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Abstract:  The paper deals with the design of the robust PID controller for real uncertain Coupled-Tank 
process in the frequency domain. Only the first independent tank is considered (single-input single-output 
system). Robust controller is designed in two ways. The first approach is performed with the Edge 
Theorem and the Neimark’s D -partition method for the affine model and the second one is performed 
with the modification of the Neimark’s D -partition which ensures desired phase margin. 
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1. INTRODUCTION 

Control of real processes inherently includes uncertainties 
(modeling errors due to linearization and approximation, 
disturbances etc.), which have to be considered in the 
adequate control design. Therefore robustness belongs to an 
important control design qualities: closed loop system 
stability and performance should be guaranteed over the 
whole uncertainty domain, (Vesely et al. 2006). 

There exist various approaches to robust stability analysis 
and robust control design for uncertain linear systems. In this 
paper the frequency domain PID controller design for real 
Coupled-Tank process is considered. Liquid tank processes 
play important role in industrial application such as in food 
processing, filtration, pharmaceutical industry, water 
publication system, industrial chemical processing and spray 
coating (Ramli et al. 2009). Many industrial applications are 
concerned with level of liquid control, may it be a single 
loop level control or sometimes multi loop level control 
(Ramzad et al. 2008). In this paper only the first tank with 
liquid is used (SISO). 

The paper is organized as follows. The next section gives 
details about Coupled-Tank process. Section 3 introduces a 
PID controller design using two approaches. In section 4 
some results of robust PID controller design are presented. 
Several step responses of closed-loop system with proposed 
PID controller are plotted there. Finally, conclusion is given 
in section 5. 

2. COUPLED-TANK PROCESS 

The industrial Coupled-Tank process is one of the real 
processes built for control education and research at Institute 
of Control and Industrial Informatics. The apparatus consists 
of two tanks (T1 and T2 in Fig. 1), which can be coupled 
using valve V12 (the manual valve). Therefore the Coupled-
Tank process with two tanks represents a multi-input multi-

output (MIMO) system for opened valve V12 or two 
independent single-input single-output (SISO) systems for 
closed valve V12. Both tanks are made of Plexiglas. These 
two tanks are mounted on a platform with a metering scale 
before each tank indicating the approximate liquid level in 
tank. Exact liquid level in each tank is measured using an 
electronic sensor. Other components of system are liquid 
basin (reservoir), two pumps (Pump1 and Pump2 in Fig. 1), 
two outlet valves (V1 and V2 in Fig. 1) and electronic circuit 
communicating with LABREG software in computer. This 
software is made for identification and control of real 
processes. The LABREG operates in MATLAB using 
toolboxes SIMULINK, Ident, Control and Real Time. 
Cooperation between Coupled-Tank process and computer 
and LABREG software is ensured using Advantech data 
acquisition card of type PCI 1711. More about LABREG and 
mentioned toolboxes can be found in (Kajan et al. 2007). 

The paper deals with design of robust controller for SISO 
system (valve V12 is closed), consequently there can be used 
one or two independent tanks. Only one tank process is 
considered, therefore the purpose is to control liquid level in 
the first tank by the inlet liquid flow from the first electronic 
DC pump (Pump1). The process input is 1( )u t  (voltage input 

to Pump1) and the output is 1( )h t  (liquid level in the first 

tank – T1). Input power is bounded by interval 0,10  volts 

and output signal is measured using electronic sensor. 1iQ  

and 1oQ  in Fig. 1 denote the inlet and outlet flow rates for 

T1 respectively. Outlet flow is affected by electronic outlet 
valve (V1), which can be set manually from 0 to 10 volts 
(for 0 [V] is closed, for 10 [V] fully opened) and represent 
perturbation. 
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Fig. 1. Coupled-Tank process 

3. PRELIMINARIES AND PROBLEM FORMULATION 

3.1 Robust controller design using the Edge Theorem 

For this theory affine model of the plant is used. It is used 
advantageously because a part of parameters of the real 
process vary dependently. Affine model is in this form 
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where 0( ), ( )ib s b s  and 0( ), ( )ia s a s  are polynomials of 

numerator and denumerator and uncertain parameters iq  are 

from interval ,i iq q 
  . 

Each real uncertain parameter iq  varies within a p-

dimensional domain. In other words, the parameter vector 

1, ,T
pq q q =  K  varies in the hypercube (Ackerman 1997, 

Bhattacharyya et al. 1995) 

 { }| , , 1,2,...,i i iQ q q q q i p = ∈ =   (2) 

Alternating minimal ( iq ) and maximal ( iq ) value of iq , we 

obtain the polytope with 2p  vertices. Each vertex can be 
represented by a transfer function with constant coefficients. 
Transfer function (1) describes a polytopic system. 

Consider the controller described by transfer function 
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where 1( )F s  and 2( )F s  are polynomials with constant 

parameters. 

If parameter q  varies within a hypercube, it generates a 

polytopic family of closed-loop characteristic polynomials 
described as follows 
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or in more general form according to (Hypiusová et al. 2007, 
Hypiusová et al. 2008) 
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where iq Q∈ . 

Theorem 1 - Edge Theorem (Hypiusová et al. 2007) 

The polytopic family of characteristic polynomials (5) is 
stable if and only if the edges of set Q  are stable. 

The Edge Theorem gives an elegant solution to the problem 
of determining the root space of polytopic systems. 
Therefore the robust stability of such systems can also be 
determined (Bhattacharyya et al. 1995). The stability 
condition for polytopic family of characteristic polynomials 
(5) is given in the following theorem using robust Hurwitz 
stability criteria. Using the Bialas Theorem stability of each 
edge of the polytopic box can be checked. 

Theorem 2 - Bialas Theorem (Hypiusová et al. 2007) 

The polynomial family 

 [ ]{ }( , ) ( ) (1 ) ( ), 0,1a bp s Q p s p sλ λ λ= + − ∈  (6) 

is stable if and only if: 

• ( ), ( )a bp s p s  are stable, 

• the matrix ( ) 1( ) ( )b a
n nH H

−
 has no nonpositive real 

eigenvalues 

where matrices ( )b
nH  and ( )a

nH  are Hurwitz matrices of 

following polynomials 
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By applying the Neimark’s D -partition method with Edge 
Theorem, the required stability degree of closed-loop system 
can be guaranteed. The controller coefficients are chosen so 
that the vertices and edges of polytopic system are stable.  

3.2 Robust controller design with desired phase margin 

This approach is in details described in (Hypiusová et al. 
2010a, Hypiusová et al. 2010b), where closed-loop system 
with ( )RG s  (transfer function of PID controller) and ( )G s  

(transfer function of the real plant) is considered. The real 
perturbed plant with unstructured inverse additive 
uncertainties is described as follows (Vesely et al. 2006) 

 1
0 0( ) ( )( ( ) ( ) ( ))ia iaG s G s I w s s G s−= + ∆  (8) 
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where 0( )G s  is nominal model, ( )iaw s  is stable weighting 

scalar transfer function, ( )ia s∆  is normalized matrix of 

unstructured uncertainty ( ( ) 1ia s∆ ≤ ). 

Weighting scalar transfer function must be chosen for all ω  
in accordance with 

 ( ) ( )ia iaw lω ω≥  (9) 

and weighting function ( )ial ω  is the maximum singular 

value of difference 0( ) ( )kG j G jω ω−  for N  ( 1, ,k N= K ) 

known transfer functions: 

 0( ) max ( ( ) ( ))ia M k
k

l G jw G jwω σ= −  (10) 

The nominal model stability is equivalent to the stability of 
the M ∆ -structure. We thus need to derive the robust 
stability conditions using M ∆ -structure for checking the 
stability according to (Hypiusová et al. 2010a, Skogestad et 
al. 2005) as follows 
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where ( )RG s  and 0( )G s  are transfer functions of PID 

controller and nominal model. Nominal model has in this 
case the following form 
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where , ( 1, , )i iB A i N= K  are polynomials of numerator 

and denumerator of N  identified transfer functions of the 
real process (in N  working points). 

Consider transfer function of PID controller 
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The robust PID controller design is performed with the 
modification of the Neimark’s D -partition which ensures 
stability and desired phase margin of the closed-loop system 
with nominal model described in (13) as in (Hypiusová et al. 
2010a). 

The closed-loop system characteristic equation for nominal 
model is 

 01 ( ) ( ) 0RG s G s+ =  (15) 

From (15) the relationship between ( )RG s  and 0( )G s  can be 

obtained 
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Using substitution s jω= , real and imaginary part of 

equation (16) are 
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The D -curve in the complex plane C  for parameter PK  can 

be plotted from real part (17) by changing value of ω  step 

by step in interval ( )0,∞ . Similarly it is with imaginary part 

(17), from where D -curve for parameters IK  and DK  can 

be plotted. Parameters of PID controller are obtained in two 
steps. In the first one it is possible to plot D -curve for 1PK  

and DK  (PD controller is obtained) and in the second one 

for parameters 2PK  and IK  (PI controller). 

When a phase margin is considered, the closed-loop system 
characteristic equation (15) can be rewritten according to 
(Hypiusová et al. 2010a, Hypiusová et al. 2010b) 

 01 ( ) ( ) 0j
RG s G s e ϕ−+ =  (18) 

where ϕ  is the angle of desired rotation in radians (phase 

margin) and in this way it is possible to rotate the frequency 
plot. From (18) real and imaginary parts can be obtained, 
which describe the D -curves as 
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Parameters of PD and PI controller are chosen from plotted 
D -curves. The final PID controller is represented as series 
connection of PD and PI controller and can be calculated as 
follows 
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The first controller (PD) is used for stabilization of system 
and the second one (PI) ensures desired phase margin. 

4. DESIGN OF ROBUST PID CONTROLLER FOR 
COUPLED-TANK PROCESS 

In this case, system step response is examined. Transfer 
function of the system in all three working points is obtained 
from the output step response of open loop system using BJ 
(Box-Jenkins) method of identification. More about BJ 
method of identification can be found in (Pintelon et al. 
2006a, Pintelon et al. 2006b). We consider transfer functions 
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of a liquid level in the first tank (see Fig. 1) obtained by 
identification in three working points: 

WP1 (working point 1): 

 ( ) 2,5 [ ]water pump voltage input voltage V=  

 2,75 [ ]step of water pump voltage in time t to V 

 ( ) 7 [ ]outlet valve voltage perturbation V=  

Transfer function is obtained by BJ method of identification 
as 

 1 2

2,9676 29,9239
( )

816,9049 202,6853 1WP

s
G s

s s

+=
+ +

 (21) 

WP2 (working point 2): 

 ( ) 3,5 [ ]water pump voltage input voltage V=  

 4,5 [ ]step of water pump voltage in time t to V 

 ( ) 9 [ ]outlet valve voltage perturbation V=  

Transfer function is obtained by BJ method of identification 
as 

 2 2

0,7824 7,8848
( )

360,5413 82,2612 1WP

s
G s

s s

+=
+ +

 (22) 

WP3 (working point 3): 

 ( ) 4 [ ]water pump voltage input voltage V=  

 5 [ ]step of water pump voltage in time t to V 

 ( ) 10 [ ]outlet valve voltage perturbation V=  

Transfer function is obtained by BJ method of identification 
as 

 3 2

0,5461 5,5007
( )

297,473 63,8584 1WP

s
G s

s s

+=
+ +

 (23) 

Transfer function of the nominal model is obtained by (13) 
from the above three working points 

 0 2

1,431 14,44
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s
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+ +

 (24) 

The respective polytopic (affine) model of the Coupled-Tank 
process is described by 
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where , 1, ,iq i N= K  are uncertain coefficients and 

polynomials of numerator and denumerator are 
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More about practical procedure on how to get the values of 
polynomials of numerator and denumerator can be found in 
(Vesely et al. 2006). 

4.1 Robust controller design using the Edge Theorem 

The robust PID controller is proposed using the Edge 
Theorem approach for the polytopic model defined in (25). 
The required degree of stability α  is 0. Using Neimark’s 
D -partition method the robust PID controller is designed 

 
21,6 4 0,1

( )R

s s
G s

s

+ +=  (26) 

Theorem 2 (Bialas Theorem) verifies stability and it can be 
said that the closed-loop polytopic system with robust 
controller is stable and the achieved degree of stability α  in 
4 vertices is 0,0258. Proposed robust PID controller (26) was 
set on the real process (first tank). Step responses in all three 
working points are depicted in Fig. 2,3,4. 

 

Fig. 2. Step response of closed-loop system in WP1 (the first 
working point) 

 

Fig. 3. Step response of closed-loop system in WP2 (the 
second working point) 
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Fig. 4. Step response of closed-loop system in WP3 (the 
third working point) 

4.2 Robust controller design with desired phase margin 

Consider the transfer function of nominal model as in (24). 
Required phase margin Rϕ  is 45o . In the first step D -curve 

for parameters 1PK  and DK  (PD controller) is plotted. 

These parameters are chosen from stable region above 
magenta line (see Fig. 5) because it is necessary to stabilize 
the system (the parameters need not be chosen only from the 
blue line in this step). 

The PD controller has following coefficients: 1 3,569PK =  

and 0,6849DK = . Poles of characteristic equation of 

closed-loop system with PD controller are 
-0,1332 0,2981j± . 

 

Fig. 5. D -curve for parameters 1PK  and DK  

The next step consists in design of PI controller for nominal 
model with PD controller. Parameters of PI controller need 
to be chosen from plotted desired phase margin 45o  (the 
blue line in Fig. 6). Chosen coefficients of PI controller are 

2 0,3542PK =  and 0,01713IK = . Transfer function of the 

final PID controller is 

 
20,2426 1,276 0,06114

( )R

s s
G s

s

+ +=  (27) 

Poles of characteristic equation of closed-loop system with 
PID controller (27) are -0,0914 0,1398j ±  and -0,0643. 

 

Fig. 6. D -curve for parameters 2PK  and IK  

Fig. 7 and 8 show that the desired phase margin and robust 
stability are satisfied. Proposed PID controller (27) was set 
on the real process. Step responses in all three working 
points are plotted in Fig. 9, 10 and 11. 

 

Fig. 7. Bode characteristics for Coupled-Tank process 
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Fig. 8. Robust stability condition 

 

Fig. 9. Step response of closed-loop system in WP1 

 

Fig. 10. Step response of closed-loop system in WP2 

 

Fig. 11. Step response of closed-loop system in WP3 

5. CONCLUSION 

In this paper two approaches of robust PID controller design 
for real unstable Coupled-Tank process have been presented. 
The first one is Edge Theorem and the second approach is 
based on modification of the Neimark’s D -partition 
method, which ensures not only stability of closed-loop 
system but also desired phase margin. From view of control 
quality, the robust controller design with desired phase 
margin using Neimark’s D -curves is better. Results 
obtained in the paper will be used for control education at 
Institute of Control and Industrial Informatics. Further 
aspects of the studied approach concerning robust controller 
design, closed-loop or open loop identification of Coupled-
Tank process with cascade controller, are under research. 
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