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Time Sub-Optimal Control of Triple Integrator 
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Slovak University of Technology, Bratislava, Slovakia, (e-mail: pavol.bistak@stuba.sk) 

Abstract: The time sub-optimal control is studied in this paper. The nonlinear controller that respects 
input saturations is derived for the simple linear system represented by the triple integrator. In comparison 
with the pure time optimal controller the designed sub-optimal controller changes its limit values smoothly 
with exponential behaviour. Similarly to the time optimal control the design is based on switching surfaces 
but these are shifted and modified according to the original ones in the time optimal control. This can 
assure the decrease of high sensitivity of time optimal control. New parameters introduced during the 
design correspond in linear cases to the poles of the closed loop system. They enable to tune the control 
changes. The time sub-optimal control is compared with model predictive control. The resulting formulas 
for the control value are complicated but they have an explicit form so they can be evaluated fast enough 
to be used in real time systems. 

Keywords: time optimal control, input constraints, smooth switching, triple integrator. 

 

1. INTRODUCTION 

The optimality principle played an always an important role 
in the design of control circuits. In the previous century the 
optimal control was studied heavily in 50-ties and 60-ties 
(Athans and Falb, 1996). The real applications have shown 
that it is very sensitive to unmodelled dynamics, parametric 
variations, disturbances and noise. Therefore it was in the 
main-stream control strategies replaced by other techniques, 
e.g. pole assignment control. This allowed to choose the 
position of poles and so influence the speed of changes what 
enabled to decrease the sensitivity of a control circuit. This 
paper shows how it is possible to combine “fast” time 
optimal control with “slow” pole assignment control.  

Generally the time optimal control can be solved by 
computation of switching surfaces. There are several ways 
how to derive them. They can result from the Pontryagin’s 
maximum principle. Pavlov solved switching surfaces for the 
systems up to the third order from the phase trajectories 
(Pavlov, 1966). Switching surfaces can also be expressed by 
the set of algebraic equations (Walther et al., 2001) that 
results from the time solution in the phase space. Of course, 
for higher order systems it can be rather complicated to find 
the exact solution of such a set. This paper shows how it is 
possible for a simple linear system represented by the triple 
integrator to derive and solve a set of polynomial equations in 
order to get the control value in the exact form. 

The controller proposed in this paper is not pure time optimal 
control. As it has been mentioned above it tries to combine 
qualities of both time optimal and pole assignment control 
(Huba, 2006). The time optimal control belongs to the 
nonlinear class of controllers whereas the pole assignment 
control is typically linear type of control. Switching between 
these two classes of control is assured by the saturation 

function that is applied individually to each mode of control. 
In this paper a set of additional parameters is introduced that 
corresponds to the set of poles of the closed loop in the linear 
case. These parameters specify exponential changes from one 
limit control value to the opposite one. By introducing such 
parameters in the control design the original switching 
surfaces valid for the time optimal control are modified. They 
are not smooth and consist of several regions. Then it is 
difficult to identify the corresponding region for an initial 
state. After deciding for the right region the control law is 
calculated according to the position of the representative 
point expressing the actual state with respect to the 
corresponding region of the switching surface.  

The paper is organized in five chapters. After introduction 
and problem statement chapters there is the main chapter 
where the design of the sub-optimal controller is described in 
details. This chapter discusses the nonlinear dynamics 
decomposition and regions of the switching surface. There is 
a corresponding control law derived for each region. The 
fourth chapter shows time responses of the designed 
controller and compares it to the time optimal controller and 
model predictive controller. The paper is finished with short 
conclusions. 

2. PROBLEM STATMENT 

Let us consider the linear system given in the state space 
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that represents the triple integrator. The control input signal is 
constrained 

21 UUu =  (2) 
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The task is to design the time sub-optimal controller what 
means to drive the system from an initial state [ ]tzyx=x

mint

x

 
to the desired state  in a minimum time  under the 
additional condition that limits the changes of the control 
action between two opposite values. When it is required that 
these changes should have an exponential behaviour the 
additional condition can be expressed by a scalar function 

 representing the distance of the current state  
from the switching surface (curve, point) and it holds 

wx

RRn
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d
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For the sake of simplicity we should admit that using a 
coordinate transformation it is always possible to set the 
desired state equal to the origin . 0x =w

3. TIME SUB-OPTIMAL CONTROLLER DESIGN 

It is well known that minimum time optimal control with 
saturated input leads to the control action with at most n 
intervals switching between limit values where n represents 
the order of the system. Usually the control algorithm results 
in deriving switching surfaces as functions of states which 
signs determine the switching times. It can be very hard task 
to express these functions exactly and there is no general 
solution for higher order systems ( ). Bang-bang control 
in practice is not desirable because of chattering and noise 
effects but there are techniques have to cope with them (Pao 
and Franklin, 1993, Bistak et al. 2005).  

3>n

The presented sub-optimal controller design belongs to one 
of them. This time the control action will not be calculated as 
the sign of the switching surface but will result from (3). If 
we apply the condition (3) also for the switching curve and 
switching point this will influence the construction of the 
switching surface itself. We will explain it with the help of a 
state vector nonlinear decomposition. 

3.1 Nonlinear Decomposition 

Let us consider ordered coefficients  

0123 <<< ααα  (4) 

Then the eigenvectors 
t
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form a base of the state space. In the linear case any point of 
the state space can be expressed as 

Rqqqqqq ∈++= 321332211 ,,,vvvx  (6) 

Because the control signal is limited only the points where 

 fulfils (2) are covered by (6). In order to express 

the whole space we have to introduce the nonlinear 
decomposition of the state  

∑
=

=
3

1i
iqu

321 xxxx ++=  (7) 

where each mode  ix
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consists of  a linear part given by the parameter  iq
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and a nonlinear part specified by the parameter  it
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After substituting (1) and (5) into (8) one gets 
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If we take the subsystem  it represents a one-dimensional 
variety that corresponds to the switching curve. Points from 
the linear part of  where (9) is fulfilled satisfy (3), i.e. they 
are decreasing the distance 

1x

1x

1ς  from the origin. In this case 
the system is moving along the line. The other points of the 
subsystem  given by (10) could not fulfil (3) because of 
the limited control value (2). They are approaching the linear 
part of  with the limit control value so they are moving 
along the trajectory in the form of a curve. In this case (3) is 
superimposed by (2).  

1x

1x

 

Fig. 1. Subsystem  representing the switching curve 1x

Similarly we can create a two-dimensional variety that will 
express the switching surface. We simply add to the 
subsystem   the subsystem . The points of the 
subsystem  become the target points for the second 
subsystem .  

1x

1

2
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x

x
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2112 xxx +=  (12) 

This time we define the distance 2ς  in the direction of the 
second eigenvector . The points of the  try to reach the 

 points according to (3) if it does not break (2). Otherwise 
they are moving with the limit control value  given by 
(10).  

2v 2x

1x

2q

Again there exist a linear and a nonlinear parts of the 
subsystem . In combination with the previous subsystem 

 we get four possibilities, i.e. four regions of the switching 
surface with respect to the limit and nonzero values of 

, , ,  (Fig. 2). If we take into account the parameter 
 the number of the regions doubles. Later on we will 

describe these regions in details and derive for each of them 
the corresponding control value. 
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Fig. 2. Regions of the switching surface (denoted for j=1) 

To cover the whole space we should realize also the third 
subsystem  but in the presented control algorithm design it 
is not necessary. To give reasonable results that can be 
applied in real time applications we simplified the third 
subsystem to following one  
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It represents the unit vector in the direction of the x-axis 
multiplied by the quotient . Thus the quotient expresses 
the distance 

3q 3q

3ς  between the current state and the switching 
surface that is measured in the direction of the x-axis. This 
simplification enables easier localization of the initial state 
with respect to the regions of the switching surface because it 
represents the projection of the switching surface to the (y,z)- 
plane where the borders between regions are parabolic curves 
or lines.  

In (Ťapák et al., 2006) one can find the solution of the control 
algorithm when the third subsystem was given by the third 
eigenvector  multiplied by the quotient  3v 3q

Rqq ∈= 3333 ,vx  (14) 

but this was not in the form suitable for real time systems. 

After completely decomposing the system to the three 
subsystems (7) it is necessary to derive the formula of the 
corresponding region of the switching surface. This comes 
from the set of equations (12) when the parameters  or 

are evaluated from the last two equations and replaced in 
the first one. Then one gets the formula for the corresponding 
switching surface in the form 

it

iq

RRfzyfx →= 2:;),(  (15) 

Now the resulting control value can be computed from (3) 
when we realize that the distance 33 q=ς  can be expressed as 
the difference between the x-coordinate of the initial point 
and the x-coordinate of the switching surface given by (15) in 
the form  ),( zyf

),(3 zyfx −=ς  (16) 

After substituting (16) into (3) and taking into account (1) it 
results in 
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Finally the control value u  can be isolated 
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The resulting control value u  must be limited by (2). 

As one can see from (18) the only one term not evaluated yet 
is  representing the switching trajectory. Because it 
differs according to the regions of the switching trajectory we 
will evaluate it individually. 

),( zyf

3.2 Control for Region QQ 

The region QQ denotes the subset of (12) where both 
subsystems  and  are in the linear cases, i.e. (9) is 
fulfilled for  and . The parameters   and  can be 
evaluated from the last two equations of the set (12). After 
using (11) and substituting  into (12) one gets 
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And for parameters  and  it yields 1q 2q
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By the substitution of  (20) and (21) into the first equation of 
(19) we derive the analytical expression for the region QQ 
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According to (18) the control value u  results in the form 

zyy
xzzyu

31323
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This is the well-known linear pole assignment controller for 
the triple integrator. 

3.3 Control for Region TQ 

By TQ we denote the region of the switching surface when 
the subsystem  is in the nonlinear cases, i.e. for its states 
(10) is valid and the subsystem  is in the linear cases, i.e. 
(9) comes true. The procedure how to derive the control value 
is very similar to that one performed in the previous region 
QQ. First we express (12) when  and  

1x

2x

q =1 jU 02 =t

 (24) 

For this and following calculations we have used the Maple 
computer algebra system and because of the complexity of 
several expressions we have used the Maple outputs.  

Now it is necessary to solve the last two equations of the set 
(24). The difference consists in  that the second equation of 
the set (24) is now the quadratic equation. From its two 
solutions we have chosen such one that assures the positive 
value of . Then after introducing the notation for the 
discriminant DTQ  

2t

 (25) 
the parameters  and  it can be expressed 2q 1t

 (26) 

 (27) 

Again we substitute (26) and (27) into the first equation of 
(24) and get the expression for the region TQ 

 (28) 
From (18) the control value  is u

 (29) 

3.4 Control for Region TT 

The region TT denotes the subset of (12) where both 
subsystems  and  are in the nonlinear cases, i.e. (10) is 
fulfilled for  and . Again the parameters   and  can 
be computed from the last two equations of the (12). This 
time we substitute 

1x

1t
2x

2t

q

1t 2t

jU=1  and  into (12) jj UUq −= −32

 (30) 
and when solving the last two equations again the criterion 
for the choice of the right solution is that the times   and  
must be positive.  

1t 2t

 (31) 
 (32) 

 (33) 
After using (32) and (33) in the first equation of the set (30) 
the points of the region TT can be expressed 
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 (34) 
In this case the resulting control value resulting from (18) is 
the most complicated one 

 (35) 

3.5 Control for Region QT 

The last region of the switching surface denoted QT is very 
similar to the second one denoted TQ. As the name says the 
combination of parameters   and  values is opposite to 
the region TQ. Here the first subsystem  is in the linear 
case, i.e. its states comply with (9) and the second subsystem 

 fulfils (10) that means  is nonzero. Therefore we 
substitute   and  in (12)  

iq

2t

3 j−

it

1x

2x

21 tt = 12 qUq = −

 (36) 
First we solve parameters  and  from the last two 
equations of the set (36). From the solution of the quadratic 
equation we choose that one that gives the positive solution 
of . After introducing discriminant DQT 

1q 2t

2t

 (37) 

we get  

 (38) 

 (39) 

To express the points of the region QT we substitute (38) and 
(39) into the first equation of the (36) 

 (39) 
The control value results from (18) 

 (40) 

3.6 Control Algorithm 

The control algorithm consists in the localization of the initial 
state to one of the above mentioned regions and then of the 
control value calculation. But before we have to specify the 
parameter . Then we can calculate the parameters . 
According their values we can find the region to which the 
initial point belongs and finally evaluate the control value. 

j iq

START 
1. Evaluate 1q according (20) and 2q according (21) 
2. IF 1q  fulfils (9) AND 2q  fulfils (9) THEN calculate 

u  according (23) – Region QQ 
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3. IF 1q  fulfils (9) AND 2q  NOT fulfils (9) THEN 

calculate 
2

)( 2qsign−  AND GOTO 8 3j =

4. Calculate 
2

)(3 1qsignj +
= , jUq =1  and  

according (26) 

2q

5. IF 2q  fulfils (9) THEN calculate u  according (29) – 
Region TQ 

6. IF 02 <jUq  THEN calculate u  according (35) – 1st 
part of the region TT 

7. Calculate 
2

)(3 1qsignj −
=  

8. Evaluate 1q  according (38) 
9. IF 1q  fulfils (9) THEN calculate u  according (40) - 

Region QT 
10. Evaluate u  according (35) – 2nd  part of the region 

TT 
END 

It is important to notice that at the end the control value 
computed according this algorithm must be limited by (2). 

4. EVALUATION OF DESIGNED CONTROLLER 

To show the performance of the designed controller we have 
carried out several simulations that differ from the starting 
point, parameters of the controller, and constraints. In the Fig. 
3 one can see the time responses from the initial state 

 under nonsymmetrical control value 
constraints 

[ t00200=x ]
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Fig. 3. Time responses of state and control variables. Sub-
optimal controller with nonsymmetrical constraints. 

All three pulses of the time optimal control can be mentioned 
but the control value switches from one limit value to the 
other one smoothly. The change rate is given by the choice of 
parameters iα . In this case the values of iα  were 

3,2,1 321 −=−= −= ααα . 

The comparison of the time sub-optimal control with the 
optimal one is shown in the Fig. 4. This time the starting 
point was [ ]t125.47916.15 −=x

6,3,5.1 32 −=
. The other parameters 

were 1 −=−= ααα  and 11−=u . 
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Fig. 4. Comparison of time optimal and sub-optimal control. 

There are not big differences in the time responses of the 
state variable x . But one can see the difference in the 
behaviour of the control variables. The time sub-optimal 
control variable uses limits for a shorter period because it 
needs a certain time to switch to the opposite value. The time 
optimal control variable switches immediately that can cause 
problems when the dynamics of a controlled system is not 
precisely identified. The time sub-optimal controller switches 
in advance and it finishes later but it is not so sensitive to the 
uncertain parameters or unmodelled dynamics. By moving 
the negative values of parameter is α  towards a zero we 
could get behaviour similar to the linear pole assignment 
controller. To get the exact linear behaviour we have to 
higher the control value limits. 

Fig. 5 shows the comparison of the time sub-optimal control 
with the model predictive control (MPC). The example for 
comparison is taken from (Glattfelder and Schaufelberger, 
2003). The parameters of MPC controller were following: 
prediction horizon 50=N , sampling period 050.0=sT , 
weights of linear quadratic controller 

, corresponding bandwidth 
⎥
⎥
⎥

⎦

⎤

3175.0
0
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⎢
⎢
⎢

⎣

⎡
=

00
345.30
078.11

Q

25.3=Ω  for  01.0=r . Higher Ω -values result in 
overshooting responses. Parameters of the time sub-optimal 
controller have been chosen in order to get similar response 
of control action. They are 100, 320,31 2 −=−−= = ααα . 
There are time responses from the initial state 

[ ]t001−=x  under control value constraints 11−=u . 
One can see that the output response (state value x) is for 
both controllers almost identical. Very small differences can 
be shown in the time responses of the control action. This  
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Decreasing Ω  to the value 1.575 would cause the second 
interval of control does not reach the limit value and would 
have linear behaviour too. Thus decreasing the parameter Ω  
assures the linear character of the control action in the last 
intervals of control. Choosing the  parameter it is not 
possible to influence the behaviour of switches between the 
limit control values separately.  Opposite to this the sub-
optimal controller has three parameters 

Ω

321 ,, ααα  that 
directly influence the exponential behaviour of switches. So it 
offers to design the control action response more specifically. 
In this example the values of iα  were 

10,8,3 31 2 −=−=−= ααα . 

 

5. CONCLUSIONS 

Presented controller design relies on switching surfaces. 
Because our aim was to decrease the sensitivity of controller 
we introduced new parameters into the design. In linear cases 
these parameters are identical with the poles of the closed 
loop. Of course, the switching surfaces are more complicated 
by additional parameters. In this paper we derived the 
solution with explicit mathematical formulas that is fast 
enough to be used in real time applications. The designed 
time sub-optimal controller has been compared with pure 
time optimal controller and model predictive controller. 

Fig. 5. Comparison of sub-optimal and model predictive 
control with similar behaviours. 

example shows that it is possible to set the parameters of the 
sub-optimal controller to get equal results with the MPC 
controller. 

Two different responses of the MPC and sub-optimal 
controllers are shown in the Fig. 6.  This time the parameters 
of both controllers have been decreased. The MPC controller 
parameters were: prediction horizon , sampling 
period , weights of linear quadratic controller 

, corresponding bandwidth 

 for  . The decrease of parameter values 
caused that the control action did not reach the control 
constraint in the last (third) interval of control. One can 
mention that the switch between the limit values in the first 
and the second interval of control is almost time optimal. The 
end of the response (third interval of control) corresponds to 
the linear controller behaviour.  
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