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Abstract: The paper presents simulation results obtained by robust control of a system of three serially 
connected tanks. The method used for robust controller design is based on the small gain theorem. The 
robust PID controller is designed that assures the stability of the closed-loop control system for a certain 
range of unstructured uncertainties.
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1. INTRODUCTION 

Uncertainty arises when some aspect of the system model is 
not completely known at the time of analysis and design. The 
typical example of a structured uncertainty is the value of a 
parameter which may vary according to operating conditions. 
The unstructured uncertainty can be caused by simplified 
modelling, when it is used to avoid very detailed and 
complex models. The other reasons for unstructured 
uncertainties are process non-linearity, changes of operating 
conditions and external disturbances. Dynamic systems with 
unstructured uncertainties are widely used to model physical 
systems.  

The small gain theorem (Green and Limebeer, 1994) is a tool 
for robust controller design for systems with unstructured 
uncertainty (Karafyllis and Zhong-Ping, 2007). The small 
gain theorem states that stable systems can be connected to 
form a stable closed-loop if the loop gain product is less than 
unity. It is the basis for the general robust stability results.  

The paper describes the robust PID controller design for three 
serially connect tanks. The process is modelled as a system 
with unstructured additive uncertainty and the robust 
controller design is based on the small gain theorem. The 
designed robust controller is tested by simulations.  

2. ROBUST STABILITY 

Suppose that the transfer function of an uncertain continuous-
time system with additive unstructured uncertainty has the 
form 
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where G0(s) is the nominal model, WA(s) is the weight 
function and ∆A(s) is a category of uncertainties that satisfies 
the condition ( ) 1≤ω∆ jA  for .  ω∀

The task is to find a robust controller for control of the 
system (1). The design method is based on the small gain 
theorem (Green and Limebeer, 1994, Veselý and Harsanyi, 
2007) and uses the fact that if a feedback loop consists of 
stable systems and the loop-gain product is less than unity, 
then the feedback loop is internally stable. The other basis for 
the design is a fixed point theorem known as the contraction 
mapping theorem (Khalil, 1996). 

According to the small gain theorem, following conditions 
have to be satisfied: the controller with the transfer function 
GR(s) stabilizes the nominal model and for the open-loop 
transfer function L(s), the condition given in (2) also holds.    
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The family of the controlled system transfer functions G(s) 
creates a set, in which G0(s) is the transfer function of the 
nominal system and Gk(s) is a transfer function from the set 
G(s), which differs from G0(s). Then, the value lA(ω) can be 
calculated as the maximal value of modules as it is shown in 
(3)  
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The characteristic equation of the closed loop with uncertain 
controlled system is 
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and after the substitution (1) into (4), we obtain 
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where V0(s) is the closed-loop transfer function with the 
nominal model and has the form 

 

( ) ( ) ( )
( ) ( )sGsG

sGsGsV
R

R

0

0
0 1+

=  (6) 

The closed loop must be stable. The small gain theorem 
requires satisfying also the second condition. It follows from 
(5) that for the second term in (5) the following condition 
holds 
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Then after the substitution s = jω we obtain 
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The conditions ( ) 1=ω∆ jA and ( ) ( )ω=ω AA ljW  represent 
the worst cases and so, it is possible to rewritten (8) to the 
form  
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Robust controller design is then based on finding parameters 
of the transfer function V0(s), the choice of the structure of 
the robust controller and calculation of the controller 
parameters. 

3. ROBUST PID CONTROLLER DESIGN 

A robust PID controller was designed for the process 
represented by three serially connected tanks. The controlled 
variable is the liquid level h3 in the 3rd tank and the 
manipulated variable is the flow rate of the inlet stream of 
water q. The inputs, outputs and parameters of the nominal 
model in a steady state are represented by following values: 
inlet flow rate qs =1m3 min-1, steady-state value of level 
h3

s = 0.444 m, valve constants k11 = 1 m2.5 min-1, 
k22 = 1.5 m2.5 min-1, k33 = 1.5 m2.5 min-1 and cross-section 

areas of tanks F1 = 0.5 m2, F2 = 0.1 m2, F3 = 0.1 m2. 
Unstructured uncertainties result from simplification of the 
mathematical model using linearization and changes of the 
valve constant k33. The family of the transfer functions in 
three operating points is following 
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where G0(s) is the nominal model, G1(s) is the model 
obtained with k33 = 1.3 m2.5 min-1 and G2(s) is the model 
obtained for k33= 1.7 m2.5 min-1. Figure 1 shows the function 
lA(ω ) which was determined using (3).  

 

  

Fig. 1. Dependence of maximal values of modules on the 
frequency ω 

The structure of robust PID controller was selected in the 
form: 
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The transfer function V0(s) is in the form  
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Parameter K is an optional parameter and the function V0(s) 
has to satisfy (9). The polynomial D0d(s) is optional, too, and 
the following equation has to be satisfied 

 

( ) ( ) ( )sCsDsG dd 00 =  (15) 

 

Parameters d1, c1, c0, c-1 are calculated from the following 
equation 
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and their values are: d1 = 1.1765, c1 = 0.0068, c0 = 0.0035,    
c-1 = 1. The transfer function V0(s) has the form 
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and it is affected by the choice of the parameters K. Figure 2 

illustrates the dependence of 
( )
( )ω

ω

Al
jG0  and the dependence of 

( )ωjV0  on ω calculated for various values of K (blue lines). 
It is clear from Figure 2 that the boundary value of K is 
K = 0.11.   

 

Fig. 2. Amplitude characteristics of V0  for various K 

The system of three serially connected tanks was controlled 
using three robust PID controllers designed by the small gain 
theorem for various feasible values of the parameter K. The 
transfer functions of found controllers are: 

 

( ) 3002270333301170 .K,s.
s

..sGR =++=  (18) 

( ) 50136020070 .K,s.
s

.sGR =++=  (19) 

( ) 5001402000070 =++= K,s.
s
..sGR  (20) 

 

Designed controllers were tested by simulation experiments 
for the nominal model with k33 = 1.5 (the index 0), the model 
with k33 = 1.3 (the index 1) and the model with k33 = 1.7 (the 
index 2). The set point was w = 0.4 and it changed at the time 
40 min to w = 0.6. The simulation results obtained using the 
PID robust controllers (18) – (20) are presented in Figs. 3 – 5. 

 

Fig. 3. Control responses of the system of three serially 
connected tanks with the controller (18) 

 

Fig. 4. Control responses of the system of three serially 
connected tanks with the controller (19) 
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Fig. 5. Control responses of the system of three serially 
connected tanks with the controller (20) 

 

The control responses obtained using three robust controllers 
were compared by evaluation of the IAE performance 
indexes. Their values are summarizes in the Table 1. 

Table 1 Comparison of robust controllers using IAE 
performance indexes 

 IAE0 IAE1 IAE2

K=0.3 1.817 2.0541 1.7609 

K=0.5 1.26 1.308 1.294 

K=5 1.8218 2.1527 1.6828 

 

One PID controller was designed for K higher then 0.11 to 
show that such choice leads to unstable control responses. 
The choice was K = 0.1 and the inequality (9) is not satisfied 
in this case. The transfer function of the found controller is  

 

( ) 100680100350 .K,s.
s

.sGR =++=  (21) 

 

The simulation results obtained using the PID controller (21) 
are presented in Fig. 6. 

 

 

Fig. 6. Control responses of the system of three serially 
connected tanks with the controller (20) 

4. CONCLUSION 

Obtained simulation results confirmed, that it is possible to 
assure good control responses of controlled processes with 
unstructured uncertainties using robust PID controllers. The 
optional parameter K used in the controller synthesis depends 
on the controlled system and on the amplitude of unstructured 
uncertainties. The stability and quality of the control response 
depends on the value of optional parameter K and it is 
important to find its boundary value.  
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