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DECOUPLING OPTIMAL CONTROLLERS 

V. Kučera* 

* Czech Technical University in Prague, Faculty of Electrical Engineering,  
Technická 2, 16627 Prague 6, Czech Republic  

fax : +420-224 916 648 and e-mail : kucera@fel.cvut.cz. 

Abstract: The problem of decoupling a linear system by dynamic compensation into 
multi-input multi-output subsystems is studied by applying proper and stable fractional 
representations of transfer matrices. A necessary and sufficient condition is given for a 
decoupling and stabilizing controller to exist. The set of all controllers that decouple and 
stabilize the system is determined in parametric form.  Decoupling optimal controllers 
are then obtained by an appropriate selection of the parameter. 

Keywords: Linear systems, fractional representations, decoupling controllers, stabilizing 
controllers, optimal controllers. 

1 INTRODUCTION 

Decoupling is a way to decompose a complex system 
into non-interacting subsystems. In fact, certain ap-
plications necessitate controlling independently dif-
ferent parts of the system. Even if this is not required, 
the absence of interaction can significantly simplify 
the synthesis of the desired control laws. 

The decoupling problem has received much attention 
in the literature. For linear systems, different ap-
proaches have been used and control laws of various 
structure and complexity applied. 

The basic form of decoupling into single-input single-
output subsystems is often referred to as the diagonal 
decoupling. This problem was posed by Voznesenskij 
(1936) and studied by Kavanagh (1957), Strejc 
(1960), Mejerov (1965), and Wolovich (1974). The 
studies were related to the inversion problem of ra-
tional matrices. Attention was paid to the existence of 
proper rational transfer matrices. The issue of stabil-
ity, however, was not properly addressed. 

A deeper insight was provided by the state-space ap-
proach. The pioneering work is due to Morgan 
(1964), who posed the problem of decoupling by 
static state feedback. Falb and Wolovich (1967) es-
tablished a solvability condition while Gilbert (1969) 
related this condition to state feedback invariants of 
the system. Descusse and Dion (1982) then inter-

preted this condition in terms of system’s structure at 
infinity.  

The use of restricted static state feedback, namely the 
static output feedback, in decoupling was studied by 
Howze and Pearson (1970), Howze (1973), Denham 
(1973), Hazlerigg and Sinha (1978), Filev (1982b), 
Descusse and Malabre (1982), and Descusse, Lafay 
and Kučera (1984). This is a very restricted problem, 
whose solution is hard to obtain, but it is very useful 
in applications. 

A more general form of decoupling into multi-input 
multi-output subsystems is referred to as the block 
decoupling. This problem was introduced by Won-
ham and Morse (1970) and Basile and Marro (1970). 
Using a geometric approach, they determined the 
solvability of the problem by static state feedback in 
several special cases. An alternative algebraic ap-
proach based on the structure algorithm was pre-
sented by Silverman and Payne (1971). Relationships 
between the two approaches were studied by Filev 
(1982a). 

The decoupling by dynamic state feedback was stud-
ied via the geometric approach by Morse and Won-
ham (1970), who obtained a deep insight into the 
internal structure of the decoupled system. By this 
time, the problem of decoupling by dynamic state 
feedback was solved, including stability or pole dis-
tributions that may be achieved while preserving a 
decoupled structure. The status of noninteracting con-
trol was reviewed by Morse and Wonhan (1971).  
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A comeback of the transfer function methods in the 
study of block decoupling is witnessed through the 
works of Koussiouris (1979), Hautus and Heymann 
(1983), and Kučera (1983). A dynamic state feedback 
was shown to be equivalent with combined dynamic 
output feedback and feedforward reference compen-
sation, often referred to as a two-degree-of-freedom 
controller. To address stability issues, the Youla-
Kučera parameterization of all stabilizing controllers 
was invoked. The basic results are reported by 
Kučera (1983), Hautus and Heymann (1983), and 
Gómez and Goodwin (2000). The class of all decoup-
led transfer matrices that can be achieved by a stabi-
lizing controller was parameterized by Desoer and 
Gündeş (1986) and Lee and Bongiorno (1993). This 
result has made it possible to derive the H2-optimal 
decoupling controller, which minimizes the perform-
ance deterioration due to decoupling. 

The two-degree-of-freedom controller structure is 
ideally suited to decoupling since only one of the 
degrees of freedom is affected by the decoupling re-
quirement. This is not true for a pure feedback, or a 
one-degree-of-freedom controller. This case is con-
siderably more difficult to solve, as shown by Ham-
mer and Khargonekar (1984), Lin (1997), Youla and 
Bongiorno (2000), Bongiorno and Youla (2001), and 
Park (2008a).  

Finally, the decoupling in the generalized plant 
model, which covers a broad range of control prob-
lems in a unified setting, was considered by Park 
(2008b). Such a plant model can accommodate non-
square plant and non-unity feedback cases with one-
degree-of-freedom or two-degree-of-freedom control-
ler configuration. The benefits of such a general 
problem formulation consist in a unified treatment 
rather than in simplicity of the solution. Indeed, ma-
trix operations need to be converted to vector opera-
tions with vectors of a much larger dimension, which 
result from the Kronecker and Khatri-Rao products of 
matrices. 

This paper adopts the most general setting that is 
meaningful for decoupling: a system in which the 
measurement output may be different from the output 
to be decoupled and a dynamic controller that fea-
tures both feedback and feedforward parts. The class 
of all such controllers that decouple and stabilize the 
system is determined in parametric form and the pa-
rameter is used to obtain the H2-optimal controller. 
The solution is simple and direct. The controller con-
figuration implies that decoupling and stability are 
two independent issues. 

2 PROBLEM FORMULATION 

Consider a linear, time-invariant, differential system 
governed by the input-output relation 

                                  ,uSy y=                               (1) 

 
where u is the q-vector input, y is the p-vector output 
and Sy is the transfer matrix of the system. We as-
sume that Sy is a proper rational matrix over R(s), the 
field of rational functions.  

Let p1, ..., pk be a given set of positive integers that 
satisfy 

ppk
i i =∑ =1 . 

System (1) is said to be decoupled, or more specifi-
cally (p1, ..., pk)-decoupled, if there exist positive 
integers q1, ..., qk satisfying 

qqk
i i =∑ =1  

such that Sy has the block diagonal form 










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


=

k

y

S

S
S 

1

: , 

where Si is pi × qi. 

This is not a generic property of the system, but it can 
be achieved by a suitable compensation. To this ef-
fect, let z denote the m-vector output of the system 
that is available for measurement and let it be related 
with the input by the equation 

                                  uSz z= ,                              (2) 

where Sz is a proper rational matrix over R(s). 

The most suitable linear, time-invariant, differential 
controller can then be described by the equation 

                               zKvKu zv += ,                       (3) 

where v is an external reference input of appropriate 
dimension, say r. As it is seen in Fig. 1, the transfer 
matrices Kv and Kz represent the feedforward and the 
feedback parts of the controller, respectively. We 
assume that both Kv and Kz are proper rational matri-
ces over R(s).  

The decoupling problem is then to find matrices Kv 
and Kz such that the transfer matrix 

                        vzzy KSKIST 1)( −−=                     (4) 

from v to y be suitably block diagonal. 

Obviously, unless additional provisions are made, the 
decoupling problem is trivial as it could be solved by 
Kv = 0. Thus it is necessary to impose certain admis-

 

 

 

 

 

Fig. 1. Control system 
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sibility condition on the decoupling controller to 
make the problem meaningful, for example 

                              yST rank  rank =                      (5) 

over R(s). This condition is equivalent to the preser-
vation of the class of controlled output trajectories. 
We thus require that no essential loss of control oc-
curs through the decoupling process. 

Another requirement, frequently imposed on the de-
coupled system in practice, is that of stability. This 
requirement means that the states of the system go to 
zero from any initial values. 

3 PRELIMINARIES 

A stable system gives rise to a proper and stable 
transfer function. In order to study stability of the 
decoupled system it is convenient to express the 
transfer matrices of the given system and those of the 
controller in the following factorized form 

                             1: −








=


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
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S
S

y

z                            

                   [ ] [ ]RQPKK vz −= −1: ,                   

where 









C
B

A,  

are proper and stable rational matrices that are right 
coprime and 

[ ]RQP −,  

are proper and stable rational matrices that are left 
coprime. 

These proper and stable fractional representations 
exist and are unique up to right and left multiplica-
tion, respectively, by a unimodular matrix. Recall that 
a proper and stable rational matrix is said to be uni-
modular if its inverse exists and is proper and stable. 

The system equations (1) and (2) and the controller 
equation (3) then take the form 

                             uA
C
B

y
z 1−









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
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


,                        (6) 

                       [ ] 







−= −

v
z

RQPu 1 .                    (7) 

The overall system transfer function reads 

                         RQBPACT 1)( −+= .                    (8) 

The fundamental assumption we make here is that the 
part of the given system that is not controllable from 
u is stable and the part of the given system that is not  

jointly observable from y, z is stable. Similarly, we 
assume that the controller is realized in such a man-
ner that its part that is not jointly controllable from v, 
z is stable and its part that is not observable from u is 
stable. 

The issue of stability of the overall system is then 
solved as follows. 

Lemma1. The overall system described by (6) and (7) 
is stable if and only if the matrix PA + QB is uni-
modular. 

Proof. In the overall system, inject inputs x and w as 
shown in Fig. 2. Then the overall system is stable if 
and only if the nine transfer matrices between the 
inputs v, w, x and the outputs u, y, z given by 

[ ]
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are all well defined and proper and stable rational. 
This statement follows from the assumption of stabil-
ity of the uncontrollable and unobservable parts of 
the system. 

Now, in view of the coprimeness assumptions on A, 
B, C  and P, Q, R  these transfer matrices are well de-
fined and stable if and only if PA + QB is a unimodu-
lar matrix.                                                                  □                                                                             

4 PROBLEM SOLVABILITY 

A simple necessary and sufficient condition will now 
be established for a system to be decoupled and sta-
ble. 

Based on the partition (p1, ..., pk), write 

                                   















=

kC

C
C 

1

: ,                          (9) 

where Ci is a pi × q submatrix.  

Theorem 1. Given system (1), (2) in fractional form 
(6) and partition (9), there exists an admissible con-
troller (3) such that the overall system is 

 

 

 

 

 

 

Fig. 2. Control system with the complete set of in-
dependent inputs and outputs 
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(i) stable if and only if  

A and B are right coprime,              (10) 

(ii) decoupled if and only if 

∑ =
=k

i i CC1 rank rank .                    (11) 

Proof. (i) Let the overall system be stable. By Lemma 
1, the matrix PA + QB is unimodular whence A and B 
must be right coprime. 

Conversely, let the matrices A and B of (6) be right 
coprime. Then there exist proper and stable rational 
matrices P and Q such that 

                             IQBPA =+                          (12) 

with P invertible and the inverse of P proper. 

Then controller (3) in fractional form (7) that is de-
fined by the matrices P and Q from (12) and by an 
arbitrary proper and stable rational matrix R satisfy-
ing rank CR = rank C is admissible since, by (8), 

ySCCRT rank rank rank rank === . 

The resulting system (1), (2) and (3) is stable in view 
of Lemma 1 and identity (12). 

           (ii) Let (7) be an admissible decoupling con-
troller for system (6). Denote 

RQBPAK 1)(: −+= . 

The block diagonal property of the matrix T then im-
plies 

∑ =
= k

i i KCCK 1 rank rank  

and the admissibility of the controller gives 

....,,1,rank rank kiCKC ii ==  

Therefore (11) holds. 

The sufficiency will be proved by constructing a suit-
able R. Denote 

kiCr ii ...,,1,rank : == . 

Then there exists a pi × pi unimodular proper and 
stable rational matrix Ui such that 

                              






 ′
=

0
i

ii
C

UC ,                         (13) 

where the rows of iC′ are linearly independent over 
R(s) and where the zero matrix has pi – ri rows and 
may be empty. If (11) holds, then 
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
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







′

′

=′

kC

C
C 

1

:                            

has linearly independent rows over R(s). Hence there 
exists a q × q unimodular proper and stable rational 

matrix U ′ such that 

                   















=′′

0

0
:

1

kD

D
UC  ,               (14) 

where Di is an ri × ri diagonal proper and stable ra-
tional matrix and where the zero matrices have q – r 
columns with r defined by 

∑ =
= k

i irr 1: . 

Define an admissible controller (7) by the matrices P 
and Q from (12) and by the matrix R formed by the 
first r columns of U ′ . The transfer matrix (8) 

      













































==

0

01
1

kD

D

kU

U
CRT      (15) 

is block diagonal. The resulting system is therefore 
decoupled and the external reference input v has di-
mension r.                                                                  □                                                                                             

The interpretation of these solvability conditions is as 
follows. Condition (10) corresponds to the stability of 
the subsystem of the given system that is not observ-
able at the measured output z. Condition (11) calls for 
the linear independence of any two outputs of the 
given system that belong to different blocks. The 
solvability of the decoupling problem thus strongly 
depends on the partition (p1, ..., pk), that is to say, 
upon the allocation of the outputs into the blocks. 

5 CONTROLLER PARAMETERIZATION 

When a decoupling and stabilizing controller exists, 
we shall parameterize the class of all such controllers. 

The control system (6), (7) is stable if and only if PA 
+ QB is a unimodular matrix by Lemma 1. Thus sta-
bilization involves only the feedback part Kz of the 
controller, which surrounds the measurement subsys-
tem Sz. As a result, the parameterization of Kz 
amounts to the well-known Youla-Kučera parame-
terization of feedback stabilizing controllers For de-
tails, see Kučera (1975), Youla, Jabr and Bongiorno 
(1976), Kučera (1979), Desoer et al. (1980), and 
Vidyasagar (1985). 

Let QP ,  be any solution pair of equation (12). Then 
the solution class of (12) is given by 

                   AWQQBWPP −=+= , ,               (16)         

where A and B are left coprime, proper and stable 
rational matrices such that 

                              11 −− = BABA                            (17) 
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and W is an arbitrary proper and stable rational ma-
trix parameter. 

The class of all stabilizing proper rational Kz is then 
obtained in the form 

        )()( 11 AWQBWPQPK z −+−=−= −− ,         (18) 

where the parameter W is constrained so that the in-
verse of BWP + exists and is proper rational.  

Once the control system (6) and (7) is stabilized, it is 
decoupled if and only if T = CR by (8). Thus decoup-
ling involves only the feedforward part Kv of the con-
troller. 

Partition the q × q unimodular matrix U ′ defined in 
(14) as 

[ ]rqr UUU −′′=′ , 

where rU ′ has r columns and rqU −′  has q – r columns 
and may be empty. The class of all decoupling proper 
rational Kv is then given by RPKv

1−= with P deter-
mined in (16) and  

                      















′=

k

r

V

V
UR 

1

,                    (19) 

where Vi is an arbitrary ri × ri proper and stable ra-
tional matrix parameter. The matrices V1, ..., Vk in 
turn parameterize the class of achievable block-
diagonal transfer matrices (8) as follows 


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
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
=
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D
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U
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k
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1

0

01
1

. 

                                                                              (20) 

The parameterization of decoupling stabilizing con-
trollers reveals that decoupling and stabilization are 
two independent issues. That is why the controller 
described by (3) is called the two-degree-of-freedom 
controller. However, this is no longer true for one-
degree-of-freedom controllers, e.g., for the error-
actuated controllers described by )(1 wvQPu −−= − in 
place of (7). 

6 OPTIMAL CONTROLLERS 

The decoupling constraint can deteriorate system’s 
performance. The bonus of having a parameterized 
solution set is that the lost performance can easily be 
optimized. Optimal decoupling controllers can be 
obtained by an appropriate choice of the parameters 
V1, ..., Vk and W.  

Suppose that the control objective is for each block 
of outputs yi to track the corresponding block of ref-
erence inputs vi. Thus we suppose that pi = ri for i = 
1, ..., k, i.e., there are as many reference inputs as 
controlled outputs in each block. The tracking error 
for each block is given by 

iiiii vHyve =−=: . 

In view of (20), Hi has the generic form 

                                  iii VFIH −= ,                      (21) 

where Fi := Ui Di and Vi are proper and stable rational 
matrices with Fi fixed and Vi an arbitrary parameter 
to be specified. 

The benefits of controller parameterization will now 
be demonstrated in the case of H2 control design. It 
turns out that only the parameters V1, ..., Vk are sub-
ject to selection whereas W is free and can be inde-
pendently selected to accommodate additional design 
specifications. 

Suppose that for each block, the reference-to-error 
transfer function Hi is to have least H2 norm defined 
by 

2
1

)()( trace: 2
1

2 




= ∫

∞

∞−

∗ ωωωπ djHjHH iii , 

where the asterisk denotes the conjugate transpose. 
Thus, )(:)( sHsH T

ii −=∗ for any complex argument s. 

To achieve this task, determine the inner-outer fac-
torization of Fi, 

OIi FFF = , 

where FI is inner and FO is outer. Since Fi is square 
and nonsingular,  FI  satisfies IFF II =∗ and FO is free 
of zeros in Res > 0. 

Since FI is inner, left multiplication by ∗
IF preserves 

the H2 norm, 

222 iOIiIi VFFHFH −== ∗∗ . 

Observe that IFI =∞∗ )( . Separate the strictly proper 

part, ∗
IspF , of ∗

IF as follows 

∗∗ += IspI FIF  

and note that, by definition, ∗
IspF has poles only in Res 

> 0. Then 

2

2

2

2

2

2

2

2
)(

iOIsp

iOIspi

VFIF

VFIFH

−+=

−+=

∗

∗

 

because the cross terms contribute nothing to the 
norm. This is a complete square in which only the 
second term depends on Vi . Therefore, a unique Vi 
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that attains the minimum of the norm for subsystem i 
is  

                                    1−= Oi FV .                           (22) 

However, only a proper and stable Vi is admissible. It 
follows that the H2 control problem for subsystem i 
has a solution if and only if FO is unimodular. The 
minimum norm is then given by 

22
min Ispi

V
FH

i
= . 

7 AN EXAMPLE 

Consider a system defined by (1), (2) with the trans-
fer matrices 

.
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Thus the measurement output z is different from the 
output y to be decoupled in that it involves a non-
unity feedback sensor. 

The task is to determine a two-degree-of-freedom 
controller (3) that (1, 1)-decouples and stabilizes the 
system. 

The first step is to obtain a proper and stable frac-
tional representation (6) for the system. Standard 
calculations yield 

,
2
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Now apply Theorem 1. Since A is right coprime to B, 
a stabilizing controller exists. Since the rank of C 
equals the sum of the ranks of the rows of C, an ad-
missible decoupling controller exists as well. 

All stabilizing and decoupling controllers will be 
parameterized using the fractional representation (7). 
To obtain the feedback part of the controller, we con-
sider any particular solution of equation (12), for 
example 
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A left coprime fractional representation that satisfies 
(17) is given by 
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Thus the solution class (16) of equation (12) is 
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To obtain the feedforward part of the controller, note 
that U1 = U2 = 1 and the unimodular matrix defined in 
(14) equals 
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Thus (19) yields 
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The matrices P, Q in (23) and R in (24) define the 
class of all controllers that solve the given problem. 
The parameters V1, V2 are free proper and stable ra-
tional functions and W is permitted to range over 
proper and stable rational 2 × 2 matrices so that the 
inverse of P exists and is proper. Obviously, this 
means that P(∞) is to be a nonsingular matrix. 

The decoupled transfer matrices that can be achieved 
in this example are given by (20) as 
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The optimal controller that minimizes the H2 norm of 
the reference-to-error transfer matrix is determined 
from (22), channel by channel. Clearly V1 = 1. To 
optimize V2, the inner-outer factorization of 
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Thus, from (22), 
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It follows from (24) that the unique optimal R is  
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and the overall system has the transfer function 
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8 CONCLUSION 

An optimal H2 decoupling control problem has been 
studied in the most general setting, for systems in 
which the measurement output may be different from 
the output to be decoupled and for dynamic control-
lers that feature both feedback and feedforward parts. 
The class of all such controllers that decouple and 
stabilize the system has been determined in paramet-
ric form and the parameter has been used to obtain 
the H2-optimal controller.  

The main contribution of the present paper is in a 
streamlined and transparent exposition and a simple 
and direct solution. This is primarily because of the 
following facts. The adopted controller configuration 
is ideally suited to decoupling since stability and non-
interaction can be treated as two independent con-
straints. The problem is formulated and solved using 
an algebraic approach, namely the notion of proper 
and stable fractional representations for system’s 
transfer matrices. The parameterization of the de-
coupling controllers is achieved via the Youla-Kučera 
parameterization of all stabilizing controllers. Finally, 
the H2 norm involved in the optimization is mini-
mized using the completion of the squares, which is a 
simple algebraic technique. 

A large body of literature exists on decoupling and 
related topics. In technical details, the present paper 
draws inspiration from the work of Hautus and Hey-
mann (1983) for the formulation of the problem, from 
Kučera (1983) for the algebraic treatment of stability, 
from Desoer and Gündeş (1986) for the parameteriza-
tion of the decoupled system, and from Lee and Bon-
giorno (1993) for the optimal control.  
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