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 Optimization of process operation 

  Static optimization  u              RTO 
-  dynamic processes at steady-state 
-  run-to-run operation of batch processes 

  Dynamic optimization  u(t)       DRTO 
-  transient behavior of dynamic process 
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Outline 

Static real-time optimization 

Application examples 

  Adaptation of model parameters – Repeated identification & optimization 
  Adaptation of optimization problem – Modifier adaptation 
  Adaptation of inputs – NCO tracking 

Context of uncertainty 
o  Plant-model mismatch 
o  Disturbances 

   Use measurements for process improvement 
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Control task:"
   What inputs should "

   be applied to get the"
   desired outputs ?"

Optimization task:"
   What inputs should"

   be applied to optimize the"
objective function ?"

Inputs" Outputs"
System"

Control vs. Optimization 
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Disturbances"

Desired !
Outputs?!

Model error"

 
Inversion requires a process model (issue of causality)  

Inputs" Outputs"
System"

Inverted"
Process"
Model"

Desired"
Outputs"

Control -- A Problem of Inversion 
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Use measurements to compensate uncertainty 

Approximation of the inverse introduces robustness 

Controller ensures stability and tracking performance 

Inputs" Outputs"
System"

Desired"
Outputs"

Controller"

Disturbances"

Feedback"

Approximate Inversion by Feedback 
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Feasibility? !
Optimality?!

Disturbances"
Model error"

  
Numerical optimization using a process model 

Inputs" Outputs"
System"

Model-based"
Numerical"

Optimization"

Objective"

Optimization 
 A Problem of “Best” Inversion  

Feedback"

This talk: How to implement this feedback ? 

Feasibility !
Optimality!
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Real-Time Optimization of a Continuous Plant 

Planning & Scheduling"

Decision Levels"Disturbances"

Market Fluctuations, 
Demand, Price"

Catalyst Decay, Changing 
Raw Material Quality"

Fluctuations in 
Pressure, Flowrates, 
Compositions"

Long term 
week/month"

Medium term 
day"

Short term 
second/minute"

Real-Time Optimization"

Control"

Production Rates 
Raw Material Allocation"

Optimal Operating  
Conditions - Set Points"

Manipulated  
Variables"Measurements"

Measurements"

Measurements"

Changing conditions"
 Real-time adaptation"

Large-scale complex 
processes"
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Run-to-Run Optimization of a Batch Plant 

 

min
u[0,t f ]

! := " x(t f ),#( )                                          

s. t. !x = F(x,u,# ) x(0) = x0                                  
           S(x,u,# ) $ 0

           T x(t f ),#( ) $ 0

u(t) xp (t f )

Batch plant with"
finite terminal time"

u[0,t f ] = U(! )
Input Parameterization 

u(t)"
umax"

umin"
tf"t1" t2"

u1"

0"

min
!

" ! ,#( )                                            

s. t. G ! ,#( ) $ 0                     

Batch plant"
viewed as a static map"

! ! p

G p NLP"
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Plant"

Static RTO Problem 

min
u

! p u( ) := "p u, y p( )
s. t. G p u( ) := g p u, y p( ) # 0

(set points)"

? u"

NLP"

Model-based Optimization"

? 

min
u

!(u) := " u, y( )                                

s. t. G u( ) := g u, y( ) # 0          

F u, y,!( ) = 0

(set points)"

? u"uu
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RTO Scenarios"
Optimization in the presence 
of Uncertainty 

Measurements: 
Adaptive Optimization 

No Measurement: 
Robust Optimization 

What are the best"
 handles for correction?"

  
u* !arg min

u
"(u, y)

  

s.t. F(u, y,!) = 0
g(u, y) " 0

Adaptation of 
Inputs. 

- tracking active constraints 

-  NCO tracking 
-  extremum-seeking control 
-  self-optimizing control 
 
 

  input update: !u

Adaptation of 
Model Parameters 

-  repeated identification  
     and optimization 
- two-step approach 

 parameter update: !"

Adaptation of  
KKT Modifiers. 

- bias update 

- constraint update 

-  gradient correction 
-  ISOPE 

  constraint update: !g
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!

k
* "arg min

!
J

k
id

    
J

k
id = y

p
(u

k
!)" y(u

k
!,#)$% &'

T
Q y

p
(u

k
!)" y(u

k
!,#)$% &'

   
s.t. g u,y(u,!

k
")( ) # 0

Parameter Estimation Problem" Optimization Problem"

   
uk+1

! "argmin
u

# u,y(u,$k
!)( )

  uL ! u ! uU

Plant"
at"

steady state"
Parameter"
Estimation"

Optimization"
uk+1

! " uk
!

!k*

yp(uk
!)

T.E. Marlin, A.N. Hrymak. Real-Time Operations Optimization of Continuous Processes, 
 AIChE Symposium Series - CPC-V, 93, 156-164, 1997 

Current Industrial Practice "
for tracking the changing optimum"

in the presence of disturbances"

1. Adaptation of Model Parameters 
  Repeated Identification and Optimization 
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Model Adequacy for Two-Step Approach 

J.F. Forbes, T.E. Marlin. Design Cost: A Systematic Approach to Technology Selection for Model-
Based Real-Time Optimization Systems. Comp. Chem. Eng., 20(6/7), 717-734, 1996 

A process model is said to be adequate for use in an RTO scheme if it is 
capable of producing a fixed point for that RTO scheme at the plant optimum 

Model-adequacy conditions"

  up
!

!

   yp(up
! )

   Gi(up
! ," ) = 0, i #A(up

! )

   Gi(up
! ," ) < 0, i #A(up

! )

   !r"(up
# ,$ ) = 0,

   !r
2"(up

# ,$ ) > 0

Opt."

   

!J id

!"
yp(up

# ),y(up
# ," )( ) = 0,

   

!2J id

!" 2
yp(up

# ),y(up
# ," )( ) > 0,

Par.
Est."

SOSC"

Converged value"!

Plant"
at "

optimum"
Parameter 
Estimation"

Optimization"
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Two-step approach 

Example of Inadequate Model 

Does not 
convergence to 
plant optimum 

Williams-Otto Reactor 
"- 4th-order model 

- 2 inputs 
- 2 adjustable par. 
 

  
F

A
, X

A,in
= 1

  
F

B
, X

B,in
= 1

 F = F
A
+ F

B

 V

 TR

  XA
, X

B
, X

C
, X

E
, X

G
, X

P
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uk+1

! "arg min
u

#m(u) := #(u)+ $k
# [u % uk

! ]

   s.t. Gm(u) := G(u)+ !k + "k
G [u # uk

$ ] % 0

Modified Optimization Problem"
Affine corrections of 
cost and constraint 
functions"

  uL ! u ! uU

T 

T 

2. Modification of Optimization Problem 
 Repeated Optimization using Nominal Model 

Force the modified problem 
to satisfy the optimality 
conditions of the plant "

co
ns

tra
in

t v
al

ue
"

   Gm(u)

   Gp(u)

 !k

  G(u)

   !k
G [u " uk

# ]T 

 u
  uk

!

P.D. Roberts and T.W. Williams, On an Algorithm for Combined System Optimization and Parameter Estimation, 
Automatica, 17(1), 199–209, 1981 
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Requires evaluation of 
KKT elements of plant"

   
uk+1

! "arg min
u

#m(u) := #(u)+ $k
# [u % uk

! ]

   s.t. Gm(u) := G(u)+ !k + "k
G [u # uk

$ ] % 0

Modified Optimization Problem"

  uL ! u ! uU

T 

T 

KKT Modifiers:"

KKT Elements:"

   
!T = "1,!,"ng

,#G1 ,!,#Gng ,#$%
&

'
( )"nK

     
CT = G1,!,Gng

,
!G1

!u
,!,

!Gng

!u
,
!"
!u

#

$
%

&

'
( )"nK

  nK = ng + nu(ng + 1)

T T T 

!k = Cp(uk
") #C(uk

")

Modifier Update (without filter)"

2. Modification of Optimization Problem 
 Repeated Optimization using Nominal Model 

!k = (I " K)!k"1 + K Cp(uk
#) "C(uk

#)$
%

&
'

Modifier Update (with filter)"

A. Marchetti, B. Chachuat and D. Bonvin, Modifier-Adaptation Methodology for Real-Time Optimization, I&EC Research, 
48(13), 6022-6033 (2009) 

W. Gao and S. Engell, Iterative Set-point Optimization of Batch Chromatography, Comput. Chem. Eng., 29, 1401–1409, 2005 
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!J id

!"
yp(up

# ),y(up
# )( ) = 0,

   

!2J id

!" 2
yp(up

# ),y(up
# )( ) > 0

Model Adequacy for Modifier Approach 

Modifier 
Update"

Modified 
Optimization"

Model-adequacy condition"

  up
!

!

    Cp(up
! )

    ! = Cp(up
" ) # C(up

" )

A process model is said to be adequate for use in an RTO scheme if it is 
capable of producing a fixed point for that RTO scheme at the plant optimum 

   Gi(up
! ) = 0, i "A(up

! )

   Gi(up
! ) < 0, i "A(up

! )

   !r"(up
# ) = 0,

   !r
2"(up

# ,$) > 0
Converged value"

Plant"
at"

optimum"
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Example Revisited 
  
F

A
, X

A,in
= 1

  
F

B
, X

B,in
= 1

 F = F
A
+ F

B

 V

 TR

  XA
, X

B
, X

C
, X

E
, X

G
, X

P

Converges to plant 
optimum 

Williams-Otto Reactor 
"- 4th-order model 

- 2 inputs 
- 2 adjustable par. 
 

Modifier adaptation 

Alejandro Marchetti, PhD thesis, EPFL, Modifier-Adaptation Methodology for Real-Time Optimization, 2009  
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Model of solution!

Modeling"

Numerical"
Optimization"

Nominal process model !

O
ff-

lin
e"

Active constraints"
Reduced gradients"

Disturbances" Real Plant"

Evaluation of"
KKT elements"

Self-optimizing"
Controller"

B. Srinivasan and D. Bonvin, Real-Time Optimization of Batch Processes by Tracking the 
Necessary Conditions of Optimality, I&EC Research, 46(2), 492-504, 2007 

O
n-

lin
e"

3. Adaptation of Inputs      NCO tracking 
 

Self-optimizing control   
    no need to repeat 

numerical optimization on-line 
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Outline 

Static real-time optimization (process at steady-state) 

Application examples 

  Adaptation of model parameters – Repeated identification & optimization 
  Adaptation of optimization problem – Modifier adaptation 
  Adaptation of inputs – NCO tracking 

Context of uncertainty 
   Plant-model mismatch 
   Use of measurements for process improvement 
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Comparison of 3 RTO Schemes 
Run-to-Run Optimization of Semi-Batch Reactor 

  Objective: 

  Constraints: 

  Manipulated Variables: 

Model 

  Industrial Reaction System 

Simulated  
Reality 
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Nominal Input Trajectory 

  Optimal Solution   Approximate Solution 
u"
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Adaptation of Model Parameters k1 and k2  

  Exponential Filter for k1, k2: 

  Identification Objective: 

  Measurement Noise: 
   (10% constraint backoffs) 

Large 
optimality 
loss! 
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Adaptation of Modifiers εG "

  Exponential Filter for Modifiers: 

  No Gradient Correction 

  Measurement Noise: 
   (10% constraint backoffs) 

Recovers most 
of the optimality loss 
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Adaptation of Input Parameters ts and Fs 

  Controller Design: 

  No Gradient Correction 

  Measurement Noise: 
   (10% constraint back-offs) 

Recovers most 
of the optimality loss 

ts
k

Fs
k

!

"
#
#

$

%
&
&
=

ts
k'1

Fs
k'1

!

"
#
#

$

%
&
&

! = ! k!1
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  Industrial features"
•  1-ton reactor, risk of runaway"

•  Initiator efficiency can vary considerably"

•  Several recipes!

  different initial conditions!

 different initiator feeding policies!

  use of chain transfer agent!
•  Modeling difficulties"
•  Uncertainty"

 

Fj,T j,in

 

Tj

T (t)
Mw (t)
X(t)

!

"
#

$
#

Industrial Application of NCO Tracking 
Emulsion Copolymerization Process  

   Objective: Minimize batch time by adjusting the reactor temperature"
•  Temperature and heat removal constraints"

•  Quality constraints at final time"
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Industrial Practice  
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Optimal Temperature Profile 
 Numerical Solution using a Tendency Model 

•  Current practice: isothermal"

•  Numerical optimization"
  Piecewise-constant input"
  5 decision variables (T2-T5, tf)"
  Fixed relative switching times"

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

time/tf [ ]

Piecewise Constant Optimal Temperature

Tr [ ]

Tr,max

Isothermal 

Piecewise constant 
2"1" 3" 4"

5"

Time tf 

Tmax"

T [ ]"

•  Active constraints"
  Interval 1: heat removal "
  Interval 5: Tmax"
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Model of the Solution -- Semi-adiabatic Profile"

ts"

t"

T(t)"

Tmax"

Tiso"

tf"

Solution model 
Fixed part  -- structure 

Free part -- ts 

1"

2"Heat removal limitation 
≈ isothermal operation 

Compromise* 
≈ adiabatic 

T(tf) = Tmax"

ts enforces T(tf) = Tmax"

  run-to-run adjustment of ts  

*Compromise between 
 conversion and quality 
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Final time"
•  Isothermal: 1.00 "
•  Batch 1:      0.78"
•  Batch 2:      0.72"
•  Batch 3:      0.65"

Batch 0"

1.0"

Industrial Results (1-ton reactor) 

Francois et al., Run-to-run Adaptation of a Semi-adiabatic Policy for the Optimization of an  

Industrial Batch Polymerization Process, I&EC Research, 43(23), 7238-7242, 2004 
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Conclusions 

•  Use measurements for process improvement 
o  What is the best handle for correction? 

• Repeated estimation and optimization can suffer from 
model-adequacy problem 

•  Practical observations 
o  Complexity depends on the number of inputs (not system order) 
o  Solution is often determined by the constraints of the problem"

  easy tracking 


