constant of more than 20 seconds. It's unfiltered thermal 
channel of thermal-optical plant. 

 

 
 

 
Fig.4. Transfer delay on the network with traffic 
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Fig.5. Simulation on real system with client control 
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Fig.6. Simulation on real system with server control 
 

 
 

 
Fig. 7. Output value on network without trafic 

 

 
Fig. 8. Output value with server control  

 
 

 

Fig. 9. Output value with client control 

In the chart we can see that delays caused small overshoot on 
output values. The course of action values is different for 
both graphs, which is caused by transfer delay. As this is a 
system with high time constant, did not influence the course 
of output variables. Our application works reliable on 
systems with high time constant. 

2.2 Transfer delay betweet Matlab and server 

In communication between Matlab and the server it causes 
delays in transmission in both directions. Communication has 
been made by using COM objects (Beránek, 2006). 
Calculation of the action value is performed on the client side 
and therefore it is necessary send required data to the client to 
calculate. Server application receives by the method 
getRealtimeData() measured values of Matlab, that it sends to 
the client. 

Data are obtained from the scopeData variable in that Matlab 
Scope object stores data during simulation. This is the only 
way to get the measured values during simulation. Its 
disadvantage, however, is that Matlab sends to the server all 
previously stored data. Data is sent as a matrix whose number 
of rows is equal to the number of samples and number of 
columns is equal to the number of sent variables. During the 
simulation it’s changing the number of rows in the matrix. 
The server then must recognize what is already sent to the 
client and what is not his yet. For this task we have 
upperBorder and lowerBorder variables. In to the 
lowerBorder variable is written number of samples received 
in the previous matrix. In to the upperBorder variable is 
written number of samples in new matrix. Client receives 
only the samples with indexes between lowerBorder and 
upperBorder. This method of sending was designed for the 
application with server side control and it was sufficient for 
the user, because the delay, that it caused, has no effect on the 
quality of control. However, when we wanted used the same 
method to the client side control, we encountered a few 
problems. 

The most significant was that the server sent at once 3 
samples on average and client calculate an action variable for 
each of them in the order they were received. First it 
calculated an action value for the sample which was 
calculated at time t-2Ts, then t-Ts and finally for the sample 

time [s] 

time [s] 

time [s] 

time [s] 
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at time t. In calculating the control value it calculated value 
from the sample, which was no longer current. The most 
accurate calculation was only at the last received sample. On 
the control process that had the most impact in systems with 
small time constants. The impacts of this delay, we have 
analyzed in section 2.1, where we showed that delay is 
relatively high also without the delays in transfer over the 
network. Delays in some places are more than 1 second. That 
is why it is necessary to reduce this delay or to use it only for 
systems with high time constant. Because we want a system 
with the widest possible use, we looked for a way to reduce 
this delay. 

3.MINIMIZING THE TRANSFER DELAY 

The biggest time delay was identified when server has sent 
more measured samples at the same time. Because we can not 
control the speed of taking samples of Matlab, the only 
possibility to speed up the transfer is sent only the most 
current sample to the client. This ensures that the client will 
not receive samples that are not current and it will not 
calculate an action value. At the same time we reduce the 
number of transferred data and communication will be faster. 
Previous server sent measured samples by the index value 
from lowerBorder to upperBorder. After modifying the 
servers code, server sends only the value with index 
upperBorder, consequently client receive only the most 
current value. Client calculates action value and sent it to the 
server. Server sent the value to Matlab and wait for next 
sample. In the equation for calculating the action value acts 
parameter Ts. It is sampling time. Client, but does not receive 
all of the the samples, but only some of them. In practice this 
means that is sending approximately every third sample, so 
the actual sampling time is approximately 3Ts.So that client 
calculate an action value always at the correct sampling time 
it must calculate sampling time at each step itself. Sampling 
time is thus variable. This function provides the following 
code: 

multiple=(t[0]-t[1])/Ts; 

if(multiple==0) multiple=3; 

t[1]=t[0]; 

Action value is then calculates: 

u[0]=u[1]+P*e[0]+multiple*Ts*I*e[1]-P*e[1]; 

 
u[0] – actual control action 
u[1] – control action in time t-Ts 
e[0] – actual control error 
e[1] – control error in time t-Ts 
 
After these modifications, we minimize the delays that arose 
in our application. In Fig.10 we can see time delay of the 
sample. It is seen that the delay is significantly reduced. 
Before the modifications it fluctuated between 0.5 and 1.25 
seconds. After the modifications it fluctuated between 0.2 
and 0.4 seconds. 

 
 

Fig. 10. Time delay of sample 

This delay was measured without network load. After adding 
the traffic like in section 2.1, thus the video stream with 
speed of 6Mbps, we measured delay between 0.2 and 0.8 
seconds (Fig. 11). In the previous server application it was 
between 1 and 3 seconds. In Fig. 12 and Fig. 13 is a 
comparison of control on the client side with control on the 
server side for unfiltered optical channel of thermal-optical 
system (system with small time constant). 

 

Fig. 11. Delay of sample on network with traffic 

 
 

 
Fig. 12. Output value with client control 
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Fig. 13. Output values with server control 

The chart shows that the delay of the sample has an impact 
on the quality of control. Transport delays caused overshoot 
in our case. Controller, despite delay, regulates the output 
value to the desired value. In the previous server application 
was system unstable. On the quality of the regulatory process 
had influence two basic components. First was the delay and 
the second was sampling time. On the server side we used Ts 
= 0.2 seconds. But n the client side not. Although Matlab 
counted with sample time Ts = 0.2 seconds, but the client 
receives every second or third sample. Thus, sampling time 
was at the client two to three times greater. Thus, if we want 
to compare most accurate, we must set the sampling time for 
the client minimal to the value Ts / 2. Fig. 14 shows the 
course of output variables with Ts = 0.1 seconds. 

The output is similar to the output of server-side control. This 
showed that the sampling time in this system had a greater 
impact to quality of control them the transfer delay. This 
simulation showed that the server side control is working 
correctly. 

Server and client are modified so that we can send to the 
server information, which type of control we want to use 
(client side or server side). The user can choose this 
parameter before running simulations directly in the window 
of client application. Hereby he can set parameters of PI 
controller that is used in simulation with client-side control. 

 

 
 

 
Fig.14. Output of system with Ts= 0.1 second 

Each of these options uses a different control scheme, it is 
therefore necessary to choose the correct startup scheme. 
Otherwise the simulation will not run and Matlab sends an 
error message. 

4. CONCLUSION 

Simulations proved that an application for remote control 
works correctly also for systems with small time constant 
(approximately 2 second). The theory, about instability of 
feedback loop with high transfer delays, was confirmed. The 
quality of control process was much better after the 
identification of transfer delays and minimization of them. 
This solution will enable greater use of application, especially 
in educational process. It also allows users to create their own 
controller and simulate its behavior on different real systems.  
Subject of next research would be to eliminate any delays in 
communication on the server side. 
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Abstract: This paper gives information about development of laboratory device - simulator for automotive 
applications. The design of simulator allows the use of different setups for simulating braking of vehicle's 
front and rear wheel as well as acceleration of front and rear wheel driven vehicle. Main use of simulator is 
development and evaluation of control strategies for anti-lock braking system and traction control system, 
but device can also be used as general mechatronic system with non-linear behaviour for testing of control 
system designs. 

 

1. INTRODUCTION 

The anti-lock braking system (ABS) and traction control 
system (TCS) are important safety systems that monitors and 
controls wheel slip during vehicle braking and acceleration 
(Gillespie 1992). ABS improves vehicle stability and reduces 
stopping distances when braking on slippery road surfaces. 
Rolling wheels usually have more friction available, than 
locked wheels. This is also used by TCS to reach better 
traction during acceleration. Control algorithms for both 
systems are being continuously developed and optimized for 
better performance. The aim of this work was to design 
laboratory device that can be used for experimental 
evaluation of suggested improving control techniques. 

2. ABS/TCS SIMULATOR CONCEPT AND DESIGN 

For purposes of anti-lock braking system analysis a quarter 
vehicle model is often considered (Solyom 2004). This model 
consists of single wheel attached to a mass – Fig. 1. 

Fz

ω1Mb
r1

m

J1

Fx

v

 
Fig. 1.  Quarter model of vehicle: m – vehicle mass,  

v – vehicle longitudinal velocity, J1 – wheel inertia,  
r1 – wheel radius, ω1 – angular velocity of wheel,  
Mb – brake torque, Fx – wheel/road friction force,  
Fz – vertical force 

The equations of motion of quarter vehicle model are given 
by: 

 1 1 1 0b xJ M F rω + − =  (1) 

 0xmv F− =  (2) 

Maximum braking force must be less then 
available friction: 

 x zF F μ≤  (3) 

where μ is the friction coefficient between road and tire. 

For the simulator design the vehicle dynamics is substituted 
using second wheel as shown in Fig. 2 . 

Fz

ω1Mb

Fx

r1

r2
ω2

J2

J1

 
Fig. 2.  Quarter model of simulator: J1 – vehicle wheel 

inertia, r1 – wheel radius, ω1 – angular velocity of wheel, 
Mb – brake torque, Fx – wheel/road friction force,  
Fz – vertical force, J2 – vehicle dynamics substituting 
wheel inertia, r2 – substituting wheel radius 
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Equation (1) is valid for new system too, while (2) is 
changed: 

 2 2

2
0x

J F
r
ω

− =  (4) 

New configuration is well suited for construction of physical 
laboratory model and forms a basis for ABS/TCS simulator 
design – Fig. 3, 4.  

 

Fig. 3.  Mechanics of ABS/TCS simulator – concept 

The design of simulator allows the use of different setups for 
simulating braking of vehicle's front and rear wheel as well as 
acceleration of front and rear wheel driven vehicle. This 
functionality is provided by simulator frame kinematics and 
by possibility to control the torque of both wheels via servo-
drives. Table I shows available simulator configurations for 
different vehicle types and driving conditions. 

TABLE I  
Description of ABS/TCS Simulator Configurations 

Configuration 
Upper 
wheel 
rotation 

Upper wheel 
torque 

Lower wheel 
torque 

Front wheel braking positive negative, 
ABS controlled 0 

Rear wheel braking negative positive, 
ABS controlled 0 

Front wheel braking 
downhill positive negative, 

ABS controlled 
positive, 
constant 

Rear wheel braking  
downhill negative positive, 

ABS controlled 
negative, 
constant 

Front wheel 
acceleration positive positive, 

TCS controlled 0 

Rear wheel 
acceleration negative negative, 

TCS controlled 0 

Front wheel 
acceleration uphill positive positive, 

TCS controlled 
negative, 
constant 

Rear wheel 
acceleration uphill negative negative, 

TCS controlled 
positive, 
constant 

Friction estimation positive positive, 
velocity control 

negative, 
velocity 
control 

 

Fig. 4.  Mechanics of ABS/TCS simulator – real system 

3. CONTROL SYSTEM ARCHITECTURE 

Hardware of control system for simulator is based on 
standard industrial components of B&R automation. Central 
part of solution is X20 PLC which runs the control program 
and controls the torques of both simulator wheels via 
ACOPOS servo drives. Device utilizes utilises Ethernet 
Powerlink bus, which is used for fast torque and velocity 
closed loop control of servo drives, as well as for data 
acquisition of process data into PLC memory during runtime. 
Human machine interface runs as a task on the same PLC and 
is available over Ethernet network via VNC console. Main 
parts of simulator’s control system architecture are shown at 
Fig. 5 and Fig. 6. 

 

Fig. 5.  Control system architecture for simulator 

 

Fig. 6.  Control system of ABS/TCS simulator – real system 
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Software of simulator can be split into two parts – system 
software and user software. System software deals with safe 
control of servo drives, data acquisition and data logging 
tasks and human machine interface services. User part of 
software implements actual control strategies for anti-lock 
braking or traction control. This software is prepared within 
MATLAB/Simulink environment. The code for PLC is then 
automatically generated using Real Time Workshop addition 
of and incorporated into the structure of automation project 
for industrial system. Architecture of software is at Fig. 7. 

 

Fig. 7.  Software solution architecture for simulator 

4. EXPERIMENTAL WORKS 

First experimental works were aimed at estimation of slip 
friction curves for different tire/road conditions – dry rough 
surface and wet smooth surface. Afterwards implementation 
of anti-lock braking was experimentally verified on wet 
surface. 

4.1 Slip friction estimation for dry concrete road surface 

The task of this experiment was the estimation of friction 
torque between wheel with rubber surface (representing tire) 
and wheel with concrete surface (representing road). Photo of 
experimental setup is at Fig. 8.  

 

Fig. 8.  Experiment setup for dry concrete road friction curve 
estimation 

During experiment rotational velocity of “road” wheel was 
maintained at constant value. Starting rotational velocity of 
“tire” wheel was the same with opposite direction of 
rotations. During experiment “tire” wheel velocity was 
decreased in steps while measuring torques at both servo 
drives. These values were corrected for the effect of 
mechanical losses. Resulting slip friction curve is at Fig. 9. 

 

Fig. 9.  Friction torque curve for rubber and concrete 

4.2 Slip friction estimation for wet slippery road surface 

The task was to estimate the available friction between wheel 
with rubber surface and wheel with slippery wet surface. 
Photo of experimental setup is at Fig. 10, which also shows 
maintaining of thin wet film at “road” wheel. Experimental 
procedure and data processing was the same as for previous 
experiment. Resulting slip friction curve is at Fig. 11. 

 

Fig. 10.  Experiment setup for wet smooth road friction curve 
estimation 

 

Fig. 11.  Friction torque curve for rubber and for wet smooth 
surface 
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4.3 Anti-lock braking on wet slippery road 

Experimentally estimated friction curves were used during 
ABS control synthesis. Resulting PI based controller was 
verified in front wheel braking configuration with and 
without anti-lock function active. Results are given in Fig. 12 
and 13.  

 

Fig. 12.  Braking with ABS function off 

 

Fig. 13.  Braking with ABS function on 

In both cases simulator wheels were slowly accelerated to 
starting speed. Braking was activated in time of 1 s. During 
braking with ABS off the upper braking wheel locked after 
short time and remained in this state throughout all braking 
process (Fig. 12). ABS controller in next experiment tried to 
maintain the slip at value of 0.4. This effort was only partially 
successful, but effect of active ABS is clearly visible 
(Fig. 13) – braking time was reduced by app. 30 % and 
braking distance was reduced by app. 40 %, compared to 
experiment without ABS function. 

5. CONCLUSIONS 

Paper describes laboratory device for anti-lock braking 
system and traction control system simulation. Main use of 
simulator is development and evaluation of control strategies 
for anti-lock braking system and traction control system. 

First experimental results are promising and proved 
functionality of simulator design. Simulator is still in 
development phase and works are in progress to improve its 
features. 

Future works include creation and adjusting of mathematical 
model of simulator, optimization of simulator software and 
development of HMI interface. 
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Čech, M., 262
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