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Regular design equations for the
reduced-order Kalman filter

P. Hippe

Peter Hippe, Lehrstuhl für Regelungstechnik, Universität
Erlangen-Nürnberg

(Tel : +49-9131-8527135 ; e-mail : peter.hippe@rt.eei.uni-erlangen.de)

Abstract: Reduced-order Kalman filters yield an optimal state estimate for linear dynamical
systems, where parts of the outputs are not corrupted by noise. The design of such filters can
either be carried out in the time domain or in the frequency domain. Different from the full-
order case with all measurements corrupted by noise, the design equations of the reduced-order
filter are not regular, due to the rank deficient measurement covariance matrix. This can cause
problems when using standard software for the solution of the Riccati equations in the time
domain. In the frequency domain spectral factorization of the non-regular polynomial matrix
causes no problems. The known proof of optimality of the factorization result, however, also
requires a regular measurement covariance matrix. This paper presents regular (reduced-order)
design equations for such filters in the time and in the frequency domains for linear continuous-
time systems and it is shown, that the existing solutions obtained by spectral factorization of a
non-regular polynomial equation are indeed optimal.

Keywords: Optimal estimation, polynomials, multivariable systems, continuous-time systems.

1. INTRODUCTION

If the system is completely observable the dynamics of a
state observer can be assigned arbitrarily. In the absence of
disturbances the observer generates a state estimate x̂ that
converges towards the real state x of the system. In the
presence of stochastic disturbances, however, persistent
observation errors occur. Then, a state estimate is of
interest such that the observation error x̂ − x has the
smallest mean square. Given Gaussian white noise with
zero mean, such an estimate is generated by a stationary
Kalman filter (Anderson and Moore (1979), Kwakernaak
and Sivan (1972)) whose order coincides with the order n
of the plant.

If parts of the measurements are not corrupted by noise,
the order of the optimal filter is reduced. The optimal
estimation problem in the presence of noise-free measure-
ments is one of the well researched fields in automatic
control. Since the original work of Bryson and Johansen
(1965) a considerable amount of contributions has been
published on the subject (see, e.g., the books by Sage
and Melsa (1971), Gelb (1996), O’Reilly (1983) and Hippe
and Deutscher (2009), or the references in O’Reilly (1982)
and Fairman and Luk (1985)). The time-domain design of
the reduced-order filter amounts to solving an algebraic
Riccati equation (ARE).

The equivalent frequency domain version of the reduced-
order Kalman filter is parameterized by a polynomial ma-

trix ˜̄D(s), which can be obtained by spectral factorization
of a polynomial matrix equation. This polynomial matrix
equation is determined from a version of the ARE intro-
duced by Bryson and Johansen (1965) or Gelb (1996). This

Riccati equation is formulated for a full-order covariance
matrix P̄ which, however, is singular. There have been
papers presenting regular reduced-order Riccati equations
yielding a regular covariance matrix P̄r of reduced order,
but they cannot be used to develop an equivalent frequency
domain formulation of the filtering problem.

Standard software cannot be used to design the reduced-
order Kalman filter, because the basic requirement,
namely a measurement covariance matrix which is positive
definite, is not fulfilled in the presence of undisturbed mea-
surements. To obtain a well-defined order of the reduced-
order filter it is assumed here that the random signals,
which disturb the artificial output consisting of the noisy
measurements and the time derivatives of the undisturbed
outputs, have a regular covariance. This is a standard
assumption in nearly all investigations on reduced-order
Kalman filters (see, e.g., Bryson and Johansen (1965),
O’Reilly (1983), Haddad and Bernstein (1987), Hippe
(1989)).

After a formulation of the underlying problem in the
time domain in Section 2 the existing solution for the
optimal filter is presented. By a reformulation of the
Riccati equation for the artificial output, one obtains a
regular measurement covariance. In the continuous-time
case standard software still does not work because the
Hamiltonian of this ARE has eigenvalues at s = 0. By
an adequate state transformation of the state equations of
the system this Riccati equation can be subdivided into
a regular part and a vanishing part. The regular part
is solvable by standard software. This regular part also
allows to derive the conditions for the optimal filter to be
stable, and it is shown how these conditions translate into
conditions on the original system.
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The known polynomial matrix equation for the design of
the reduced-order Kalman filter in the frequency domain
is based on the left MFD of the full-order system whereas

the polynomial matrix ˜̄D(s), resulting from the spectral
factorization of this polynomial matrix characterizes a
system of reduced order. This is a consequence of the
rank deficient measurement covariance matrix multiplying
the denominator matrix of the system. Unfortunately,
proofs for the optimality of the spectral factor are only
known in the case, where the measurement covariance is
not singular. In Hippe and Deutscher (2009) it has been
observed that, on the one hand, optimality of the result
can only be checked by computing the corresponding time
domain results and, on the other hand, that all examples

investigated so far have shown that the resulting ˜̄D(s) is
indeed optimal.

In Section 3 it is shown, that the polynomial matrix
˜̄D(s) resulting from the non-regular polynomial equation
is identical to that, which can be obtained from a “regu-
lar” polynomial matrix equation. This regular polynomial
matrix equation is derived from the reduced regular ARE
in the time domain and it allows the design of a full-order
filter for a reduced-order system. As an additional result,
the conditions for the stability of the filter are presented.

Concluding remarks are presented in Section 4

2. THE FILTER DESIGN IN THE TIME DOMAIN

We consider linear time-invariant systems of the order n,
with p inputs u, q stochastic inputs w and m measured
outputs y, where the first m− κ outputs y1 are corrupted
by noise and the remaining κ outputs y2 are free of noise,
described by

ẋ(t) =Ax(t) +Bu(t) +Gw(t) (1)

[
y1(t)

y2(t)

]
=

[
C1

C2

]
x(t) +

[
v1(t)

0

]
(2)

where the abbreviation [
C1

C2

]
= C (3)

will be used in the sequel. It is assumed that the system
is controllable both from the input u and from the input
w and that it is observable.

The stochastic inputs w ∈ Rq and v1 ∈ Rm−κ are
independent, zero-mean, stationary Gaussian white noises
with

E{w(t)wT (τ)}= Q̄δ(t− τ) (4)

E{v1(t)vT1 (τ)}= R̄1δ(t− τ) (5)

where E{·} denotes the mathematical expectation and δ(t)
is the Dirac delta function.

The covariance matrices Q̄ and R̄1 are real and symmetric,
where Q̄ is positive-semidefinite and R̄1 is positive-definite.
The initial state x(0) = x0 is not correlated with the
disturbances, i.e., E{x0w

T (t)} = 0 and E{x0v
T
1 (t)} = 0

for all t ≥ 0.

It is assumed that the covariance matrix

Φ = C2GQ̄GTCT
2 = G2Q̄GT

2 (6)

is positive definite. It characterizes the influence of the
input noise on the time derivative of the undisturbed
measurement y2.

The reduced-order Kalman filter for such systems is de-
scribed by

˙̂
ζ(t) = T (A−L1C1)Θζ̂(t) + (7)

[TL1 T (A−L1C1)Ψ2]

[
y1(t)

y2(t)

]
+ TBu(t)

x̂(t) = Θζ̂(t) + Ψ2y2(t) (8)

(see Gelb (1996), Hippe and Deutscher (2009)). The op-

timal estimate ζ̂(t) results if the matrices L1 and Ψ2 are
chosen such that

L1 = P̄CT
1 R̄

−1
1 (9)

and

Ψ2 =
(
P̄ATCT

2 +GQ̄GTCT
2

)
Φ−1 (10)

with Φ as in (6) and P̄ = P̄ (∞) defined by

P̄ (t) = E{(x(t)− x̂(t))(x(t) − x̂(t))T } (11)

The stationary covariance P̄ satisfies the ARE

AP̄ + P̄AT − [L1 Ψ2 ]

[
R̄1 0
0 Φ

][
LT
1

ΨT
2

]
+ (12)

GQ̄GT = 0

(Hippe and Deutscher (2009)) which is the basis for
deriving the equivalent frequency-domain solution (see
Section 3). This ARE, however, is not in a standard form
to be solved for P̄ .

Inserting the optimal solutions (9) and (10) in (12) one
obtains

ÃP̄ + P̄ ÃT − P̄ C̃T R̃−1C̃P̄ +GQ̃GT = 0 (13)

with
Ã = A−GQ̄GTCT

2 Φ
−1C2A (14)

C̃ =

[
C1

C2A

]
(15)

R̃ =

[
R̄1 0
0 Φ

]
(16)

and
Q̃ = Q̄− Q̄GTCT

2 Φ
−1C2GQ̄ (17)

The ARE (13) is in the standard form with a regular

R̃ > 0. Standard software as, e.g., the function lqe
in MATLAB R©, however, does not yield the solution P̄ ,
because the Hamiltonian related to the ARE (13) has
eigenvalues at s = 0. This is due to the fact that rank P̄ =
n− κ.

By a regular state transformation z(t) = T̄ x(t) with

T̄ =

[
C
∗
]

(18)
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the state equations (1)–(2) of the system can always be
transformed into

ż(t) = Āz(t) + B̄u(t) + Ḡw(t) (19)

y(t) = C̄z(t) +

[
v1(t)

0

]
(20)

with

Ā = T̄AT̄−1, B̄ = T̄B, Ḡ = T̄G, C̄ = CT̄−1 (21)

or in components

[
ż1
ż2

]
=

[
A11 A22

A21 A22

][
z1
z2

]
+

[
B1

B2

]
u+

[
G1

G2

]
w (22)

y1 = C̄1z1 + v1 (23)

y2 = z2 (24)

with z1 ∈ R(n−κ), 0 < κ ≤ m, z2 ∈ Rκ.

If the transformed matrices (21) are inserted in (13)–(17)
the solution P̄z = T̄ P̄ T̄−1 of this modified ARE (13) has
the form

P̄z =

[
P̄r 0

0 0κ

]
(25)

and the ARE (13) then consists of a regular (upper left)
part

ArP̄r + P̄rA
T
r − P̄rC

T
r R̃

−1CrP̄r +GrQ̃GT
r = 0 (26)

while the rest is vanishing. The matrices in (26) are defined
by

Ar = A11 −G1Q̄GT
2 Φ

−1A21 (27)

Gr = G1 (28)

and

Cr =

[
C̄1

A21

]
(29)

so that the reduced-order Kalman filter can be regarded
as a regular full-order filter for the reduced system
(Ar, Gr, Cr). The feedback matrix Lr is defined by

Lr = P̄rC
T
r R̃

−1 = P̄r

[
C̄T

1 R̄
−1
1 AT

21Φ
−1

]
(30)

The ARE (26) has two advantages. First, it can be
used to obtain P̄r and consequently also P̄ by standard
software. Second, it defines the conditions which guarantee
a stable filter. It is known that the full-order Kalman
filter for the reduced system (Ar, Gr, Cr) is stable if the

pair (Ar, GrQ̃0) has no uncontrollable eigenvalues on the
imaginary axis, where

Q̃ = Q̃0 Q̃
T
0 (31)

(Goodwin et al. (2001)). Introducing

Q̄ = Q̄0 Q̄
T
0 (32)

and
Q̂ = I − Q̄T

0 G
T
2 Φ

−1G2Q̄0 (33)

it is easy to show that

Q̃0 = Q̄0 Q̂ (34)

when taking into account that C2G = G2. Given the above
condition for a stable filter in terms of Ar and Gr, it is of
interest to know the corresponding condition for the non-
reduced system (Ā, Ḡ, C̄). The answer is contained in the
following lemma.

Lemma 1. If the system

ż(t) = Āz(t) + ḠQ̄0w(t) (35)

y2(t) = [0 Iκ] z(t) (36)

has no zeros which are located on the imaginary axis, then
the pair (Ar, GrQ̃0) has no uncontrollable eigenvalues on
the imaginary axis and vice versa.

Proof: If s = si is a non-controllable eigenvalue of the pair
(Ar , GrQ̃0) then

rank

[
siI −Ar

... GrQ̃0

]
< n− κ (37)

(see, e.g., Kailath (1980)).

Now define the system matrix

P (s) =



sIn−κ −A11 −A12 G1Q̄0

−A21 sIκ −A22 G2Q̄0

0 −Iκ 0


 (38)

which characterizes the zeros of the system (35)–(36) (see
Rosenbrock (1970)).

If the system (35)–(36) has a zero at s = si, then
rank P (s = si) < n+ κ.

Using the unimodular matrix

UL =



In−κ −G1Q̄GT

2 Φ
−1 0

0 Iκ 0

0 0 Iκ


 (39)

and the unimodular matrix

UR =




In−κ 0 0

0 Iκ 0

Q̄T
0 G

T
2 Φ

−1A21 0 Iq


 (40)

one obtains

ULP (s = si)UR =



siI −Ar ∗ GrQ̃0

0 ∗ G2Q̄0

0 −Iκ 0


 (41)

Since it has been assumed that rank G2Q̄0 = κ (see (6))
this shows that the system (35)–(36) has a zero at s = si
if and only if s = si is an uncontrollable eigenvalue in
the pair (Ar , GrQ̃0) and vice versa. This is, of course, not
only true for the system (35)–(36) but also for the system
(A,GQ̄0, C2).
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3. THE FILTER DESIGN IN THE FREQUENCY
DOMAIN

In the frequency domain, the system (1)–(2) or (19)–(20)
is described by

y(s) = F (s)w(s) +

[
v1(s)
0

]
(42)

with

F (s) = C̄(sI − Ā)−1Ḡ = C(sI −A)−1G (43)

Given the left coprime MFD

F (s) = D̄−1(s)N̄w(s) (44)

the reduced-order Kalman filter is parameterized by the

polynomial matrix ˜̄D(s) resulting by spectral factorization
of the right hand side of

˜̄D(s)R̃ ˜̄DT (−s) = (45)

D̄(s)

[
R̄1 0

0 0

]
D̄T (−s) + N̄w(s)Q̄N̄T

w (−s)

where

Γr

[
˜̄D(s)

]
= Γr

[
D̄κ(s)

]
(46)

with the row-reduced polynomial matrix

D̄κ(s) = Π

{
D̄(s)

[
Im−κ 0

0 s−1Iκ

]}
(47)

(see Hippe and Deutscher (2009)). Here, Γr[·] denotes the
highest row-degree-coefficient matrix and Π[·] taking the
polynomial part.

The polynomial matrix ˜̄D(s) is related with the time
domain parameters by

D̄−1(s) ˜̄D(s) = (48)

C̄(sI − Ā)−1[L̄1 Ψ̄2] +

[
Im−κ 0

0 0κ

]

where

L̄1 =

[
P̄rC̄

T
1

0

]
R̄−1

1 (49)

and

Ψ̄2 =

[(
P̄rA

T
21 +G1Q̄GT

2

)
Φ−1

Iκ

]
(50)

In Hippe and Deutscher (2009) the solution (45)–(47) is
presented without rigorous proof, because the polynomial
matrix (45) contains a singular measurement covariance
at its right hand side and the known proofs of optimality

of a ˜̄D(s) obtained by spectral factorization are based on
a full-order filter with a regular measurement covariance
matrix.

The polynomial matrix (45) was derived on the basis of
the ARE (12). As shown in Section 2, the reduced-order
Kalman filter can also be designed on the basis of the regu-
larized ARE (26), using a system description (Ar, Cr, Gr)
of reduced order n− κ and a regular measurement covari-
ance matrix R̃.

Introducing the left coprime MFD of

Fr(s) = Cr(sI −Ar)
−1Gr (51)

namely

Fr(s) = D̄−1
r (s)N̄wr(s) (52)

and the polynomial matrix ˜̄Dr(s) parameterizing the
reduced-order Kalman filter related to the parameters
(Ar , Gr, Cr, P̄r) according to

D̄−1
r (s) ˜̄Dr(s) = Cr(sI −Ar)

−1Lr + Im (53)

the Riccati equation (26) can be transformed into the
polynomial matrix equation

˜̄Dr(s)R̃
˜̄DT
r (−s) = (54)

D̄r(s)R̃D̄T
r (−s) + N̄wr(s)Q̃N̄T

wr(−s)

by similar steps as in the derivation of (45) from (12) in
Hippe and Deutscher (2009). This is a regular polynomial

matrix equation with R̃ > 0 and consequently the poly-

nomial matrix ˜̄Dr(s) obtained by spectral factorization of
the right hand side of (54) with

Γr

[
˜̄Dr(s)

]
= Γr

[
D̄r(s)

]
(55)

parameterizes the optimal full-order Kalman filter for the
reduced-order system (52) in the frequency domain.

If this ˜̄Dr(s) is identical with ˜̄D(s) obtained from the
spectral factorization of (45), it follows that the solution
procedure presented in Hippe and Deutscher (2009) yields
indeed the optimal results.

Given the MFD (44), define the MFD

C̄(sI − Ā)−1 = D̄−1(s)N̄z(s) (56)

with N̄z(s) partitioned according to

N̄z(s) =
[
N̄z1(s) N̄z2(s)

]
(57)

where N̄z1(s) has n−κ columns and N̄z2(s) has κ columns.

Theorem 1. The polynomial matrix ˜̄Dr(s) resulting from

(54) is identical with ˜̄D(s) resulting from (45) if the
polynomial matrices in the MFD (52) are chosen as

N̄wr(s) = N̄z1(s)G1 (58)

and

D̄r(s) = (59)

[
N̄z1(s) N̄z2(s)

] [ 0n−κ,m−κ G1Q̄GT
2 Φ

−1

0κ,m−κ Iκ

]
+

D̄(s)

[
Im−κ 0

0 0κ

]

The polynomial matrix ˜̄D(s) = ˜̄Dr(s) parameterizes a
stable filter, if the pair(

D̄(s)

[
Im−κ 0

0 0κ

]
, N̄w(s)Q̄0

)
(60)

has no greatest common left devisor with zeros on the
imaginary axis.
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Proof : From (51), (52), (58) and (28) follows

Cr(sI −Ar)
−1 = D̄−1

r (s)N̄z1(s) (61)

As a consequence of the rearranged form of (56), namely
D̄(s)C̄ = N̄z(s)(sI − Ā) , together with (22) – (24) one
obtains

D̄(s)

[
C̄1

0

]
= N̄z1(s)(sI −A11)− N̄z2(s)A21 (62)

This allows to show that N̄z1(s)(sI−Ar) = D̄r(s)Cr which
then proves that the pair (58) and (59) constitutes a left
MFD of (51).

Inserting (58) and (59) in (54) it is straightforward to
show, that the right hand sides of the polynomial equa-

tions (45) and (54) coincide, so that ˜̄D(s)R̃ ˜̄DT (−s) =
˜̄Dr(s)R̃

˜̄DT
r (−s) and since R̃ is positive definite, this yields

˜̄D(s) = ˜̄Dr(s).

The equality ˜̄D(s) = ˜̄Dr(s) can also be installed by
comparing

˜̄D(s) = N̄z(s)
[
L̄1 Ψ̄2

]
+ D̄(s)

[
Im−κ 0

0 0κ

]
(63)

which results from (48) and

˜̄Dr(s) = N̄z1(s)Lr + D̄r(s) (64)

which results from (53) and then using (30), (49), (50) and
(59). This proves the first part of the theorem.

Since on the right hand side of (54) the measurement

covariance term R̃ is regular, the full-order filter for the
reduced system (Ar , Gr, Cr) is stable if the pair

(
D̄r(s) , N̄wr(s)Q̃0

)
(65)

has no common greatest left devisor UL(s) with zeros on
the imaginary axis (Goodwin et al. (2001)).

Two polynomial matrices are relatively left coprime if they
meet the Bezout identity. If they contain a non-unimodular
greatest common left devisor UL(s), the identity matrix is
replaced by UL(s) (Kailath (1980)).

If the pair (65) contains a non-unimodular greatest com-
mon left devisor UL(s) there exist solutions Ȳ0r(s) and

X̄0r(s) =

[
X̄0r1(s)

X̄0r2(s)

]
of the Diophantine equation

N̄z1(s)G1Q̃0Ȳ0r(s) + D̄r(s)

[
X̄0r1(s)

X̄0r2(s)

]
= UL(s) (66)

(see, e.g., Hippe and Deutscher (2009)). If, on the other
hand, the pair (60) contains a non-unimodular greatest
common left devisor UL(s) there exist solutions Ȳ0(s) and

X̄0(s) =

[
X̄01(s)

X̄02(s)

]
of the Diophantine equation

[
N̄z1(s)G1 + N̄z2(s)G2

]
Q̄0Ȳ0(s) + (67)

D̄(s)

[
I 0

0 0κ

][
X̄01(s)

X̄02(s)

]
= UL(s)

Given the solutions Ȳ0r(s) and X̄0r(s) of (66) the polyno-
mial matrices

X̄01(s) = X̄0r1(s) (68)

X̄02(s) = 0 (69)

and
Ȳ0(s) = Q̂Ȳ0r(s) + Q̄T

0 G
T
2 Φ

−1X̄0r2(s) (70)

solve the equation (67).

Given the solutions Ȳ0(s) and X̄0(s) of (67) the polynomial
matrices

X̄01r(s) = X̄01(s) (71)

X̄0r2(s) = G2Q̄0Ȳ0(s) (72)

and
Ȳ0r(s) = Q̂Ȳ0(s) (73)

solve the equation (66). This shows that, if the pair (65)
does not contain a greatest common left devisor with zeros
on the imaginary axis, then also the pair (60) does not
contain such a greatest common left devisor and vice versa.
This proves the second part of the theorem.

4. CONCLUSIONS

Some open problems in the design of reduced-order
Kalman filters for linear continuous-time systems have
been solved. Due to the noise-free measurements, the mea-
surement covariance matrix becomes singular and there-
fore, standard software cannot be used to solve the ARE
of the reduded-order filter. By defining an artificial output
of the system, a form of the ARE can be obtained which
exhibits a regular measurement covariance matrix. How-
ever, also this form is not solvable by the standard rou-
tines, as the corresponding Hamiltonian has eigenvalues
at s = 0. By using an appropriate state transformation
on the original system, this modified form of the ARE
can be subdivided into a regular part and a vanishing
part. The regular part is readily solvable for the matrix
P̄ , parameterizing the filter in the time domain, and it
also characterizes the conditions which guarantee a stable
filter. These conditions for the parameters of the reduced-
order system have been translated into conditions for the
original full-order system.

The known polynomial matrix defining the parameteriz-
ing polynomial matrix of the reduced-order filter in the
frequency domain contains a singular measurement covari-
ance matrix. This does not cause problems when applying
spectral factorization to obtain the parameterizing polyno-
mial matrix of the reduced-order filter. However, neither a
proof of optimality nor a set of conditions for the stability
of the filter were known so far. Based on the reduced-order
model in the time domain, a regular full-order filter design
for a reduced-order system also becomes possible in the
frequency domain. This allows to prove optimality of the
results obtained so far and it also allows to formulate the
conditions on the MFD of the original full-order system
that are required to obtain a stable filter.

Along similar lines as presented in this paper, regularized
design equations can be derived for the discrete-time case.
However, the derivation of the DARE in standard form
related to the artificial output is not as straightforward as
in the continuous-time case, where the optimal matrices
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L1 and Ψ2 can simply be substituted in the ARE (12)
to obtain the form (13). Different from the continuous-
time case, this DARE is solvable by standard routines for
the rank deficient matrix P̄ , because the eigenvalues of
the corresponding Hamiltonian at z = 0 are now inside
the stability region. However, a reduced full-order filtering
problem can also be formulated for a reduced-order system
of the order n − κ, and the parameters (Ar, Gr, Cr) have
the same form as in the continuous-time case. Starting
from this reduced-order system, a regular polynomial
matrix can be derived whose spectral factorization yields
a parameterizing polynomial matrix for the optimal filter.
This parameterizing matrix can also be shown to coincide
with the known matrix obtained by spectral factorization
of the non-regular equation, provided that the MFD of
the reduced system is chosen in the same way as in the
continuous-time case. An additional technicality arizes
due to the a posteriori estimate, so that an additional
presentation of these results is beyond the scope of this
paper.
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