
Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS
of the 18th International Conference on Process Control

Hotel Titris, Tatranská Lomnica, Slovakia, June 14 – 17, 2011

ISBN 978-80-227-3517-9

http://www.kirp.chtf.stuba.sk/pc11

Editors: M. Fikar and M. Kvasnica

Ošmera, P.: Transplant Evolution for Optimization of General Controllers, Editors: Fikar, M., Kvasnica, M., In Proceed-
ings of the 18th International Conference on Process Control, Tatranská Lomnica, Slovakia, 366–372, 2011.

Full paper online: http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/059.html

http://www.kirp.chtf.stuba.sk/pc11
http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/059.html

Transplant Evolution for Optimization of general

Controllers

Jindřich Petrucha

e-mail:petrucha@edukomplex..cz

Pavel Ošmera

Institute of Automation and Computer

Science

Brno University of Technology

Faculty of Mechanical Engineering

Brno, Czech Republic

osmera@fme.vutbr.cz

Milos Seda

Institute of Automation and Computer

Science

Brno University of Technology

Faculty of Mechanical Engineering

Brno, Czech Republic

seda@fme.vutbr.cz

ABSTRACT

This paper describes a new method of evolution that is named

Transplant Evolution (TE). None of the individuals of the

transplant evolution contains genotype. Each individual of the

transplant evolution contains only phenotype. Reproduction

methods as crossover and mutation work and store only the

phenotype. The hierarchical structure of grammar-differential

evolution that is used for finding optimal structures and

parameters of general controllers is described.

Categories and Subject Descriptors

D.3.2

General Terms

Algorithms, Design

Keywords

Transplant evolution, grammatical-differential evolution, object

trees, hierarchical structures, algebraic reducing of trees,

crossover by linking.

1. INTRODUCTION
The aim of this paper is to describe a new optimization method

that can create control equations of general regulators. For this

type of optimization a new method was created and we call it

Two-Level Transplant Evolution (TLTE). This method allowed us

to apply advanced methods of optimization, for example direct

tree reducing of tree structure of control equation. The reduction

method was named Arithmetic Tree Reducing (ART). For

optimization of control equations of general controllers is suitable

combine two evolutionary algorithms. Main goal in the first level

of TLTE is the optimization of structure of general controllers. In

the second level of TLTE the concrete parameters are optimized

and the unknown abstract parameters in structure of equations are

set. The method TLTE was created by combination of Transplant

Evolution method (TE) [1,2,3,8,9,10] and Differential Evolution

method (DE) [7]. The Transplant Evolution (TE) optimizes

structure of solution with unknown abstract parameters and the

DE optimizes the parameters in this structure. The parameters are

real numbers. The real numbers are not easy find directly in TE

without DE. For evaluation of quality of found control equation

are described new methods, which allow us evaluate their quality.

It can be used in the case when the simulation of control process

cannot be finished. In results are shown some practical

application. In all results we received the control equation that

reached better quality of control process, than classical PSD

controllers and Takahashi`s modification of PSD controller.

2. THE PRESENTATION OF OBJECT

TREE STRUCTURES

The phenotype representation

of the individual is stored in the

object tree structure. Each of

nodes in the tree structure,

including the sub-nodes, is an

object that is specified by a

terminal symbol and the type of

terminal symbols. All nodes are independent and correctly defined

mathematical functions that can be calculated, e.g. the function x-

3, shown on Fig. 1, is a tree structure containing a functional

block (sub-tree).

Creating the object tree is a key part of GEOS, which this method

differs from other evolutionary algorithms. When the object tree is

generated, similar methods to a traditional grammatical evolution

are used. But the GEOS does not store the genotype, because the

production rules are selected by randomly generated genes that

are not saved in chromosomes of individuals. The final GEOS’s

individual contains only phenotype expressed in an object tree

structure.

The algorithm of GEOS uses a generative grammar [4,5,6] whose

translation process starts from the initial symbol S and continues

randomly with using the rules of defined grammar [2]. The basic

procedure of the translation algorithm is shown on Fig. 2 where is

explain to why is unnecessary to store the genotype.

European Polytechnical Institute

Kunovice,

Osvobození 699, 686 04 Kunovice,

Czech Republic

3

–

X

Fig. 1. Function block

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 059.pdf

366

3. CROSSOVER
The crossover is a distinctive tool for genetic algorithms and is

one of the methods in evolutionary algorithms that are able to

acquire a new population of individuals. For crossover of object

trees can be used following methods:

Crossover the parts of object trees (sub-trees)

The method of crossover object trees is based on the selection of

two parents from the population and changing each other part of

their sub-trees. For each of the parents cross points are randomly

selected and their nodes and sub-trees are exchanged. This is the

principle of creating new individuals into subsequent population

as is shown on Fig. 3.

Crossover by linking trees or sub-trees

This method, as well as the previous one, is based on the

crossover of two parents who are selected from the previous

population. But the difference is in the way how the object trees

are crossed. This method, unlike the previous one, does not

exchange two randomly selected parts of the parents but parts of

individuals are linked together with new and randomly generated

node. This node will represent a new root of the tree structure of

the individual. This principle is shown on Fig. 4.

Fig.4. Crossover by linking method

4. MUTATION
Mutation is the second of the operators to obtain new individuals.

This operator can add new structures, which are not included in

the population so far. Mutation is performed on individuals from

the old population. In the selected individual are randomly chosen

nodes which are then subjected to mutation. The mutation

operator can be subdivided into two types:

 Non-structural Mutation (NM)

 Structural Mutation (SM)

Non-structural Mutation (NM)

Non-structural mutations do not affect the structure of already

generated individual. In the individual who is selected for

mutation, chosen nodes of object sub-tree are further subjected to

mutation. The mutation will randomly change chosen nodes,

whereas used grammar is respected. For example it means that

mutated node, which is a function of two variables (i.e. + - × ÷)

cannot be changed by node representing function of one variable

or only a variable, etc. see Fig. .

Parrents

Offsprings

num

–

Uk

–

num

Node of

crossing

U-

num

Randomly

generated

node

×

DEk

+

Uk

U-

num

Node of

crossing

Uk

–

num

/

U-

numUk

–

num

–

Randomly

generated

node

Fig. 4. Crossover by linking method (LC - Linking

Crossing)

Parrents

Offsprings

num

–

Uk

–

num

Node of

crossing

U-

num

num

–Crossed

nodes

×

DEk

+

Uk

U-

num

Node of

crossing

×

DEk

+

Uk Uk

–

num

Crossed

nodes

Fig. 3. Classical Crossover (CC)

Call recursive

„Create tree node“

method and its

returns value add

into the

childNode list

Create tree node

Get next symbol

from list of rules

Set actual tree to

terminal symbol

and type of rule

Return this

instance of node

Initializing the node

and set rules for

translation to list of

rules

List of rules

is empty?

No

Yes

Is RuleType ==

terminal

Yes

Get rule as:

rule = random %

count of agregate

rules

No
Recursion

Fig. 2 Flowchart creation of object tree

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 059.pdf

367

Structural Mutation (SM)

Structural mutations, unlike non-structural mutations, affect the

tree structure of individuals. Changes of the sub-tree by extending

or shortening its parts depend on the method of structural

mutations. Structural mutation can be divided into two types:

Structural mutation which is extending an object tree structure

(ESM) and structural mutation which is shortening a tree structure

(SSM). This type of mutation operator can be subdivided into two

types:

Extending Structural Mutation (ESM)
In the case of the extending mutation, a randomly selected node is

replaced by a part of the newly created sub-tree that respects the

rules of defined grammar (see fig. 3). This method obviously does

not always lead to the extension of the sub-tree but generally this

form of the mutation leads to extension of sub-tree. (see Fig.).

Shortening Structural Mutation (SSM)
Conversely the shortening mutation replaces a randomly selected

node of the tree, including its child nodes, by node which is

described by terminal symbol (i.e. a variable or a number). This

type of mutation can be regarded as a method of indirectly

reducing the complexity of the object tree (see Fig.).

The complexity of the tree structure can be defined as the total

number of objects in the tree of individual.

5. DIRECT TREE REDUCTION
The minimal length of an object tree is often one of the factors

required in the optimal problem solution. This requirement can be

achieved in several ways:

 By penalizing the part of the individual fitness which

contains a complex object tree,

 Method of targeted structural mutation of individual (see

SSM),

 The direct shortening of the tree using algebraic

adjustments - algebraic reducing tree (ART).

The last-mentioned method can be realised by the GEOS, where

all of individuals does not contain the genotype, and then a

change in the phenotype is not affected by treatment with

genotype. The realisation of above mentioned problem with

individual, which use genotype would be in this case very

difficult. This new method is based on the algebraic arrangement

of the tree features that are intended to reduce the number of

functional blocks in the body of individuals (such as repeating

blocks "unary minus", etc.). The method described above is

shown on Fig. and Fig. .

Uk

+

Uk Uk

×

num

=>

Fig. 7. ART – substitution of nodes

U-

num

U- Uk

+

num Uk

+
=>

Fig. 8. ART – reduction multiple unary minus

num

–

Ek

–

Uk-1

num

–

Ek-1

Structural

mutation

Shortening

Extending

Fig. 6. Structural mutation

num

–

Uk

+

Ek-1

num

–

Uk

×

Ek-1

Non structural

mutationNode for

mutation

Mutated node

Fig. 5. Nonstructural mutation

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 059.pdf

368

In view of the object tree complexity of the individual and also for

subsequent crossover is preferable to have a function in the form

 than x = a + a + a, or more generally x = n × A.

Another example is the shortening of the function x = ─ (─ a),

where is preferable to have the form x = a (it is removing

redundant marks in the object tree individual). The introduction of

algebraic modifications of individual phenotype leads to the

shorter result of the optimal solution and consequently to the

shorter presentation of the individual, shortening the time of

calculation of the function that is represented in object tree and

also to find optimal solutions faster because of higher probability

of crossover in the suitable points with higher probability to

produce meaningful solutions. The essential difference stems from

the use of direct contraction of trees, which leads to significantly

shorter resulting structure than without using this method.

6. HIERARCHICAL STRUCTURE OF TE

(GDEOS) FOR OPTIMISATION OF THE

CONTROLLER
The hierarchical structure of the transplant evolution can be used

for optimisation of the structure and parameters of a general

controller. This structure contains three layers. First two layers

(GE + DE) are contained in TE. Those two layers are used for

If an individual of

grammatical's evolution has

some abstract parameters,

differential evolution will be

run for solve them, otherwise

simulation of regulation will

be run directly.

Has the grammatical

individual some abstract

parameters?

MutationCrossover

Compute

fitness

For all individual in

population

Is stopping

condition

satisfied?

The best solution is

result

Selection

Yes

Initialise of population

For all individual in

new population

No

Join

populations

Compute

fitness

Crossover

Is stopping

condition

Satisfied?

Compute

fitness

The best solution is

result for grammatical

evolution

Yes

No Selection

Initialise of population

Yes

Compute

regulator error

and system

response

Calculate

regulation

criteria of

statility

Initialise of regulator

Value of criteria

stability is result of

fitness

Is count

of actual

population >=

condition

No

For all individual in

population

For entered

regulation interval

No

Layer of Grammatical evolution

Layer of Differential evolution

Layer of Regulator

Yes

Fig. 9. Flowchart of TE (GDEOS) for controller

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 059.pdf

369

optimisation of the structure and parameters of general controller.

The third layer which is named layer of controller is used for

computation of fitness in TE.

At the beginning of GDEOS an initial population is created (see

Fig. 2) and then fitness of individuals is calculated. In the case of

finding the optimal solution in the first generation, the algorithm

is terminated, otherwise creates a new population of individuals

by crossover and mutation operators, with the direct use of

already created parent’s object tree structures (it is analogy as

transplantation of already created organs, without necessary

know-ledge of DNA – “Transplant Evolution (TE)”). If the result

of GDEOS needs some numerical parameters (for example num in

(Weisser 2010)), the second level with Differential Evolution

(DE) is used for optimization their parameter setting. The DE

gives better results in finding optimal values of unknown

numerical parameters that are expressed in the form of real

numbers, then in the GE. Due to the use of GDEOS for

optimization of controllers in the next stage of calculation of

fitness is model of controller used which is represented by the

equation in incremental form (recurrent algorithm). Quality of

controller is determined depending on the type of criterial

function (see equation 3). For fitness calculation are various

criterial functions used. Basic criterion is linear control area,

quadratic control area, linear or quadratic control area extended

with overshoot, oscillation of action value of the controller.

The flowchart of TE (GDEOS) for a controller is shown on Fig.

7. RESULTS
The TE and TE + ART methods for optimization of equation for

general controller were compared.

The resulting form of the recurrent equation of general controller

without using the direct method shortening of the tree (ART) is

following (equation 1):

uk=((((((Ek-(-((Ek+Ek))))×3)×2)+Ek-3)-(-(2)))-(-(((((((Ek-3+((((((Ek×3)

+(Ek+(((dEk-1+Ek)×2)×1.63)))×2)×2)+(-(((Ek-4+(Ek-(-(3))))+Ek-2))))

×3))+(-(((Ek-4+(Ek-Ek))+Ek-2))))×2)+((dEk-1+(4.47-((((Ek-(-

((((((((((Ek×3)+(Ek+(((dEk-1+Ek)×2)×2)))×2)×2)×2)+(-(3.61)))+Ek)

+Ek)+(-((3+Ek-2)))))))+((Ek×2)+Ek))+Ek)-(-(((Ek+2)×(3×((Ek-4+2) +Ek-

2))))))))-((((Ek+((((Ek+2)+Ek)+Ek)+(Ek/(-((6.88-((dEk-1+(1.79-Ek-3))-

2))))))) ×2)×3)+(-(((Ek-4+((Ek+Ek)×2)) +Ek))))))+Ek)-(-(Ek-2)))))

 (1)

The resulting form of the recurrent optimization algorithm in the

case with using the direct method of contraction tree is following

(equation 2):

uk = (Ek-3 - Ek × 1.93) × 33.97 + Ek-1 + Ek-2 (2)

As you can see, the resulting lengths of recurrent equation of the

general controller, is shorter in case of using TE + ATR then TE

without ART.

Bellow is shown result of optimisation parameters of PSD

controllers and optimisation of the structure and parameters of

general controllers. The parameters of PSD controllers were

optimised with using DE and structure and parameters of general

controller were optimised with using TE + ART method.

The basic criterion of minimal integral control area was used as

criterial function for optimisation of PSD or general controllers,

(see equation 3)

(3)

On the Fig. and Fig. are result of optimisation of PSD controller

and general controller to control the identical system with 5

second time delay.

On the Fig. is shown regulatory process of PSD controller. The

parameters of PSD controller were optimised with using DE.

On the Fig. is shown regulatory process of general controller. The

structure and parameters of this controller was optimised with

using TE (GDEOS) + ART method. The equation of general

controller is following (see equation 4).

uk = Ek × 23.01 + 10.91 × Ek-3 + Ek-1 × (-33.91) + Uk-1 (4)

On the Fig. and

Fig. are result of optimisation of PSD controller and

general controller to control the identical system with 2

second time delay.

On the Fig. is shown regulatory process of PSD controller.

The parameters of PSD controller were optimised with

using DE.

Fig.10. Regulatory process of PSD controller for second order

system with 5s time delay

(Top figure shows the system response and on the bottom

part of the figure is shown the action output of controller)

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 059.pdf

370

On the Fig.13 is shown regulatory process of general controller.

The structure and parameters of this controller was optimised with

using TE (GDEOS) + ART method. The equation of general

controller is following (see equation 5).

uk = (32.55×Ek-5) + (58.79×Ek) + 7.08 + (-89.97×Ek-2) (5)

We tested the TLTE method for optimization of recurrent

equation of general controllers. There is some results of

optimization for one following system:.

Integral system with transport delay

 (5)

In Fig.14 we compare 3 types of controllers. There is one PSD

controller marked PSD_DE and two general controllers marked

General_DE and General_TLTE. The curve marked PSD_DE is

PSD controller. Parameters (Kr, Ti, Td) of this controller were

optimized by Differential Evolution (DE). The curve marked

General_DE is for general controller which has the control

equation in PSD equation form, but parameters q0, q1, q2 were

optimized directly by DE. The curve marked General_TLTE is for

general controller with general control equation that was

optimized by Two-Level Transplant Evolution (TLTE). As you

can see, the best result gives the General_TLTE. In this case we

receive the recurrent control equation with following form:

Fig. 13. Regulatory process of general controller for second order

system with 2s time delay

(Top figure shows the system response and on the bottom part

of the figure is shown the action output of the controller)

Fig. 12 Regulatory process of PSD controller for second

order system with 2s time delay

(Top figure shows the system response and on the bottom

part of the figure is shown the action output of controller)

Fig. 11 Regulatory process of general controller for

second order system with 5s time delay

(Top figure shows the system response and on the bottom

part of the figure is shown the action output of the

controller)

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 059.pdf

371

8. CONCLUSION
The Two-Level Transplant Evolution (TLTE) was successfully

use for automatic generation of control programs of general

controllers. We tested this algorithm on many problems, only one

example was described in this paper. We hope that this new

method of controller design will be use in practice, not only for

simulation.

Although we are at early stages of experiments, but it seems that it

is possible to use parallel grammatical evolution with backward

processing to generate combinatorial logic circuits. The

grammatical algorithm can be outperformed with algorithms,

which are designed specifically for this purpose.

9. ACKNOWLEDGMENTS
This work has been supported by Czech Ministry of Education

No: MSM 00216305529 Intelligent Systems in Automation and

GA ČR No: 102/09/1668.

10. REFERENCES
[1] Koza J.R. 1992: Genetic Programming: On the Programming

of Computers by Means of Natural Selection, The MIT Press

[2] Kratochvíl O. and Ošmera P. and Popelka O. 2009: Parallel

grammatical evolution for circuit optimization, in Proc.

WCECS, World Congress on Engineering and Computer

Science, San Francisco, 1032-1040.

[3] Li Z. and Halang W. A. and Chen G. 2006: Integration of

Fuzzy Logic and Chaos Theory; paragraph: Osmera P.:

Evolution of Complexity, Springer, 527 – 578.

[4] O’Neill M. and Ryan C. 2003: Grammatical Evolution:

Evolutionary Automatic Programming in an Arbitrary

Language Kluwer Academic Publishers.

[5] O’Neill M. and Brabazon A. and Adley C. 2004: The

Automatic Generation of Programs for Classification

Problems with Grammatical Swarm, Proceedings of CEC,

Portland, Oregon, 104 – 110.

[6] Piaseczny W. and Suzuki H. and Sawai H. 2004: Chemical

Genetic Programming – Evolution of Amino Acid Rewriting

Rules Used for Genotype-Phenotype Translation, Proceedings

of CEC, Portland, Oregon, 1639 - 1646.

[7] Price K. 1996. Differential evolution: a fast and simple

numerical optimizer, Biennial Conference of the North

American Fuzzy Information Processing Society, NAFIPS,

IEEE Press, New York, NY, 524-527.

[8] Rukovanský I. Optimization of the throughput of Computer

Network Based on Parallel EA. In Proceedings of the World

Congress on Engineering and Computer Science WCECS

2009, San Francisco, CA, Oct. 20-22, 2009, Vol. II, pp. 1038-

1043

[9] Weisser R., Ošmera P., Matoušek R., Transplant Evolution

with Modified Schema of Differential Evolution:

Optimization Structure of Controllers. In International

Conference on Soft Computing MENDEL. Brno : MENDEL,

2010.

[10] Weisser R., Ošmera P., Šeda, M., Kratochvíl, O. Transplant

Evolution for Optimization of General Controllers. In

European Conference on Modelling and Simulation. 24th.

Kuala Lumpur (Malaysia) : ECMS 2010. s. 250 -- 260.

 (2)

Fig.14. Step response for integration system with time delay

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 059.pdf

372

